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Abstract

We present a mathematically controlled mechanism for band-limited insta-
bility in a conserved relativistic fluid, formulated as a coarse-grained free-energy
theory with explicit ultraviolet regulation. The model identifies scalar irruption
with the loss of convexity of an effective thermodynamic functional, rather than
with backward diffusion. Instability occurs only within a finite wavenumber
band and is suppressed at high frequency by either gradient-energy regular-
ization or finite-correlation kernels. The resulting dynamics are well-posed,
conserve particle number exactly, and admit a causal constitutive completion.
Gravitational coupling is introduced only after the minimal closed system is
established, ensuring that conservation laws and regulator structure are fixed
at the level of the matter sector. The framework thereby provides a defensible
route from spinodal instability to scale-selected structure formation without
invoking metric expansion or ultraviolet pathologies.
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1 Introduction

Standard cosmological structure formation is typically modeled through gravitational

instability in an expanding background geometry. In contrast, the present framework

assumes a non-expanding plenum endowed with a scalar field φ, a vector flow v, and an

entropy density S. The dynamics of these fields are governed not by metric expansion

but by entropic smoothing and transport. Within this setting, the emergence of

structure must be explained without recourse to inflationary vacuum potentials or

background scale factors.

Scalar irruption is proposed as the fundamental mechanism of structure formation

under these assumptions. Informally, it denotes the abrupt local amplification of

a scalar field when entropy curvature crosses a critical threshold. The aim of this

essay is to replace that informal statement with a mathematically precise derivation,

beginning from an action principle and proceeding through stability analysis to a

rigorous instability criterion.

We assume throughout that the spatial manifold (M, g) is smooth, compact without

boundary unless otherwise stated, and equipped with a Riemannian metric g. All

fields are taken to be sufficiently regular for the variational calculus employed.

2 Effective-Theory Status and Conservation Struc-

ture

The model developed here is explicitly an effective non-equilibrium fluid theory. The

fundamental dynamical variable is a strictly conserved scalar density n, interpreted as

particle-number density or comoving matter density. Entropy is not introduced as

an independent ontological field; instead, coarse-grained thermodynamic structure is

encoded in an effective free-energy functional F [n].

We assume a spacetime manifold (M, gµν) with signature (−,+,+,+) and a timelike

four-velocity field uµ satisfying

uµuµ = −1.

Particle number conservation is imposed exactly through the current

Jµ = nuµ + J µ, uµJ µ = 0,
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with

∇µJ
µ = 0.

No violation of local conservation is permitted at any stage. All instability arises

through constitutive structure rather than through modification of conservation laws.

3 Coarse-Grained Free Energy and Regulator

Let hµν = gµν + uµuν denote the spatial projector orthogonal to uµ, and define the

spatial covariant derivative

Dµ := hµ
ν∇ν .

On hypersurfaces orthogonal to uµ, define the regulated free-energy functional

F [n] =

∫
Σt

√
γ
(
f(n) +

κ

2
DinD

in
)
d3x,

where γ is the induced spatial metric determinant, f(n) is an effective coarse-grained

free-energy density, and κ > 0 is a regulator coefficient encoding finite correlation

length.

The associated chemical potential is the variational derivative

µ =
δF
δn

= f ′(n)− κD2n, D2 := DiD
i.

The coefficient κ provides an explicit gradient-energy cost, suppressing arbitrarily

short-wavelength structure and thereby regularizing the ultraviolet sector.

4 Constitutive Closure and Causality

The simplest constitutive relation generalizing Fick’s law is

J µ = −Mhµν∇νµ,

with mobility M > 0.

This closure produces a relativistic CahnHilliard-type equation. However, as a

parabolic theory it implies infinite signal speed. To maintain compatibility with
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relativistic causality at the effective level, we adopt a minimal causal relaxation law:

τ uα∇αJ µ + J µ = −Mhµν∇νµ, uµJ µ = 0,

with relaxation time τ > 0.

In the limit t� τ , the parabolic form is recovered, while short-time dynamics remain

hyperbolic. The instability spectrum derived below is unaffected at leading order in

this regime.

5 Linear Stability and Band-Limited Growth

We first analyze the minimal closed matter system on a fixed background. Let

n = n̄+ δn with n̄ spatially homogeneous.

Expanding the chemical potential to first order gives

δµ = f ′′(n̄) δn− κD2δn.

In the comoving frame on subhorizon scales,

D2 ≈ a−2∇2,

and linearized number conservation yields

∂tδn = Ma−2∇2δµ− 3Hδn,

where H is the background expansion rate (which may be set to zero in a static plenum

limit).

In Fourier space, δn ∼ ei
~k·~x, we obtain

∂tδnk = γ(k, t) δnk,

with growth rate

γ(k, t) = M

(
−f ′′(n̄)

k2

a2
− κk

4

a4

)
− 3H.

In the spinodal regime where

f ′′(n̄) < 0,
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define

a := M |f ′′(n̄)|, b := Mκ.

Then

γ(k, t) = a
k2

a2
− bk

4

a4
− 3H.

This immediately implies:

• Instability occurs only for finite band 0 < kphys <
√
|f ′′|
κ

.

• Ultraviolet modes are suppressed by the k4 term.

• The fastest-growing physical wavenumber satisfies

k2
phys,∗ =

|f ′′(n̄)|
2κ

.

The instability is therefore band-limited and well-posed. The regulator κ defines a

physical correlation length

` ∼
√

κ

|f ′′|
,

which suppresses arbitrarily small-scale growth.

No backward-parabolic pathology appears because the highest-order operator remains

positive-definite.

6 Interpretation

Scalar irruption is identified with the crossing of the convexity boundary

δ2F = 0,

that is, the transition from positive to negative second variation of the coarse-grained

free energy. The instability corresponds to spinodal phase separation in the conserved

density sector.

The model thus describes phase decomposition in an effective thermodynamic land-

scape, not reverse entropy flow. The regulator ensures ultraviolet stability, and

conservation is preserved exactly.
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7 Variational Formulation of the Coupled System

Let φ :M× R→ R denote a scalar field, v a vector field on M, and S an entropy

density functionally dependent on φ unless otherwise specified. We begin with an

action functional of the form

A[φ,v] =

∫
R

∫
M

(
1

2
(∂tφ)2 − c2

2
∇φ2 + v · ∇φ− U(φ, S)

)
dµg dt, (1)

where dµg is the Riemannian volume form, c is a characteristic smoothing scale, and

U(φ, S) is an effective potential coupling φ to entropy.

We assume that entropy is defined by a functional of the scalar field,

S[φ] = −φ log φ, (2)

interpreted pointwise. More generally, one may take

S[φ] = −
∫
M
φ log φ dµg, (3)

but for local instability analysis the pointwise density is sufficient.

We consider a coupling of the form

U(φ, S) =
α

2
φ2 + βφ∆gS, (4)

where α and β are constants and ∆g is the Laplace–Beltrami operator.

The Euler–Lagrange equation for φ follows from

δA
δφ

= 0. (5)

A straightforward variation yields

∂2
t φ− c2∆gφ+∇ · v − αφ− β∆gS = 0. (6)

If we pass to a dissipative regime by introducing first-order temporal dynamics
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appropriate to smoothing processes, we consider instead the evolution equation

∂tφ = c2∆gφ−∇ · (φv) + αφ+ βφ∆gS. (7)

Equation (7) will serve as the starting point for instability analysis. The final term,

proportional to φ∆gS, encodes entropic curvature coupling. Scalar irruption will be

shown to arise when this term dominates diffusive smoothing.

8 Linear Stability Analysis and the Irruption Cri-

terion

We now consider a background configuration φ0 that is spatially uniform and stationary

under (7). Assume v = 0 for simplicity in the local analysis. Then the equation

reduces to

∂tφ = c2∆gφ+ αφ+ βφ∆gS. (8)

Let φ = φ0 + εψ, where ε� 1 and ψ is a perturbation. Expanding S[φ] to first order

yields

S[φ] = S[φ0] + εS ′[φ0]ψ +O(ε2). (9)

Since S ′[φ0] = −(1 + log φ0), we compute

∆gS ≈ −(1 + log φ0)∆gψ. (10)

Substituting into the linearized equation gives

∂tψ = c2∆gψ + αψ − βφ0(1 + log φ0)∆gψ. (11)

Collecting Laplacian terms,

∂tψ =
(
c2 − βφ0(1 + log φ0)

)
∆gψ + αψ. (12)
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Let ψk be an eigenfunction of ∆g with eigenvalue −λk, λk ≥ 0. Then

∂tψk = −
(
c2 − βφ0(1 + log φ0)

)
λkψk + αψk. (13)

The growth rate γk is therefore

γk = −
(
c2 − βφ0(1 + log φ0)

)
λk + α. (14)

We obtain the following result.

[Scalar Irruption Criterion] Suppose α ≥ 0. If there exists k such that

c2 − βφ0(1 + log φ0) < 0,

then for sufficiently large λk, the growth rate γk becomes positive, and the uniform

state φ0 is linearly unstable. This instability corresponds to scalar irruption.

If the coefficient of λk is negative, then

−
(
c2 − βφ0(1 + log φ0)

)
λk

is positive and grows unbounded as λk →∞. Since α ≥ 0, we may choose λk sufficiently

large such that γk > 0. Therefore ψk grows exponentially in time, establishing linear

instability.

The condition

βφ0(1 + log φ0) > c2 (15)

is the entropic differential threshold for scalar irruption. It expresses that entropy

curvature coupling overwhelms diffusive smoothing.

9 Nonlinear Energy Functional and Global Insta-

bility

To extend beyond linear analysis, define the energy functional
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E[φ] =

∫
M

(
c2

2
∇φ2 − α

2
φ2 − β

2
φ2∆gS

)
dµg. (16)

If φ evolves according to a gradient flow

∂tφ = −δE
δφ
, (17)

then stationary points correspond to critical points of E.

The second variation δ2E evaluated at φ0 determines stability. A direct computation

shows that under condition (15), the quadratic form associated with δ2E becomes

indefinite. Therefore φ0 ceases to be a local minimizer and becomes a saddle. This

establishes nonlinear instability in the energy landscape.

10 Stress–Energy Structure and Variational Con-

sistency

To ensure that the regulator term is not merely a phenomenological closure but a

genuine energetic contribution, we now derive a consistent stress–energy tensor from a

covariant effective action. The matter sector is defined by the Lagrangian density

L =
√
−g
(
−ε(n)− κ

2
hµν∇µn∇νn

)
,

where ε(n) is an effective energy density and κ > 0 is the gradient-energy coefficient

introduced previously. The projector hµν = gµν + uµuν enforces that gradient energy

is spatial in the comoving frame.

Variation with respect to the metric yields the stress–energy tensor

T µν =
2√
−g

δL
δgµν

.

Carrying out the variation produces

T µν = (ε+ p)uµuν + pgµν + κ

(
∇µn∇νn− 1

2
gµν∇αn∇αn

)
+ Θµν ,

where p(n) = nε′(n) − ε(n) is the effective pressure and Θµν contains additional
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projection terms if one insists on strictly spatial gradients in all frames. In the

comoving frame these reduce to the familiar Korteweg-type stress contributions known

from capillarity and phase-field theory.

Because this tensor is derived from a covariant action, conservation follows from

diffeomorphism invariance,

∇µT
µν = 0,

provided the matter equations of motion are satisfied. The regulator therefore has a

manifest energetic cost and is not introduced ad hoc. The gradient term modifies both

isotropic pressure and anisotropic stress, with contributions scaling as k2δn and k4δn

in Fourier space. These corrections will later provide the scale-dependent observational

signature.

11 Well-Posedness and Spinodal Instability

The central mathematical issue is whether the instability mechanism is pathological.

The structure derived above ensures that it is not. The highest-order spatial operator

entering the linearized evolution equation is positive-definite. The apparent “negative

diffusion” arises not from reversal of the leading derivative term but from the sign of

the second variation of the coarse-grained free-energy density.

To make this precise, consider the second variation of F [n] about a homogeneous

background n̄,

δ2F =

∫
Σt

√
γ
(
f ′′(n̄) (δn)2 + κDiδnD

iδn
)
d3x.

The system is linearly stable if and only if this quadratic form is positive-definite.

Instability arises when f ′′(n̄) < 0, in which case long-wavelength modes reduce the free

energy. The gradient term proportional to κ prevents arbitrarily small-scale growth

and therefore regularizes the ultraviolet sector. The instability band is finite, and the

growth rate is bounded.

This structure is identical in form to relativistic generalizations of spinodal decompo-

sition. The instability reflects loss of convexity of the free-energy density, not reversal

of entropy flow. The regulator introduces a physical correlation length

` ∼
√

κ

|f ′′(n̄)|
,

below which the continuum description ceases to support amplification.
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Because the leading operator remains fourth-order parabolic in the comoving frame,

the initial-value problem is well-posed. If the causal relaxation extension is retained,

the full system is hyperbolic at short times and diffusive only in the late-time limit.

12 Minimal Cosmological Embedding

We now embed the matter sector in a spatially homogeneous Friedmann–Robertson–

Walker background,

ds2 = −dt2 + a(t)2d~x2, uµ = (1, 0, 0, 0).

On subhorizon scales, the spatial Laplacian reduces to D2 ≈ a−2∇2. Linearizing about

n(t, ~x) = n̄(t) + δn(t, ~x) yields the growth equation

∂tδnk = M

(
|f ′′(n̄)|k

2

a2
− κk

4

a4

)
δnk − 3Hδnk.

The instability therefore competes with Hubble damping. Modes satisfying

0 < k2
phys <

|f ′′(n̄)|
κ

experience amplification, with fastest growth at

k2
phys,∗ =

|f ′′(n̄)|
2κ

.

The preferred physical wavelength

λ∗ =
2π

kphys,∗

is directly determined by the regulator scale and the curvature of the free-energy

density. If |f ′′| and κ evolve slowly, the selected scale remains approximately constant

in physical units. If they evolve significantly, the instability spectrum acquires a

calculable time dependence.

This establishes a direct parameter-to-scale map without invoking exponential metric

expansion.
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13 Interpretive Constraint

At this stage the theory contains no independent entropy field and no ontological

duplication of degrees of freedom. All instability derives from the curvature of a single

effective functional F [n] governing a conserved density. The language of “entropy

vaults” or “crack points” can therefore be translated rigorously into the condition

f ′′(n̄) = 0,

which marks the convexity boundary of the coarse-grained free-energy density.

Scalar irruption is thus identified with spinodal phase separation in a relativistic

effective fluid possessing a finite correlation length. The instability is band-limited,

the equations are well-posed, and conservation laws are maintained.

Further structure, including gravitational backreaction and potential scale-dependent

modifications of the scalar perturbation sector, can now be developed on this fixed

mathematical foundation without altering the core conservation structure.

14 Integration into the Five-Engine Plenum Archi-

tecture

Scalar Irruption via Entropic Differential (SIED) does not operate in isolation but

functions as one dynamical engine within a larger plenum architecture. Let the total

plenum dynamics be governed by five coupled operators:

E = {G,R,P , I,N},

where G denotes Gradient Anisotropic Smoothing (GAS), R denotes Deferred Ther-

modynamic Reservoirs (DTR), P denotes Poincar-Triggered Lattice Recrystallization

(PTLR), I denotes Scalar Irruption via Entropic Differential (SIED), and N denotes

the Neutrino Fossil Registry (NFR).

The full plenum evolution equation may be written schematically as

∂tφ = G[φ] +R[φ] + P [φ] + I[φ] +N [φ].
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Each operator modifies the scalar field φ in a distinct thermodynamic regime. GAS

contributes diffusive smoothing of the form

G[φ] = c2∆gφ,

DTR introduces delayed entropy injection modeled by a memory kernel K(t):

R[φ](t) =

∫ t

−∞
K(t− τ)φ(τ) dτ,

PTLR acts discretely via lattice symmetry recurrence, modeled as a nonlinear projec-

tion

P [φ] = ΠΛ(φ),

onto a crystallographic subspace Λ.

SIED contributes the entropic curvature coupling

I[φ] = βφ∆gS.

NFR records fossilized entropy traces through a weak residual operator

N [φ] = ε

∫
M
η(x, y)φ(y) dy,

with ε� 1.

Scalar irruption corresponds to regimes in which I dominates G locally, overwhelming

smoothing.

15 Entropy Vaults and Crack Points

To formalize the “entropy vault” and “crack point” language present in earlier concep-

tual descriptions, define the entropy curvature scalar

κS = −∆gS.
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A region U ⊂M is said to be an entropy vault if

κS(x) > 0 for all x ∈ U,

meaning entropy is locally concave downward and effectively compressed.

A crack point occurs at x0 ∈M when

κS(x0) > κc,

for some critical threshold κc determined by

βφ0κc = c2.

At such points, the effective diffusion coefficient becomes negative:

Deff = c2 − βφ0κS.

When Deff < 0, the Laplacian term changes sign, converting smoothing into amplifica-

tion. This defines the mathematical analog of a crack in the plenum.

If Deff < 0 on a non-empty open set U , then there exists a finite time T such that

φL2(U) increases monotonically for t < T .

Within U , the evolution reduces locally to

∂tφ = −|Deff|∆gφ.

Since −∆g is positive semidefinite, the operator generates growth in high-frequency

modes. Integration over U shows that the L2 norm increases until nonlinear terms

saturate the instability.

16 Relation to Poincar-Triggered Lattice Recrys-

tallization

Consider a scalar field discretized over a lattice Λ. Let φn denote the scalar at lattice

site n. PTLR acts via recurrence:
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φn 7→ φn + δφn,

where recurrence times satisfy Poincar return conditions.

When lattice recurrence induces localized entropy compression, the entropy differential

satisfies

∆ΛS < −κc.

Thus PTLR may generate preconditions for SIED. Scalar irruption therefore appears

as a secondary instability following recurrence-induced anisotropy.

17 Neutrino Fossil Registry as Memory Operator

Let S(x, t) evolve according to

∂tS = −γφ+ δ∆gS.

Residual entropy traces after irruption events remain encoded in weakly interacting

fields ν(x, t) satisfying

∂tν = ε∆gν + χφ.

These traces serve as fossilized memory of prior irruptions. In linear approximation, ν

records integrated scalar amplification events:

ν(x, t) ≈ χ

∫ t

0

eε(t−τ)∆gφ(x, τ) dτ.

Thus the Neutrino Fossil Registry mathematically corresponds to a retarded integral

memory kernel.
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18 Non-Expanding Cosmological Interpretation

Let the metric g be time-independent. The absence of scale factor a(t) distinguishes

this framework from standard cosmology. Structure arises not from background

expansion but from sign inversion in effective diffusion.

Define the comoving scalar density

ρ = φ.

Total mass is conserved:

d

dt

∫
M
φ dµg = 0,

provided boundary flux vanishes. Scalar irruption redistributes density internally

without requiring metric dilation.

19 Bifurcation Analysis

Consider the parameter family

D(λ) = c2 − λ,

with λ = βφ0κS.

The bifurcation point occurs at λ = c2.

[Irruption as Pitchfork-Type Instability] Near λ = c2, the uniform state undergoes a

supercritical bifurcation provided higher-order stabilizing terms are positive definite.

Expand the nonlinear evolution near threshold:

∂tψ = D(λ)∆gψ + ηψ3.

For D(λ) > 0, perturbations decay. For D(λ) < 0, growth occurs until balanced by

the cubic term ηψ3. Standard bifurcation theory yields a supercritical branch of stable

non-uniform equilibria.
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This establishes scalar irruption as a genuine phase transition in entropic geometry

rather than an arbitrary amplification event.

20 Frame Choice, Diffusive Flux, and Stress–Energy

Consistency

The presence of gradient–driven fluxes requires a clear distinction between bulk motion

and diffusive transport. Without such a distinction, one risks identifying the peculiar

velocity with a constitutive diffusion current, which is inconsistent with relativistic

conservation structure.

20.1 Particle Frame and Energy Frame

Let Jµ denote the conserved particle-number current,

∇µJ
µ = 0.

We decompose

Jµ = nuµ + jµ,

where uµuµ = −1 and uµj
µ = 0.

The choice of frame determines how uµ is defined:

In the Eckart (particle) frame, uµ is aligned with Jµ, so that jµ = 0.

In the Landau–Lifshitz (energy) frame, uµ is defined by the timelike eigenvector of

T µν , and jµ represents a physical diffusion current relative to the energy flow.

For definiteness, we adopt the Landau–Lifshitz frame. The bulk velocity uµ is therefore

determined by the stress–energy tensor, while diffusive effects enter only through jµ.

20.2 Constitutive Closure

The regulated scalar sector induces a chemical potential

µ =
δF
δn

= f ′(n)− κD2n.
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A conservative diffusive closure takes the form

jµ = −Mhµν∇νµ,

where M > 0 is a mobility and

hµν = gµν + uµuν

is the spatial projector orthogonal to uµ.

Importantly, jµ modifies the particle current but does not define the bulk velocity.

The bulk velocity remains the velocity appearing in the stress–energy tensor.

20.3 Stress–Energy Tensor with Gradient Regularization

The regulator term must be reflected in the stress–energy tensor if it is to have physical

meaning.

A minimal Korteweg-type stress consistent with the gradient energy is

T µν = (ε+ p)uµuν + pgµν + κ

(
∇µn∇νn− 1

2
gµν∇αn∇αn

)
.

The energy density ε and pressure p are derived from the same coarse–grained free–

energy density f(n) to ensure thermodynamic consistency.

With this definition,

∇µT
µν = 0

holds provided the scalar sector and diffusion current satisfy their respective conserva-

tion equations.

20.4 Separation of Roles

In this formulation:

The bulk velocity uµ governs gravitational dynamics through T µν .

The diffusion current jµ governs relaxation toward chemical equilibrium.

The regulator κ appears both in µ and in T µν , giving it an energetic interpretation

rather than treating it as a purely kinematic correction.
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This separation ensures that the cosmological velocity divergence θ appearing in linear

perturbation theory refers strictly to the bulk motion determined by the stress–energy

tensor. Chemical-potential gradients enter the perturbation system only through

modifications of the effective pressure sector (and, where retained, the anisotropic

stress), rather than through a redefinition of the velocity variable itself. In particular,

no identification of the bulk peculiar velocity ~v with −∇µ is required or assumed at

any stage of the derivation.

With this structure fixed, the scalar perturbation equations may be derived in longitu-

dinal gauge without ambiguity.

21 Linear Scalar Perturbations in Longitudinal Gauge

We now analyze scalar perturbations about a spatially flat Friedmann–Robertson–

Walker background. In longitudinal gauge, the perturbed metric takes the form

ds2 = −(1 + 2Φ)dt2 + a(t)2(1− 2Ψ)δijdx
idxj,

where Φ and Ψ are the Bardeen potentials.

The conserved particle-number current is written

Jµ = nuµ + J µ,

with uµ = (1− Φ, ~v/a) to first order, and J µ orthogonal to uµ.

We decompose the density as

n(t, ~x) = n̄(t) + δn(t, ~x),

and define the density contrast

δ ≡ δn

n̄
.

21.1 Perturbed Chemical Potential

The chemical potential derived from the functional is

µ = f ′(n)− κD2n.
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Expanding to first order yields

δµ = f ′′(n̄) δn− κa−2∇2δn.

In Fourier space, this becomes

δµk = f ′′(n̄) δnk + κ
k2

a2
δnk.

Note that the gradient correction modifies the effective sound-speed sector in a

scale-dependent way.

21.2 Perturbed Conservation Law

The conservation equation ∇µJ
µ = 0 gives, to linear order,

δ̇ +
1

a
∇ · ~v − 3Ψ̇ = 0.

The spatial components of the current define the velocity perturbation. Using the

constitutive relation

J i = −Mhij∇jµ,

we obtain

~v = −M
n̄
∇δµ.

In Fourier space,

~vk = −M
n̄
i~kδµk.

Substituting into the continuity equation yields

δ̇k + 3Ψ̇k = −Mk2

a2n̄
δµk.

Inserting the expression for δµk gives

δ̇k + 3Ψ̇k = −Mk2

a2

(
f ′′(n̄) δk + κ

k2

a2
δk

)
.
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21.3 Modified Euler Equation

The perturbed Euler equation follows from spatial projection of ∇µT
µν = 0. Including

the Korteweg stress, one obtains

~̇v +H~v = −1

a
∇Φ− 1

an̄
∇δpeff ,

where the effective pressure perturbation is

δpeff = c2
sδρ− κ

k2

a2
δn,

with c2
s = ∂p/∂ρ evaluated on the background.

The gradient term contributes a k2-dependent correction to the pressure perturbation,

and hence to the effective sound speed.

22 Effective Growth Equation

Combining the continuity and Euler equations in Fourier space yields a second-order

equation for δk,

δ̈k + 2Hδ̇k +

(
c2
sk

2

a2
− 4πGρ̄

)
δk + κ

k4

a4

M

n̄
δk = 0.

The additional k4 term is the signature contribution of the regulator. It modifies the

Jeans instability criterion. The modified dispersion relation in the subhorizon limit

becomes

ω2 = c2
s

k2

a2
− 4πGρ̄+ α

k4

a4
,

where α collects constants proportional to κ and M .

This implies three important structural consequences.

First, small-scale modes are stabilized by the k4 term even when c2
s < 0 in the spinodal

regime. The ultraviolet sector remains controlled.

Second, there exists a finite band of unstable modes determined by the condition

0 < k2
phys < k2

crit,
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where

k2
crit =

|c2
s|

2α

(
1 +

√
1 +

16πGρ̄α

c4
s

)
.

Third, the fastest-growing mode occurs at a calculable scale depending explicitly on κ.

23 Observable Consequences

The presence of the k4 regulator modifies the transfer function at high wavenumber.

In contrast to standard ΛCDM, which predicts a smooth power-law falloff modulated

by baryon acoustic oscillations, this model predicts a sharp suppression beyond a

regulator-controlled scale.

The two-point correlation function acquires a modified small-scale cutoff determined by

κ. If κ evolves slowly, this cutoff remains approximately fixed in physical coordinates,

unlike horizon-driven inflationary scales which are tied to expansion history.

Furthermore, the regulator induces scale-dependent anisotropic stress. In general,

Φ−Ψ 6= 0,

even in the absence of free-streaming radiation. This provides a direct observational

wedge via weak lensing measurements, since lensing depends on the combination

Φ + Ψ.

The instability spectrum therefore produces three potential empirical discriminants: a

preferred physical clustering scale, a high-k suppression distinct from cold dark matter

transfer functions, and a scale-dependent anisotropic stress signature.

24 Structural Summary

The model is now expressed as a closed relativistic fluid with

∇µJ
µ = 0, ∇µT

µν = 0,

a coarse-grained free-energy functional with regulated second variation, and a gravita-

tional coupling determined by explicit stress–energy contributions.
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The instability mechanism is mathematically equivalent to relativistic spinodal decom-

position with a finite correlation length. The negative diffusion language is replaced

by loss of convexity of the free-energy density. The ultraviolet sector is controlled by

a gradient-energy regulator that produces a calculable k4 correction to the dispersion

relation.

At this stage, the theory makes falsifiable predictions at the level of the linear matter

power spectrum and gravitational slip.

24.1 Matter-Era Transfer Function with Gradient Regulator

We now compute an explicit, asymptotically controlled modification of the linear matter

power spectrum arising from the regulator term κeff in the conservative Korteweg

sector.

Working in the longitudinal gauge and restricting to the matter-dominated era with

w ' 0, Ψ ' Φ, and Φ̇ ' 0, the subhorizon scalar perturbations satisfy the standard

continuity–Euler system with a modified pressure sector. Incorporating the gradient

regulator through

δpk = c2
sρ̄ δk +

κeff

a2
k2ρ̄ δk,

the combined growth equation becomes

δ̈k + 2Hδ̇k +

(
c2
sk

2

a2
+
κeffk

4

a4
− 4πGρ̄

)
δk = 0.

In matter domination,

a(t) ∝ t2/3, H =
2

3t
, 4πGρ̄ =

2

3t2
.

Substituting these relations gives

δ̈k +
4

3t
δ̇k +

(
κeffk

4

a4
− 2

3t2

)
δk = 0,

where we have neglected the ordinary sound speed term c2
s for clarity in the dust-like

limit.
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Large-Scale Regime

For sufficiently small comoving wavenumber k, the regulator term is negligible com-

pared to the gravitational term. The equation reduces to

δ̈k +
4

3t
δ̇k −

2

3t2
δk = 0,

whose growing solution is

D(k, a) ∝ a.

Thus on scales k � kJ(a) the growth is indistinguishable from Einstein–de Sitter

evolution.

Regulator-Dominated Regime

For sufficiently large k, the regulator term dominates over gravity. The equation

becomes

δ̈k + 2Hδ̇k +
κeffk

4

a4
δk ' 0.

Because κeffk
4/a4 ∝ a−4 while H2 ∝ a−3, the restoring term dominates at early times

for fixed k. Growth is therefore suppressed once the regulator overtakes gravitational

instability.

Define aon(k) as the scale factor at which

κeffk
4

a4
on

= 4πGρ̄(aon).

Using ρ̄ ∝ a−3 in matter domination, we obtain

κeffk
4

a4
on

∝ a−3
on ,

which implies

aon ∝ k−4.

Modes that enter the regulator-dominated regime early cease growing at aon. Their

late-time growth factor therefore satisfies

D(k, atoday) ∝ aon(k) ∝ k−4.
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Asymptotic Transfer Function

Define the transfer function relative to standard matter-era growth as

Tκ(k) =
Dκ(k, atoday)

atoday

.

Then asymptotically,

Tκ(k)→ 1 for k � kκ,

and

Tκ(k) ∝ k−4 for k � kκ,

where kκ is the regulator scale determined by κeff .

A smooth analytic interpolation consistent with these limits is

Tκ(k) '
(

1 +
k4

k4
κ

)−1

.

The matter power spectrum therefore becomes

Pκ(k, a) = Pprim(k)Tκ(k)2 a2,

which yields the asymptotic behavior

Pκ(k) ∝ kns (k � kκ),

and

Pκ(k) ∝ kns−8 (k � kκ).

Physical Interpretation

The gradient regulator introduces a calculable high-k suppression that steepens the

power spectrum by an additional k−8 factor relative to the primordial tilt in the

conservative matter-era approximation. This suppression arises from a scale-dependent

effective sound speed

c2
eff(k, a) = κeff

k2

a2
,
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which defines a modified Jeans criterion

c2
effk

2

a2
' 4πGρ̄.

The resulting cutoff scale is therefore directly tied to the regulator parameter κeff and

admits an explicit parameter-to-spectrum mapping.

24.2 Gauge-Invariant Treatment via the Mukhanov–Sasaki

Variable

We now recast the regulated scalar sector in a manifestly gauge-invariant form. This

serves two purposes. First, it eliminates any ambiguity about whether the earlier

longitudinal-gauge calculation has inadvertently conflated gauge artifacts with physical

growth. Second, it identifies precisely where the gradient regulator enters the canonical

action and therefore how it must modify the mode equation for scalar perturbations.

We work on a spatially flat FRW background

ds2 = −dt2 + a(t)2d~x 2,

and we consider scalar perturbations of a single effective fluid degree of freedom whose

microphysics is encoded by a pressure functional that depends not only on the density

but also on spatial gradients of a conserved scalar, such as number density n or energy

density ρ. In the conservative Korteweg closure, this dependence produces, at linear

order, a scale-dependent pressure perturbation of the schematic form

δpk = c2
s δρk +

κeff

a2
k2 δρk, (18)

where c2
s is the usual adiabatic sound speed and κeff > 0 is the regulator parameter

(with dimensions of length squared) descending from the gradient-energy coefficient in

the underlying coarse-grained functional.

Gauge-invariant curvature perturbation and effective sound speed

Let R denote the comoving curvature perturbation. For a single adiabatic degree

of freedom and negligible anisotropic stress at leading order, the standard quadratic
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action can be written in conformal time η as

S(2) =
1

2

∫
dη d3x z(η)2

[
(R′)2 − c2

eff(∇R)2
]
, (19)

where primes denote d/dη and

z2 =
2a2ε

c2
ad

with ε = − Ḣ

H2
, (20)

in the canonical single-field case. In the present effective-fluid setting, it is more robust

to regard z(η) as the standard background function determined by ρ̄ + p̄ and the

adiabatic sound speed c2
ad = ˙̄p/ ˙̄ρ, while the regulator modifies the gradient sector by

replacing the constant sound speed with a scale-dependent effective sound speed.

To see this explicitly, note that (18) implies, for Fourier modes, the closure

δpk = c2
eff(k, η) δρk, c2

eff(k, η) = c2
s(η) + κeff

k2

a(η)2
. (21)

The key point is that the regulator contributes only through the spatial-gradient sector

of the quadratic action; it does not alter the definition of R, and it does not require

any gauge choice to be stated.

24.3 Covariant Scalar Perturbations with Gradient Energy

We now construct the scalar perturbation sector directly from the covariant stress–

energy tensor derived earlier, in order to isolate precisely how the gradient regulator

enters linear cosmological dynamics.

We work on a spatially flat Friedmann–Robertson–Walker background

ds2 = −dt2 + a(t)2δijdx
idxj, uµ = (1, 0, 0, 0),

and perturb both the metric and the conserved density n by scalar modes.

The perturbed metric in general scalar form may be written

ds2 = −(1 + 2A)dt2 + 2a(t)∂iB dt dxi + a(t)2 [(1− 2ψ)δij + 2∂i∂jE] dxidxj.
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The conserved density decomposes as

n(t, ~x) = n̄(t) + δn(t, ~x),

and the four-velocity acquires a scalar perturbation through

uµ = (−1− A, a ∂iv).

The stress–energy tensor derived from the regulated Lagrangian contains two contri-

butions: the perfect-fluid part and the gradient-energy (Korteweg) sector. At linear

order, the density and pressure perturbations take the form

δρ = ε′(n̄) δn, δp = n̄ε′′(n̄) δn,

while the gradient contribution yields an additional term proportional to spatial

derivatives of δn.

Explicitly, from

L = −ε(n)− κeff

2
hµν∇µn∇νn,

the linearized pressure perturbation becomes

δpk = c2
s δρk +

κeff

a2
k2 δρk,

where

c2
s =

∂p

∂ρ
=
n̄ε′′(n̄)

ε′(n̄)
.

The regulator therefore enters exclusively through a k2-dependent correction to the

pressure perturbation. No additional propagating field appears, and the number of

scalar degrees of freedom remains unchanged. The effect is entirely constitutive.

Furthermore, because the gradient energy arises from a covariant Lagrangian, the

modified pressure sector respects energy–momentum conservation,

∇µT
µν = 0,

ensuring that the perturbation equations derived from the Einstein equations are

mutually consistent.

At this stage, the regulator has been shown to modify the linear scalar sector through

a scale-dependent pressure term without introducing gauge artifacts or additional

dynamical variables. We may now pass to a manifestly gauge-invariant description to
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identify the canonical variable governing scalar perturbations.

Mukhanov–Sasaki equation with regulator

Define the Mukhanov–Sasaki variable v = zR. Varying (19) yields the mode equation

v′′k +

(
c2

eff(k, η) k2 − z′′

z

)
vk = 0, (22)

with c2
eff given by (21). Substituting (21) into (22) exhibits the regulator as an explicit

k4 contribution:

v′′k +

(
c2
s(η) k2 + κeff

k4

a(η)2
− z′′

z

)
vk = 0. (23)

Equation (23) is the gauge-invariant counterpart of the growth equation derived

earlier in the subhorizon matter-era approximation. The new content here is not the

functional form, which is the same, but the status: the k4 term is now manifestly

physical because it appears in the canonical action for the gauge-invariant mode.

Hamiltonian Positivity and Absence of Ghosts

Before analyzing subhorizon behavior, it is important to verify that the regulator does

not introduce pathological degrees of freedom at the quadratic level. Because the

modification enters through the spatial-gradient sector of the action (19), the kinetic

structure remains unchanged.

From (19) with scale-dependent sound speed,

S(2) =
1

2

∫
dη d3x

[
v′2 −

(
c2
s(η)(∇v)2 + κeff

(∇2v)2

a(η)2
− z′′

z
v2

)]
,

where we have used v = zR and integrated by parts to make the spatial operators

explicit.

The canonical momentum is

πv = v′,

so the Hamiltonian density becomes

H =
1

2
π2
v +

1

2

(
c2
s(η)(∇v)2 + κeff

(∇2v)2

a(η)2
− z′′

z
v2

)
.
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The regulator contributes a positive-definite quartic-gradient term provided

κeff > 0.

Thus the highest-derivative spatial operator in the quadratic Hamiltonian is strictly

positive. In Fourier space the gradient sector contributes

1

2

(
c2
sk

2 + κeff
k4

a2

)
|vk|2,

which grows as k4 for large k.

Two consequences follow immediately.

First, no Ostrogradsky instability arises, since the action remains first order in time

derivatives and higher order only in spatial derivatives. The kinetic term is canonical

and positive-definite.

Second, the ultraviolet dispersion relation satisfies

ω2
k ∼ κeff

k4

a2
as k →∞,

so ω2
k → +∞ in the ultraviolet. The regulator therefore enforces hyperbolic well-

posedness and prevents runaway growth at arbitrarily small scales.

Any instability that occurs must therefore arise from intermediate scales where the

effective mass term or c2
s becomes negative, rather than from the highest-derivative

operator. The theory remains ultraviolet stable by construction.

25 Assumptions and Regime of Validity

The construction presented above defines a regulated scalar sector embedded in a

relativistic fluid background. In order to prevent overinterpretation of the linear

analysis, we collect here the precise assumptions under which the derivations hold.

The free-energy functional and its gradient regularization are treated as an effective

description valid at scales larger than a microphysical correlation length `, with

κeff ∼ `2 arising from coarse-graining. The derivative expansion is truncated at

fourth order in spatial gradients, corresponding to the k4 term in Fourier space. No

higher-derivative operators are retained in the minimal core.
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The background spacetime is taken to be spatially flat FRW with metric

ds2 = −dt2 + a(t)2d~x 2,

The linear perturbation analysis assumes that the amplitude of scalar perturbations

remains sufficiently small that quadratic truncation is valid. The WKB interpretation

of the mode equation applies when the effective frequency ωk(η) varies slowly compared

to the mode period, i.e.∣∣∣ω′kω2
k

∣∣∣� 1.

When a finite spinodal interval aon < a < aoff is invoked, the sign of c2
s(a) is assumed to

be negative only within that interval and positive outside it. The regulator parameter

κeff is assumed positive and slowly varying relative to the Hubble timescale.

Radiation, multi-fluid couplings, baryonic acoustic physics, and non-linear mode

coupling are not included in the minimal conservative core. These effects may modify

quantitative predictions but do not alter the structural band-limitation mechanism

derived from the k4 regulator term.

Subhorizon limit and matching to the matter-era growth equation

On subhorizon scales, and in epochs where z′′/z varies slowly compared to the mode

frequency, (23) admits a WKB interpretation with effective frequency

ωk(η)2 = c2
s(η) k2 + κeff

k4

a(η)2
− z′′

z
. (24)

In the dust-like matter era, one typically has c2
s ' 0 and z′′/z ∼ a2H2 (up to order-one

factors). Thus the regulator dominates the gradient sector at sufficiently large k,

producing a scale-dependent stiffening that prevents gravitational growth. In the

complementary regime of small k, the k4 term is negligible and one recovers standard

growth.

If one wishes to connect directly to density contrast evolution, one may use the usual

subhorizon relations between R, the Newtonian potential, and δ in a specified matter

model. The important structural claim, however, is already contained in (23): the

regulator induces a k4 term in a gauge-invariant equation of motion, and therefore

any high-k suppression or band-limitation derived from it is not a gauge artifact.
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Mapping to Density Contrast in the Subhorizon Regime

Although equation (23) is written for the gauge-invariant variable v = zR, the

observable matter power spectrum is expressed in terms of the density contrast δ. It is

therefore useful to make explicit the relation between R and δ in the regime relevant

for structure formation.

On subhorizon scales during matter domination, the comoving curvature perturbation

R is related to the Newtonian potential Φ by

R ' −Φ− H

Ḣ

(
Φ̇ +HΦ

)
.

In the quasi-static limit appropriate to growing-mode evolution in a dust-like era, Φ̇ ' 0

andR becomes approximately constant for modes well outside the regulator-dominated

band.

For subhorizon modes satisfying k � aH, the Poisson equation gives

k2

a2
Φk ' 4πGρ̄ δk.

Hence

δk '
k2

4πGρ̄ a2
Φk.

Since Φk is algebraically related to Rk in this regime, any modification of the mode

equation for Rk induced by the k4 regulator term propagates directly into the evolution

equation for δk. In particular, when the regulator stiffens the dispersion relation so

that

ω2
k = c2

sk
2 + κeff

k4

a2
− z′′

z

becomes positive and large for sufficiently high k, the associated suppression of vk
implies suppression of Φk and therefore of δk.

Thus the scale-dependent regulator imprint in (23) is not confined to curvature

variables but directly modifies the density-contrast growth law in the subhorizon

regime.

Interpretive consequence

The conservative gradient regulator can therefore be stated in the most reviewer-legible

way as follows. The instability or growth properties of the scalar sector are encoded by
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the sign structure of ω2
k. The regulator ensures ultraviolet well-posedness by enforcing

ω2
k → +∞ as k → ∞ at fixed η, since the leading term is κeffk

4/a2 with κeff > 0.

Any intermediate-scale growth regime, whether gravitational or spinodal in origin, is

therefore necessarily band-limited and cannot run away to arbitrarily high wavenumber

within the linear theory.

This completes the gauge-invariant reformulation of the regulated scalar sector and

provides a canonical bridge between the fluid-level closure (18) and an explicit, testable

modification of the scalar perturbation mode equation (23).

26 Regulated Transfer Function and High-k Tail

in the Linear Power Spectrum

This section derives the simplest observable consequence of the regulated model: an

explicit, parameter-controlled suppression of small-scale power. The purpose is not to

claim a full ΛCDM-quality Boltzmann solution, but to exhibit a distinctive asymptotic

tail that follows directly from the κeff-regularization and therefore cannot be removed

by rephrasing the interpretation. The derivation is carried out under a controlled set

of approximations and then translated into a transfer-function statement for P (k).

26.1 Set-up: conservative perturbations with a gradient-stress

closure

We work in longitudinal gauge with scalar potentials Φ and Ψ, and we assume vanishing

vorticity. The bulk velocity is encoded by the usual divergence variable θ ≡ a−1∇ · ~v.

The governing linearized fluid system in Fourier space takes the standard form

δ̇k = −(1 + w)
(
θk − 3Ψ̇k

)
− 3H

(
δpk
ρ̄
− wδk

)
, (25)

θ̇k = −H(1− 3w)θk +
k2

a2

(
Φk +

δpk
(1 + w)ρ̄

)
− k2

a2
σk, (26)

where overdots denote derivatives with respect to cosmic time t, w = p̄/ρ̄, and σk
is the scalar anisotropic-stress potential. The conservative regulated closure enters

through δpk (and optionally σk) derived from a Korteweg-type gradient energy. In

the minimal conservative core one takes σk = 0 and adopts a scale-dependent pressure
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perturbation

δpk = c2
s ρ̄ δk +

κeff

a2
k2 ρ̄ δk, (27)

where c2
s is the usual adiabatic sound speed (possibly time-dependent), and κeff > 0 is

a length-squared parameter encoding the energetic cost of gradients in the conserved

density. The sign and magnitude of κeff are part of the model definition; κeff > 0 is

the ultraviolet regulator ensuring that the highest-derivative contribution to the linear

operator remains stabilizing.

26.2 Subhorizon reduction and the modified growth equation

To isolate the small-scale transfer tail, we take the subhorizon quasi-static limit in the

matter-dominated era, which is the simplest regime where analytic asymptotics are

clean. Concretely, we set w ' 0, Φ̇k ' 0, Ψk ' Φk, and use the Poisson equation

k2

a2
Φk ' 4πG ρ̄ δk. (28)

With σk = 0 and (27), equations (25)–(26) combine into a second-order equation for

δk. Differentiating (25) and substituting (26) yields, after standard algebra,

δ̈k + 2Hδ̇k +

(
c2
sk

2

a2
+
κeffk

4

a4
− 4πGρ̄

)
δk ' 0. (29)

Equation (29) is the conservative, frame-clean statement of the regulated linear theory.

The k4-term is not introduced as diffusion; it is the linear imprint of a gradient-energy

contribution to the stress. It therefore modifies the growth of density fluctuations by

introducing a scale-dependent restoring force that becomes dominant at sufficiently

large comoving k.

26.3 A modified Jeans scale and a finite instability window

A convenient way to summarize the competition between gravity and gradient regu-

larization is via an effective squared sound speed,

c2
eff(k, a) = c2

s + κeff
k2

a2
. (30)
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The instantaneous Jeans criterion compares the pressure-restoring term to gravity:

c2
eff(k, a) k2

a2
& 4πGρ̄. (31)

Defining the critical comoving Jeans wavenumber kJ(a) by equality gives an explicit

quadratic equation in k2
J/a

2,

c2
s

k2
J

a2
+ κeff

k4
J

a4
= 4πGρ̄, (32)

whose physically relevant solution is

k2
J(a)

a2
=
−c2

s +
√
c4
s + 16πGρ̄ κeff

2κeff

. (33)

When c2
s ≥ 0, (33) simply defines the scale above which gravitational growth is

suppressed. When a finite spinodal epoch is permitted, meaning that c2
s(a) < 0 for

aon < a < aoff , the same expression shows a structurally important feature: ultraviolet

stability is preserved by κeff > 0, but an intermediate band of modes can become

unstable because the negative c2
s-term drives growth at moderate k while the positive

k4-term stabilizes sufficiently large k. In other words, the regulated theory can

support an “irruption band” without backward-parabolic pathology; the band edges

are determined by (32) and are finite whenever κeff > 0.

26.4 Matter-dominated high-k asymptotics and power sup-

pression

We now extract the high-k behavior of solutions to (29) during matter domination.

In an Einstein–de Sitter background one has

a(t) ∝ t2/3, H =
2

3t
, ρ̄ =

1

6πGt2
. (34)

For sufficiently large comoving k, and outside any finite spinodal interval, the regulator

term dominates the bracket in (29):

δ̈k + 2Hδ̇k +
κeffk

4

a4
δk ' 0. (35)
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It is convenient to pass to conformal time η defined by dη = dt/a(t), and to denote

d/dη by primes. Using H = a′/a and ˙(·) = a−1(·)′, equation (35) becomes

δ′′k +Hδ′k + κeff
k4

a2
δk ' 0. (36)

In matter domination one has a(η) ∝ η2 and H = 2/η. Writing a(η) = a?(η/η?)
2 gives

δ′′k +
2

η
δ′k + κeff

k4

a2
?

(
η?
η

)4

δk ' 0. (37)

Define the rescaled variable δk(η) = η−1uk(η). A direct computation yields

u′′k +

(
κeff

k4

a2
?

(
η?
η

)4

− 2

η2

)
uk ' 0. (38)

For large k the η−4 term dominates over 2/η2 except at very late times. In that regime

the leading-order equation

u′′k + Ω2
k(η)uk ' 0, Ωk(η) =

√
κeff

k2

a?

(
η?
η

)2

(39)

is an adiabatically varying oscillator. The WKB approximation applies, giving

uk(η) ' 1√
Ωk(η)

[
C1 exp

(
i

∫ η

Ωk(η̃) dη̃

)
+ C2 exp

(
−i
∫ η

Ωk(η̃) dη̃

)]
. (40)

Since Ωk(η) ∝ η−2, the phase integral converges:∫ η

Ωk(η̃) dη̃ =
√
κeff

k2

a?
η2
?

∫ η

η̃−2 dη̃ =
√
κeff

k2

a?
η2
?

(
1

ηin

− 1

η

)
, (41)

for some initial time ηin. The amplitude factor satisfies Ω
−1/2
k ∝ η, hence uk(η) grows

at most linearly in η, while δk(η) = η−1uk(η) approaches a bounded oscillatory profile.

This establishes the essential tail statement: sufficiently high-k modes do not undergo

gravitational growth in the matter era; their growth is shut off by the regulator, and

their amplitude is asymptotically bounded (up to slow envelope corrections coming

from the neglected −2/η2 term and from any small physical viscosity).
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26.5 Transfer-function form and the asymptotic suppression

law

To translate this into a power-spectrum statement, define the k-dependent growth

factor Dκ(k, a) as the amplitude of the growing mode of δk normalized to unity at

some early reference scale factor ai in matter domination. Then the linear matter

power spectrum may be written as

Pκ(k, a) = Pprim(k) |Tκ(k)|2D2
κ(k, a), (42)

where Tκ(k) contains pre-matter-era processing (or, in a minimal comparison, may

be set to unity if one begins evolution at ai deep in matter domination). The novel

content in the regulated model is that Dκ(k, a) becomes scale dependent even in

matter domination.

Equation (29) and the asymptotics above imply the following robust two-regime

behavior. For k � kJ(a), the regulator is negligible and one recovers the standard

growing mode Dκ(k, a) ' a/ai up to small pressure corrections. For k � kJ(a), the

regulator dominates and the growth factor saturates,

Dκ(k, a) ' Dκ(k, asat) for k � kJ(a), (43)

where asat is the epoch at which the k4-term overtakes the gravitational term in

(29) for that mode. As a consequence, relative to an unregulated matter-growth law

DEdS(a) = a/ai, one obtains a high-k suppression

Pκ(k, a)

PEdS(k, a)
∼
(
Dκ(k, a)

a/ai

)2

� 1 for k � kJ(a), (44)

with kJ(a) given explicitly by (33). This is the key reviewer-legible wedge: the model

predicts a regulator-controlled cutoff whose functional form is set by κeff through

(33), producing a characteristic small-scale suppression distinct from collisionless

CDM unless additional microphysical parameters are introduced to mimic the same

k-dependence.

In the next section we will treat the finite spinodal interval aon < a < aoff in which c2
s(a)

becomes negative while κeff > 0, and we will show that the same conservative scaffold

yields a bounded instability band with calculable band edges and a fastest-growing

comoving wavenumber. That refinement turns “suppression” into “irruption” in the

strict dynamical sense, while preserving well-posedness and ultraviolet control.
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27 Finite Spinodal Window and Band-Limited Ir-

ruption

We now consider a finite interval in which the effective adiabatic sound speed becomes

negative while the regulator remains strictly positive. Concretely, let

c2
s(a) < 0 for aon < a < aoff , κeff > 0 for all a. (45)

Outside this interval the system is linearly stable (modulo gravitational Jeans growth).

Inside the interval the compressibility becomes negative and a regulated instability

can occur.

Starting from the conservative growth equation obtained previously in matter domi-

nation,

δ̈k + 2Hδ̇k +

(
c2
s(a) k2

a2
+
κeffk

4

a4
− 4πGρ̄

)
δk = 0, (46)

we first isolate the intrinsic instability by neglecting the gravitational term and

restricting attention to subhorizon modes during the spinodal window. Equation (46)

reduces to

δ̈k + 2Hδ̇k +

(
c2
s(a) k2

a2
+
κeffk

4

a4

)
δk = 0. (47)

Define

A(a) := −c2
s(a) > 0 on (aon, aoff). (48)

Then the effective squared frequency is

ω2
k(a) = −A(a) k2

a2
+
κeffk

4

a4
. (49)

Instability occurs when ω2
k(a) < 0, i.e.

κeffk
4

a4
<
A(a) k2

a2
. (50)

Cancelling a factor of k2/a2 gives the band condition

0 <
k2

a2
<
A(a)

κeff

. (51)
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Hence unstable modes satisfy

0 < k < kmax(a), k2
max(a) =

A(a)

κeff

a2. (52)

The ultraviolet sector remains stable because the k4 term dominates for sufficiently

large k.

To determine the fastest-growing mode, approximate the growth rate (ignoring Hubble

friction when subdominant) by

γ2
k(a) ≈ A(a) k2

a2
− κeffk

4

a4
. (53)

Maximizing with respect to k,

∂

∂k

(
Ak2

a2
− κeffk

4

a4

)
=

2Ak

a2
− 4κeffk

3

a4
= 0, (54)

which for k 6= 0 yields

k2
∗(a) =

A(a)

2κeff

a2. (55)

The corresponding physical wavenumber is

k2
phys,∗(a) =

k2
∗
a2

=
A(a)

2κeff

. (56)

If A(a) is approximately constant across the interval, the instability selects a fixed

physical length scale

λ∗ =
2π

kphys,∗
= 2π

√
2κeff

A
. (57)

The finite duration of the spinodal window implies that only modes satisfying the

band condition for a nonzero time interval undergo amplification. The approximate

accumulated growth exponent is

Γk =

∫ toff

ton

[√
A(a) k2

a2
− κeffk4

a4
−H

]
dt, (58)

so that modes near k∗ receive maximal enhancement, while modes near the band edges

are marginal.

The resulting late-time power spectrum therefore acquires a feature centered near
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k∗ whose width and amplitude depend on the depth and duration of the negative-c2
s

interval. Throughout the evolution the highest spatial derivative remains fourth order

with positive coefficient κeff , ensuring well-posedness and ultraviolet control.

28 Combined Jeans–Spinodal Instability Structure

We now restore the gravitational sector and analyze the full linear growth equation

during the finite spinodal interval. Starting from

δ̈k + 2Hδ̇k +

(
c2
s(a) k2

a2
+
κeffk

4

a4
− 4πGρ̄

)
δk = 0, (59)

we again define

A(a) := −c2
s(a) > 0 for aon < a < aoff . (60)

Inside the spinodal window, the effective frequency becomes

ω2
k(a) = −A(a) k2

a2
+
κeffk

4

a4
− 4πGρ̄. (61)

Instability occurs when ω2
k(a) < 0, i.e.

κeffk
4

a4
− A(a) k2

a2
− 4πGρ̄ < 0. (62)

Multiplying through by a4 gives the quartic inequality

κeffk
4 − A(a) a2k2 − 4πGρ̄ a4 < 0. (63)

Define x := k2. The instability condition becomes a quadratic inequality

κeffx
2 − A(a) a2x− 4πGρ̄ a4 < 0. (64)

The corresponding quadratic equation

κeffx
2 − A(a) a2x− 4πGρ̄ a4 = 0 (65)
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has roots

x±(a) =
A(a) a2 ±

√
A(a)2a4 + 16πGρ̄ κeff a4

2κeff

. (66)

Since x = k2 ≥ 0, instability occurs for

x−(a) < k2 < x+(a). (67)

One finds that x−(a) is negative (because the constant term is negative), so the

physical instability band is

0 < k2 < x+(a). (68)

Thus the upper band edge is

k2
max(a) =

A(a) a2 +
√
A(a)2a4 + 16πGρ̄ κeff a4

2κeff

. (69)

Two limiting regimes are instructive.

Weak Gravity Limit

If

16πGρ̄ κeff � A(a)2, (70)

then

k2
max(a) ≈ A(a)

κeff

a2, (71)

which reproduces the purely spinodal band derived previously.

Strong Gravity Limit

If instead

16πGρ̄ κeff � A(a)2, (72)

then

k2
max(a) ≈ a2

√
4πGρ̄

κeff

. (73)

In this regime, gravity enlarges the unstable band relative to the pure spinodal case.

41



Fastest Growing Mode

To identify the fastest growing mode, approximate the instantaneous growth rate

(neglecting Hubble friction for subhorizon modes) as

γ2
k(a) = 4πGρ̄+

A(a) k2

a2
− κeffk

4

a4
. (74)

Differentiating with respect to k and setting to zero yields

∂γ2
k

∂k
=

2A(a)k

a2
− 4κeffk

3

a4
= 0, (75)

so that

k2
∗(a) =

A(a)

2κeff

a2. (76)

Remarkably, the fastest-growing comoving mode is independent of the gravitational

term at leading order; gravity shifts the band edges but does not shift the location of

the maximum of the quadratic-minus-quartic structure.

The corresponding physical wavenumber is

k2
phys,∗ =

A(a)

2κeff

, (77)

so a constant negative compressibility across the spinodal interval produces a fixed

physical irruption scale.

Interpretation

The combined system therefore exhibits a bounded instability band whose upper edge

is modified by gravitational coupling but whose intrinsic scale selection is governed by

the ratio A(a)/κeff . Ultraviolet stability is preserved by the positive fourth-order term,

while infrared behavior is controlled by gravitational amplification. The instability

is therefore neither pure Jeans collapse nor pure phase separation, but a regulated

hybrid mechanism with calculable band structure and a well-defined fastest-growing

mode.
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29 Dimensional Analysis and Characteristic Scales

The regulator parameter κeff has dimensions of length squared. In natural units with

c = 1,

[κeff ] = L2.` ∼ √κeff .

In the presence of an effective sound speed c2
s, the characteristic physical wavenumber

at which the gradient regulator balances the pressure sector is determined by

c2
sk

2
phys ∼ κeffk

4
phys, k

2
phys,∗ ∼

|c2s|
κeff
.λ∗ ∼ 2π

kphys,∗
∼ 2π

√
κeff

|c2s|
.

During a spinodal epoch in which c2
s < 0, this same relation determines the fastest-

growing physical mode in linear theory. In the conservative FRW embedding, the

comoving fastest mode evolves according to

k2
∗(a) = a2 |c2s(a)|

2κeff
,

The modified Jeans condition,

c2
s
k2

a2 + κeff
k4

a4 = 4πGρ̄, ω2
k ∼ κeff

k4

a2 → +∞,

These relations demonstrate that the instability scale is not arbitrary but controlled by

the ratio |c2
s|/κeff and by background density. Observable structure therefore encodes

regulator and compressibility parameters directly.

30 Phase Structure and Transition to Lamphron–

Lamphrodyne Regimes

The regulated spinodal analysis of the preceding section establishes that scalar growth

arises from a finite instability band determined by the curvature of the coarse-grained

free-energy functional and the ultraviolet regulator κeff . In particular, the instability

condition is governed by the sign of the second variation of the effective thermodynamic

potential and remains dynamically well-posed due to the fourth-order stabilizing term.

The fastest-growing mode is fixed by the ratio A(a)/κeff , and the ultraviolet sector

remains damped for all parameter values with κeff > 0.

The lamphronlamphrodyne refinement that follows does not introduce a new dynamical

ingredient but rather recasts the previously derived instability structure in a local
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geometric formulation. Specifically, the quantity

χ := −β∆gS

is a curvature-dependent effective mass contribution that can be interpreted as the

local projection of the second variation of the entropy functional onto the scalar sector.

Within the regulated framework, χ encodes the sign of the entropic compressibility at

a given spacetime point.

During epochs in which the coarse-grained compressibility is positive, corresponding to

f ′′ > 0 in the density formulation or equivalently to χ < 0 in the curvature formulation,

the system lies in the lamphron regime. In this phase, the principal part of the effective

linear operator remains parabolic, and all Fourier modes outside the gravitationally

allowed Jeans window are damped. The regulator enforces ultraviolet control, and the

homogeneous configuration is linearly stable.

When the system enters the finite spinodal interval aon < a < aoff , the compressibility

becomes negative in a bounded epoch. In the curvature formulation this corresponds

to the emergence of regions in which χ > 0 on a set of nonzero measure. These regions

define lamphrodyne domains. The local operator

Leff = c2∆g + α + χ

then acquires an indefinite second variation in those domains, but the highest-order

term remains elliptic because c2 > 0 and κeff > 0 at the level of the conserved density

dynamics. Consequently, the transition is not a literal backward-parabolic pathology;

it is a controlled sign inversion in the lower-order sector embedded within a fourth-order

parabolic scaffold.

The distinction between lamphron and lamphrodyne states therefore corresponds

precisely to whether the local entropy curvature drives the system toward convex

free-energy behavior or into a concave spinodal regime. In the density formulation

this is expressed by the sign of f ′′(n̄); in the curvature formulation it is encoded by

the sign of χ. The two descriptions are mathematically equivalent provided S = S[ρ]

is understood as a coarse-grained functional of a conserved density.

This reformulation permits the lamphron–lamphrodyne dichotomy to be interpreted

as a phase transition in the effective thermodynamic geometry of the scalar–vector–

entropy system. The band-limited instability derived earlier supplies the global spectral

structure, while the lamphrodyne definition identifies the local geometric criterion for

the onset of growth. The regulator scale κeff ensures that any such transition preserves
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well-posedness and prevents ultraviolet divergence.

We now introduce the lamphron and lamphrodyne states explicitly as dynamical

phases of the regulated scalar–entropy system.

31 Equivalence Between Scalar–Entropy and Con-

served Density Formulations

The regulated spinodal construction was formulated above in terms of a conserved

scalar density n (or ρ) with a coarse–grained free–energy functional

F [n] =

∫
Σt

√
γ
(
f(n) +

κ

2
DinD

in
)
d3x,

with associated chemical potential

µ =
δF
δn

= f ′(n)− κD2n.

The instability criterion was shown to be governed by the sign of the second variation,

δ2F =

∫ (
f ′′(n̄) (δn)2 + κDiδnD

iδn
)
,

with spinodal growth occurring when f ′′(n̄) < 0 while κ > 0 maintains ultraviolet

control.

We now demonstrate that the scalar–entropy formulation introduced later is not an

independent dynamical hypothesis but a reparameterization of this same structure.

31.1 Scalar Reparameterization

Let φ denote a monotone function of the conserved density,

φ = Φ(n), Φ′(n) > 0.

Under such a transformation, the gradient term becomes

DinD
in =

1

(Φ′(n))2
DiφD

iφ,
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and the free–energy density transforms as

f(n) = f̃(φ), f̃ ′(φ) =
f ′(n)

Φ′(n)
.

The functional can therefore be rewritten entirely in terms of φ:

F [φ] =

∫
Σt

√
γ

(
f̃(φ) +

κ̃(φ)

2
DiφD

iφ

)
d3x,

with

κ̃(φ) =
κ

(Φ′(n))2
.

Thus the scalar field φ inherits both the metastable curvature structure and the

regulator from the density formulation.

31.2 Entropy Functional Interpretation

If one introduces a coarse–grained entropy density S(φ) and defines an effective

Helmholtz functional

F [φ] =

∫ (
U(φ)− TS(φ) +

κ

2
DiφD

iφ
)
,

then

f(φ) = U(φ)− TS(φ),

and the instability criterion becomes

f ′′(φ̄) = U ′′(φ̄)− TS ′′(φ̄) < 0.

The sign reversal responsible for irruption is therefore the negativity of the entropy–

modified compressibility, not a reversal of the highest–order spatial operator.

31.3 Equivalence of Linearized Growth Rates

Linearizing either formulation about a homogeneous background yields

∂tδφk = M

(
|f ′′(φ̄)|k

2

a2
− κk

4

a4

)
δφk,

which is identical to the dispersion relation obtained from the density formulation.
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The lamphron–lamphrodyne refinement that follows should therefore be understood

as a geometric re-expression of the same regulated spinodal structure, not as the

introduction of new degrees of freedom.

32 Korteweg Stress and Conservative Gradient En-

ergy

The regulator introduced through the gradient term in the free-energy functional must

appear consistently in the stress–energy tensor if the model is to remain conservative

and covariantly closed. In this section we make that identification explicit and derive

the corresponding modification of the scalar perturbation sector.

We begin from the spatially projected free-energy functional on hypersurfaces orthog-

onal to uµ,

F [n] =

∫
Σt

√
γ
(
f(n) +

κ

2
DinD

in
)
d3x,

where Di is the spatial covariant derivative defined through the projector

hµν = gµν + uµuν .

To incorporate the gradient regulator at the level of gravity coupling, we promote the

gradient term to a covariant contribution in the matter Lagrangian density,

L =
√
−g
[
P(n)− κ

2
hµν∇µn∇νn

]
.

Varying with respect to gµν yields a stress–energy tensor of Korteweg type,

T µν = (ε+ p)uµuν + pgµν + κ

(
∇µn∇νn− 1

2
gµν∇αn∇αn

)
+ Πµν

proj,

where Πµν
proj enforces orthogonality to uµ if one insists on strictly spatial gradients in

the comoving frame. The thermodynamic scalars ε(n) and p(n) are derived from the

same effective potential f(n) that determines the chemical potential.

This expression makes a single, non-negotiable commitment: the regulator carries an

energetic cost. It therefore contributes to gravitational sourcing and to the anisotropic

stress sector. Covariant conservation,

∇µT
µν = 0,
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is then part of the model definition rather than an auxiliary assumption.

Linearizing around an FRW background with n = n̄(t) + δn(t, ~x), one finds that the

gradient term modifies the pressure perturbation as

δpk = c2
sρ̄δk +

κeff

a2
k2ρ̄δk,

where κeff absorbs background factors from the conversion between n and ρ and from

the projection structure.

The anisotropic stress arising from the traceless part of the Korteweg tensor scales as

σk ∝
κeff

a2
k2δk,

and therefore becomes relevant only at sufficiently large comoving wavenumber.

The crucial structural consequence is that the regulator modifies the effective squared

sound speed according to

c2
eff(k, a) = c2

s(a) + κeff
k2

a2
.

The k4 term in the growth equation therefore arises not from diffusion but from

conservative gradient energy. The ultraviolet sector is stabilized by construction

because κeff > 0 ensures positivity of the highest-order spatial operator. No backward-

parabolic pathology is present at the level of the principal symbol.

The lamphron–lamphrodyne refinement that follows should therefore be understood

as a geometric restatement of this stability structure. It does not introduce a new

field nor a new dynamical degree of freedom; rather, it expresses the sign structure

of the effective mass and curvature terms in the scalar sector using the language of

entropy curvature and vacuum response.

33 Entropy Curvature and Effective Compressibil-

ity

The previous section established that the regulator modifies the effective squared

sound speed according to

c2
eff(k, a) = c2

s(a) + κeff
k2

a2
.
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The ultraviolet stability of the system is therefore controlled by κeff > 0, while the

large-scale stability is governed by the sign of the background compressibility encoded

in c2
s(a).

We now make explicit how this effective sound speed arises from the curvature of

the coarse-grained free-energy density and how a sign change in c2
s corresponds to a

geometric change in entropy curvature.

Recall that the chemical potential derived from the regulated free-energy functional is

µ = f ′(n)− κD2n.

Linearizing about a homogeneous background n = n̄ gives

δµ = f ′′(n̄) δn− κD2δn.

The effective adiabatic sound speed follows from the thermodynamic relation

c2
s =

∂p

∂ρ

∣∣∣∣
n̄

=
n̄

ρ̄
f ′′(n̄),

up to background conversion factors between n and ρ. Thus the sign of c2
s is determined

directly by the second variation of the coarse-grained free-energy density.

In particular, the homogeneous state is linearly stable when

f ′′(n̄) > 0,

and becomes unstable when

f ′′(n̄) < 0.

This is precisely the spinodal condition in non-equilibrium thermodynamics: the

instability is not a reversal of diffusion but a local indefiniteness of the second variation

of the entropy (or free-energy) functional.

It is therefore natural to define an entropy-curvature scalar that captures this structure

geometrically. Let S denote the coarse-grained entropy density associated with n, and

define its spatial curvature through the projected Laplacian,

∆gS := hµν∇µ∇νS.

The sign structure of f ′′(n̄) may be equivalently expressed through the curvature of S
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because

δ2F =

∫
Σt

√
γ
(
f ′′(n̄)(δn)2 + κDiδnD

iδn
)
d3x,

and the gradient term enforces convexity at high wavenumber while the sign of f ′′

governs convexity at long wavelength.

The transition between stabilizing and destabilizing regimes is therefore equivalently

described as a change in entropy curvature at the background level. When the second

variation becomes indefinite, the system enters a regime in which long-wavelength

modes experience effective negative compressibility, while short-wavelength modes

remain stabilized by the gradient regulator.

This geometric reformulation prepares the introduction of lamphron and lamphrodyne

states. The dichotomy will not introduce new degrees of freedom; rather, it will

express the sign structure of f ′′(n̄) and the induced curvature of S in a local geometric

language that makes the instability domain manifest.

34 Lamphron and Lamphrodyne States

We now introduce a refinement of the scalar–entropy coupling in terms of dual

thermodynamic regimes, termed lamphron and lamphrodyne states. These are not

additional fields but distinct dynamical phases of the scalar–vector–entropy system.

Let φ denote the primary scalar density and introduce an effective vacuum response

field χ defined implicitly through the entropy curvature:

χ := −β∆gS.

The evolution equation (7) may then be rewritten as

∂tφ = c2∆gφ−∇ · (φv) + αφ+ χφ.

We define a lamphron state as a regime in which χ < 0 almost everywhere, so that

entropy curvature enhances smoothing and suppresses amplification. Conversely, a

lamphrodyne state occurs when χ > 0 on a region of nonzero measure, so that entropy

curvature contributes to scalar growth.

A lamphrodyne domain U ⊂M is an open set such that χ(x) > 0 for all x ∈ U .
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In lamphron regions, the effective mass term remains stabilizing. In lamphrodyne

regions, the effective mass becomes negative in the diffusive sector, inducing scalar

irruption.

To formalize this dichotomy, define the effective linear operator

Leff = c2∆g + α + χ.

If the principal symbol of Leff changes sign in a region, the PDE transitions from

parabolic smoothing to backward parabolic amplification. Thus lamphrodyne states

correspond precisely to local sign inversion of the principal symbol.

35 Principal Symbol and Second Variation of the

Effective Operator

The lamphron–lamphrodyne distinction was introduced above through the sign of the

effective curvature term

χ = −β∆gS,

and through the effective linear operator

Leff = c2∆g + α + χ.

It is essential to clarify that lamphrodyne behavior does not correspond to a reversal

of the highest–order spatial operator in the sense of a change from parabolic to

backward–parabolic type. The principal symbol of Leff remains that of c2∆g, which is

elliptic and therefore generates parabolic smoothing in the evolution equation.

The instability instead arises from the sign of the second variation of the effective

free–energy functional.

35.1 Second Variation and Stability

Let the scalar sector be governed by a functional of the form

F [φ] =

∫
Σt

√
γ
(
f(φ) +

κ

2
DiφD

iφ
)
d3x.
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Linearizing about a homogeneous background φ̄ yields the quadratic form

δ2F =

∫ (
f ′′(φ̄) (δφ)2 + κDiδφD

iδφ
)
.

In Fourier space, this becomes

δ2F =

∫ (
f ′′(φ̄) + κ

k2

a2

)
|δφk|2.

Stability requires

f ′′(φ̄) + κ
k2

a2
> 0 for all k.

When f ′′(φ̄) < 0, the quadratic form becomes indefinite over a finite band of wavenum-

bers,

0 <
k2

a2
<
|f ′′(φ̄)|
κ

.

The ultraviolet sector remains stable because the k2 term in the quadratic form

dominates at large k.

35.2 Relation to the Effective Operator

The lamphrodyne condition χ > 0 corresponds, at linear order, to the regime in which

α + χ < 0

after absorbing background terms into the definition of f ′′(φ̄).

The growth of perturbations is therefore governed by the sign of the second variation

of F rather than by a literal inversion of the Laplacian in the principal symbol.

The evolution equation remains of regulated parabolic type; the instability is band–

limited and controlled by the gradient penalty coefficient κ.
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35.3 Geometric Interpretation

In this formulation, lamphron regions correspond to points in field space where the

effective compressibility
∂2f

∂φ2

is positive, while lamphrodyne regions correspond to those where it becomes negative.

The instability boundary is therefore defined by

f ′′(φ) = 0,

which is the geometric locus at which the free–energy landscape transitions from

convex to locally concave.

The lamphron–lamphrodyne refinement is thus a geometric characterization of a

regulated spinodal transition in field space rather than a change in the parabolic

character of the highest–order operator.

36 Spectral Decomposition and Resonant Struc-

ture Formation

To analyze spatial patterning induced by scalar irruption, expand φ in eigenfunctions

of the Laplace–Beltrami operator:

φ(x, t) =
∞∑
k=0

ak(t)ψk(x), ∆gψk = −λkψk,

with 0 = λ0 < λ1 ≤ λ2 ≤ · · · .

Substituting into the linearized irruption regime yields

ȧk =
(
−c2λk + α + χk

)
ak,

where χk denotes the spectral projection of χ onto ψk.

Growth occurs when
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α + χk > c2λk.

Thus only a band of modes satisfying

λk <
α + χk
c2

are unstable. This band-limited instability naturally produces quasi-periodic structure

formation analogous to baryon acoustic oscillation–like resonances, without invoking

metric expansion.

If χ is spatially localized and positive in a bounded region, then the unstable spectrum

is discrete and finite.

Since λk →∞ as k →∞ and χk is bounded by χL2 , there exists K such that for all

k > K, c2λk > α + χk. Hence only finitely many modes are unstable.

This explains why scalar irruption yields structured condensation rather than runaway

ultraviolet divergence.

37 Quantized Scalar Irruption Operator

We now sketch a semiclassical quantization of scalar irruption.

Promote φ to an operator-valued field φ̂ on a Hilbert space H. The classical Hamilto-

nian density corresponding to the Lagrangian in (1) is

H =
1

2
π2 +

c2

2
∇φ2 + U(φ, S),

where π = ∂tφ is the conjugate momentum.

Quantization imposes canonical commutation relations

[φ̂(x), π̂(y)] = i~δ(x− y).

In lamphrodyne regimes where χ > 0, the quadratic part of the Hamiltonian acquires

negative eigenvalues, producing inverted harmonic oscillator sectors:
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Ĥk =
1

2
π̂2
k −

1

2
ω2
kφ̂

2
k.

Such sectors exhibit exponential amplification of vacuum fluctuations, analogous to

particle production in time-dependent backgrounds. However, here the trigger is

entropic curvature rather than metric expansion.

In a lamphrodyne domain, the vacuum state is dynamically unstable under the

quantized Hamiltonian, leading to exponential growth of mode occupation numbers.

For an inverted harmonic oscillator,

¨̂
φk = ω2

kφ̂k,

whose solutions grow exponentially. The number operator expectation value diverges

as e2ωkt.

Thus scalar irruption admits a consistent quantum interpretation as entropically driven

mode excitation.

38 Observable Consequences in a Non-Expanding

Plenum

Since the metric is static, observable signatures arise from redistribution rather than

expansion. Consider a two-point correlation function

C(r) = 〈φ(x)φ(x+ r)〉.

In the linear regime, unstable modes imprint oscillatory features:

C(r) ∼
∑
k∈U

e2γktψk(x)ψk(x+ r),

where U denotes unstable modes.

These correlations mimic acoustic-like resonances in spatial power spectra while

preserving constant global volume. Hence BAO-like signatures can emerge purely

from entropic bifurcation.

55



39 Entropy Conservation and Global Constraints

Despite local amplification, global scalar mass is conserved under zero-flux boundary

conditions:

d

dt

∫
M
φ dµg = 0.

Integrating (7) over M and applying the divergence theorem yields zero net flux

provided v · n = 0 and ∇φ · n = 0 on ∂M.

Scalar irruption therefore redistributes rather than creates total scalar density. Struc-

ture formation is internally reorganizational.

40 Synthesis: Scalar Irruption as Entropic Phase

Transition

Scalar irruption is now seen to possess four equivalent formulations. In PDE language

it is a sign reversal of effective diffusion. In spectral language it is band-limited

exponential growth of Laplacian modes. In thermodynamic language it is curvature-

induced entropy release. In quantum language it is an inverted oscillator instability

induced by entropic geometry.

The mechanism requires no expanding metric, no vacuum tunneling, and no external

inflaton potential. It emerges from internal entropy differentials within a non-expanding

plenum.

41 Variational Degeneracy and the Geometry of

the Critical Locus

The preceding synthesis exhibits scalar irruption in four equivalent classical languages.

However, the unifying feature behind these formulations has not yet been made explicit.

The instability does not arise from the introduction of new degrees of freedom but

from a change in the structure of the critical locus of the action functional.
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Let

Scl[φ] =

∫
M

(
c2

2
∇φ2 +

α

2
φ2 +

β

2
φ2∆gS

)
dµg.

The EulerLagrange equation derived from Scl reproduces the effective linear operator

Leff = c2∆g + α + χ, χ := −β∆gS.

In the lamphron regime, the second variation

δ2Scl[φ] =

∫
M
δφLeffδφ dµg

is positive definite and the classical critical point is isolated and stable.

In the lamphrodyne regime, the second variation becomes indefinite on a finite spectral

band. The critical locus ceases to be isolated and instead acquires unstable directions.

This is precisely the variational signature of a phase transition: the Hessian of the

action changes signature, and the Morse index of the critical point increases.

Crucially, global conservation demonstrated in the previous section implies that the

instability redistributes scalar density within a constrained manifold of fixed total mass.

The transition is therefore not explosive but reorganizational: the configuration space

develops new saddle directions while remaining confined to a conserved hypersurface.

From this perspective, scalar irruption is equivalently characterized as:

1. a spectral band crossing zero in the principal symbol,

2. a sign change in the second variation of the action,

3. a change in the Morse index of the classical solution.

The natural mathematical language for handling such degeneracies is not merely

classical PDE analysis but the geometry of derived critical loci. When the Hessian

becomes degenerate, the classical critical set must be replaced by a derived space that

keeps track of unstable directions and gauge redundancies.

This observation motivates the transition to the BatalinVilkovisky formalism. The BV

extension does not introduce new physical instabilities; rather, it encodes the geometry

of the classical degeneracy in a graded symplectic framework that keeps the gauge

structure explicit and ensures that the instability is consistent with diffeomorphism

invariance.
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In this sense, the AKSZ/BV reformulation is not an embellishment of the instability but

its natural geometric completion: the lamphronlamphrodyne transition corresponds

to a change in the homotopy type of the derived critical locus of the action functional.

42 AKSZ/BV Formulation of Scalar Irruption

We now reformulate scalar irruption within the Batalin–Vilkovisky (BV) and Alexandrov–

Kontsevich–Schwarz–Zaboronsky (AKSZ) framework in order to exhibit its gauge

structure and derived geometric consistency.

Let M be a smooth compact manifold and consider the graded manifold

F = T ∗[−1]Map(T [1]M,R),

whose degree-zero component corresponds to the scalar field φ. Introduce ghosts c for

diffeomorphism symmetry and antifields φ∗ and c∗ of opposite degree.

The classical action functional for the scalar–entropy system may be written in AKSZ

form as

Scl[φ] =

∫
M

(
c2

2
∇φ2 +

α

2
φ2 +

β

2
φ2∆gS

)
dµg.

The BV extension introduces antifields and ghost couplings:

SBV = Scl +

∫
M
φ∗Lcφ+ c∗

1

2
[c, c],

where Lc denotes the Lie derivative along the ghost vector field.

The BV bracket is defined by

{F,G} =

∫
M

(
δrF

δφ

δlG

δφ∗
− δrF

δφ∗
δlG

δφ
+
δrF

δc

δlG

δc∗
− δrF

δc∗
δlG

δc

)
.

The classical master equation requires

{SBV, SBV} = 0.

The BV-extended scalar–entropy action satisfies the classical master equation provided

the entropy functional S[φ] is diffeomorphism-invariant.
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The entropy density S = −φ log φ is a scalar under diffeomorphisms. Therefore its

Laplacian ∆gS transforms covariantly. The ghost variation of Scl cancels against the

antifield terms by standard AKSZ construction. Hence the BV bracket vanishes.

In lamphrodyne regimes, the quadratic part of the BV action develops negative

eigenvalues in its kinetic operator. The derived critical locus of SBV therefore acquires

additional nontrivial homology in degree zero, corresponding to irruption branches.

Thus scalar irruption corresponds, in derived geometric language, to a change in the

homotopy type of the critical locus of the action functional. The instability is not

merely analytic but alters the derived stack of classical solutions.

This completes the BV/AKSZ formulation of scalar irruption as an entropically induced

derived bifurcation.

43 From Derived Bifurcation to Spectral Realiza-

tion

The BV/AKSZ formulation establishes that scalar irruption corresponds to a change

in the homotopy type of the derived critical locus of the action functional. At the

classical level this transition appears as a change in the signature of the Hessian;

at the derived level it appears as a shift in the cohomological structure governing

infinitesimal deformations.

To pass from this geometric formulation to a concrete computational realization, one

must exhibit the same instability structure in a representation where spectral data are

explicit. The essential requirement is that the discretization preserve three structural

features:

First, the instability must arise from a sign change in the quadratic form determined

by the second variation of the action.

Second, the growth must be band-limited rather than ultraviolet divergent.

Third, global scalar conservation must be maintained so that amplification remains

reorganizational rather than generative.

These properties are not artifacts of smooth geometry; they depend only on the

spectral properties of the Laplacian and on the variational structure of the entropy

coupling. Consequently they descend naturally to any representation in which the

Laplacian admits a well-defined eigenbasis and the action admits a discrete second
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variation.

Let {ψk} denote an orthonormal eigenbasis of −∆g with eigenvalues λk ≥ 0. In the

continuum lamphron regime the quadratic part of the action takes the form

δ2Scl =
∑
k

(
c2λk + α + χ

)
|ψk|2.

Lamphrodyne transition corresponds to the crossing of zero of this coefficient for a

finite subset of modes. The instability therefore depends only on the spectral data

{λk} and on the effective diffusion coefficient.

A discrete Laplacian on a lattice possesses the same spectral structure: it is a self-

adjoint operator with nonnegative spectrum. The sign reversal condition therefore

translates without alteration into a statement about the eigenvalues of −∆Λ. The

derived bifurcation of the smooth theory thus acquires a purely algebraic form: certain

discrete modes cross from positive to negative curvature directions in the quadratic

form.

In this sense the lattice realization is not a separate model but a spectral representation

of the same variational instability. The derived change in the critical locus becomes a

finite-dimensional change in the signature of the quadratic form on the space of lattice

modes.

This observation justifies constructing a Crystal Plenum discretization. It demonstrates

that scalar irruption does not depend on smooth manifold structure, coordinate charts,

or differential operators per se. It depends only on spectral properties of a Laplacian

and on the curvature of the entropy functional. Those properties are preserved under

discretization provided the lattice Laplacian is symmetric and the entropy functional

remains local.

We now proceed to construct this discrete realization explicitly.

44 Crystal Plenum Discretization and Lattice Re-

alization of Scalar Irruption

We now construct a discrete realization of scalar irruption within the Crystal Plenum

framework, in which the manifold (M, g) is replaced by a lattice Λ endowed with a

discrete Laplacian.

Let Λ be a finite or countably infinite lattice with adjacency relation ∼. The scalar
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field becomes a function

φ : Λ→ R,

and the discrete Laplacian is defined by

(∆Λφ)i =
∑
j∼i

(φj − φi).

The entropy density at site i is defined as

Si = −φi log φi.

The discrete evolution equation corresponding to (7) becomes

φ̇i = c2(∆Λφ)i + αφi + βφi(∆ΛS)i.

44.1 Discrete Irruption Criterion

Let φi = φ0 + εψi with φ0 uniform. Linearizing yields

ψ̇i = c2(∆Λψ)i + αψi − βφ0(1 + log φ0)(∆Λψ)i.

Define the effective diffusion constant

Deff = c2 − βφ0(1 + log φ0).

Let λk denote eigenvalues of −∆Λ. Then growth rates are

γk = −Deffλk + α.

If Deff < 0, then the lattice system exhibits scalar irruption through exponential

amplification of a finite set of eigenmodes.

Since the spectrum of ∆Λ is bounded above on a finite lattice, only modes with

sufficiently small λk satisfy γk > 0. Hence growth occurs in a controlled band, leading

to patterned condensation.
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44.2 Poincar-Triggered Lattice Recrystallization

In the crystal plenum, recurrence phenomena arise through approximate Poincar

return times of lattice configurations. Let φ(t) evolve under the discrete dynamics. A

recurrence time T satisfies

φ(T )− φ(0) < ε.

Recurrence can amplify local entropy curvature by concentrating deviations. If at

recurrence time T ,

(∆ΛS)i < −κc

for some site i, the irruption condition is triggered.

Thus Poincar-Triggered Lattice Recrystallization acts as a catalyst for scalar irruption

by generating localized curvature spikes in the entropy landscape.

44.3 Crystallization After Irruption

Nonlinear saturation of unstable modes yields new equilibrium configurations φ∗i
satisfying

0 = c2(∆Λφ
∗)i + αφ∗i + βφ∗i (∆ΛS

∗)i.

These equilibria correspond to discrete crystal-like scalar condensates.

If the nonlinear saturation term is positive definite, the post-irruption equilibria

minimize a discrete free energy functional.

Define the discrete free energy

EΛ[φ] =
∑
i

(
c2

2

∑
j∼i

(φj − φi)2 − α

2
φ2
i −

β

2
φ2
i (∆ΛS)i

)
.

Critical points satisfy the equilibrium equation above, and positive definiteness of the

quartic stabilization term ensures local minimality.

44.4 Discrete–Continuous Correspondence

Let lattice spacing be h. Then

∆Λφi = h2∆gφ(xi) +O(h3).
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Thus the discrete irruption condition converges to the continuous condition as h→ 0.

This demonstrates that scalar irruption is not an artifact of continuum modeling but

persists under crystallographic discretization. The Crystal Plenum therefore provides

a geometrically concrete realization of entropically driven scalar phase transitions.

45 Limiting Cases and Structural Degeneracies

It is instructive to examine several limiting regimes of the regulated scalar sector in

order to clarify what is genuinely novel in the construction.

If κeff → 0, the k4 term vanishes and the theory reduces to a conventional fluid

with sound speed c2
s. In a regime where c2

s < 0, the linear system becomes backward-

parabolic and therefore ill-posed. The regulator is thus not decorative; it is the element

that restores well-posedness and enforces band limitation.

If c2
s → 0 while κeff > 0, the theory reduces to a scale-dependent pressure model

in which high-k modes are stabilized but low-k modes evolve gravitationally as in

dust. In this limit, deviations from ΛCDM appear only beyond a regulator-controlled

wavenumber.

If gravitational coupling is formally switched off by taking G → 0, the instability

structure reduces to the conservative spinodal form controlled entirely by c2
s and κeff .

Growth then reflects internal free-energy curvature rather than gravitational collapse.

If the background expansion is frozen by setting a(t) = 1, the model reduces to a static

plenum with regulated phase separation. The FRW embedding therefore does not

generate the instability; it modulates it through redshifting of physical wavenumbers.

Finally, if β → 0 in the original entropy-coupled formulation, the effective negative

compressibility sector disappears and the lamphrodyne regime collapses to purely

stabilizing dynamics. The instability is therefore directly traceable to entropy curvature

rather than to the regulator itself.

These limiting cases show that the regulated irruption mechanism occupies a distinct

structural position between standard Jeans instability and unregulated backward

diffusion. Its characteristic feature is a finite instability band bounded in both infrared

and ultraviolet by independently identifiable physical parameters.
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46 Comparisons with Other Frameworks

The mechanism developed here occupies a distinct structural position relative to

several established paradigms of structure formation and instability theory. Although

it shares formal similarities with known mechanisms, its ontological commitments and

regulator structure differ in essential ways.

Contrast with Inflationary Instability

In slow-roll inflationary cosmology, structure originates from quantum fluctuations of

a scalar inflaton field stretched to superhorizon scales by accelerated metric expansion.

The instability mechanism is geometric: mode amplification occurs because physical

wavelengths outpace the Hubble radius, freezing curvature perturbations.

By contrast, scalar irruption does not rely on accelerated expansion, horizon crossing,

or vacuum energy domination. The instability arises from the internal thermodynamic

curvature of a conserved density functional. The regulator enforces ultraviolet control

directly through a gradient-energy term rather than through redshifting by expansion.

Scale selection is therefore intrinsic and parameter-determined, not horizon-imprinted.

Contrast with Standard Jeans Instability

The classical Jeans mechanism arises from competition between gravitational attraction

and positive pressure support. Instability occurs for wavelengths exceeding the Jeans

length, determined by the sound speed and background density.

Scalar irruption modifies this structure in two respects. First, compressibility may be-

come negative in a finite interval, generating an instability independent of gravitational

attraction. Second, the presence of a k4 regulator term bounds the unstable band

from above. The resulting instability is therefore neither purely infrared (Jeans-type)

nor ultraviolet-divergent, but spectrally finite. Gravity shifts band edges but does not

determine the intrinsic preferred scale.

Relation to Cahn–Hilliard and Spinodal Decomposition

Mathematically, the regulated instability resembles spinodal phase separation in a

conserved order parameter governed by a Cahn–Hilliard equation. In that setting,
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instability arises from loss of convexity of a free-energy density, and gradient-energy

regularization suppresses short-wavelength divergence.

Scalar irruption may be regarded as a relativistic and cosmologically embedded

generalization of this structure. The key difference lies in the gravitational coupling,

the cosmological background, and the interpretation of the scalar as a matter density

rather than a chemical order parameter. The ultraviolet regulator plays the same

structural role as in Cahn–Hilliard theory but is derived from a covariant stress–energy

sector rather than imposed phenomenologically.

Relation to Effective Field Theory of Fluids

In effective field theory treatments of cosmological fluids, higher-derivative corrections

are often introduced as gradient expansions encoding short-distance physics. The

κeff term may be interpreted in this language as the leading operator in a derivative

expansion consistent with conservation and symmetry.

However, in the present framework the regulator is not merely a perturbative correction

but an essential structural component. It controls well-posedness, determines the

instability band, and fixes the physical irruption scale. Removing it collapses the

theory into either ill-posed backward diffusion or trivial stability.

Geometric Interpretation

Unlike inflationary scenarios that attribute structure to spacetime expansion, or purely

mechanical phase transitions that treat curvature as secondary, scalar irruption at-

tributes instability directly to entropy curvature in a fixed geometric background.

The lamphronlamphrodyne distinction formalizes this geometrically: instability corre-

sponds to local sign inversion of an effective curvature-induced mass term within an

otherwise elliptic operator.

Summary of Structural Distinctions

The framework developed here may therefore be characterized as follows. It is

conservative rather than source-driven, regulator-controlled rather than ultraviolet-

divergent, curvature-triggered rather than expansion-triggered, and band-limited rather

than scale-free. Its preferred clustering scale is intrinsic and parameter-determined,
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and its instability is a phase transition in thermodynamic geometry rather than a

consequence of background dilation.

These distinctions clarify that scalar irruption is neither a rephrasing of inflation nor

a simple restatement of Jeans collapse, but a hybrid regulated spinodal mechanism

embedded in a relativistic fluid with explicit conservation structure.

47 Future Directions

The present formulation establishes scalar irruption as a regulated, band-limited

instability arising from loss of convexity in a conserved relativistic density functional.

Several natural extensions follow from this foundation.

First, the nonlinear regime warrants systematic treatment beyond quadratic stabi-

lization. While the finite spinodal window determines the fastest-growing mode in

linear theory, the long-time morphology of condensates depends on higher-order terms

in the effective free-energy functional. A fully nonlinear analysis could determine

whether late-time equilibria correspond to stable solitonic structures, periodic lattices,

or metastable glass-like configurations. In particular, a rigorous existence and regular-

ity theory for global solutions in the presence of the k4 regulator would clarify the

admissible phase diagram of the plenum.

Second, the coupling between scalar irruption and vector flow remains only partially ex-

plored. The inclusion of vorticity, shear viscosity, and anisotropic stress may modify the

instability band or produce secondary instabilities analogous to KelvinHelmholtztype

modes in compressible fluids. A consistent treatment within the covariant stressenergy

framework would determine whether irruption seeds rotational structure or remains

purely compressive.

Third, the gravitational sector may be developed beyond the linear regime. While

the present work derives the modified growth equation and transfer function, a full

EinsteinBoltzmann treatment would be required to confront precision cosmological

data. In particular, the regulator-induced k4 correction predicts scale-dependent

gravitational slip and a distinctive high-k suppression that should be propagated

through lensing kernels, CMB anisotropies, and nonlinear halo formation models.

Fourth, the derived-geometric formulation suggests a deeper structural question. The

lamphronlamphrodyne transition corresponds to a change in the homotopy type of the

classical solution space. A systematic study of this transition within the BV/AKSZ

framework could clarify whether irruption corresponds to a derived Morse bifurcation
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and whether the instability admits a cohomological classification. Such analysis may

reveal whether entropic phase transitions possess universal homological signatures.

Fifth, the discrete Crystal Plenum realization invites renormalization analysis. As

lattice spacing varies, the effective parameters α, β, and κeff flow under coarse graining.

Determining the renormalization group structure of the regulated instability would

establish whether scalar irruption is stable under scale transformations or requires fine

tuning. In particular, the scaling dimension of the gradient regulator controls whether

the k4 term remains relevant in the infrared limit.

Finally, observational discriminants must be sharpened into quantitative forecasts.

The regulator fixes a preferred physical clustering scale during the spinodal interval.

If such an interval occurred in the cosmological past, residual imprints should survive

in the matter power spectrum, weak-lensing shear correlations, and possibly in relic

neutrino or gravitational-wave backgrounds. A program of parameter estimation

would determine whether the allowed window for κeff is already constrained by existing

surveys or whether the mechanism predicts novel small-scale deviations accessible to

future instruments.

48 Conclusion

Scalar irruption has been formulated as an entropically driven instability in a non-

expanding plenum, beginning from a strictly variational construction and proceeding

through spectral, cosmological, and derived-geometric reformulations. The central

mechanism is the loss of convexity of a coarse-grained free-energy functional governing

a conserved scalar density. When the second variation of that functional changes

sign, a finite band of modes becomes unstable while the ultraviolet sector remains

controlled by an explicit gradient regulator.

The analysis established that the instability is not a consequence of metric expansion,

vacuum tunneling, or inflaton dynamics. Instead, it arises from the sign reversal of an

effective diffusive coefficient induced by entropy curvature. The highest-order spatial

operator remains positive definite, ensuring well-posedness. Amplification is therefore

band-limited and regulator-controlled rather than backward-parabolic or ultraviolet

divergent. The preferred physical scale of growth is determined by the ratio of entropy

curvature to the regulator parameter, yielding an explicit parameter-to-scale map.

Embedding the regulated fluid into a cosmological background demonstrated that

the same structure produces a modified growth equation for scalar perturbations.
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The regulator generates a k4 contribution to the dispersion relation and induces a

scale-dependent effective sound speed. In the matter-dominated regime this produces

a calculable small-scale suppression of power, while in a finite spinodal interval a

bounded irruption band appears. The fastest-growing mode is determined intrinsically

by the compressibilityregulator ratio and is not shifted at leading order by gravitational

coupling. The instability thus interpolates between Jeans collapse and spinodal phase

separation within a single conservative scaffold.

The gauge-invariant reformulation via the MukhanovSasaki variable confirmed that

the k4 regulator term survives at the level of the canonical quadratic action. The

ultraviolet control and band-limited instability are therefore not gauge artifacts but

physical consequences of the regulated stressenergy sector. Observable implications

follow directly: a preferred clustering scale, modified high-k asymptotics in the linear

matter power spectrum, and scale-dependent anisotropic stress.

At the level of geometric structure, the lamphronlamphrodyne distinction was shown

to correspond to the sign of local entropy curvature. The transition between these

regimes is a change in the signature of the quadratic form governing perturbations. In

PDE language it appears as effective diffusion sign inversion; in spectral language as

bounded exponential growth of Laplacian modes; in thermodynamic language as a

convexity-to-concavity transition of the free-energy density; in cosmological language

as a regulated instability window; and in quantum language as the emergence of

inverted harmonic-oscillator sectors.

The BV/AKSZ extension exhibited scalar irruption as a derived bifurcation: the

instability alters the homotopy type of the critical locus of the action functional. This

places the mechanism within a formally consistent gauge-theoretic framework and

shows that the transition is not merely analytic but structural at the level of the

derived solution space.

Finally, the Crystal Plenum discretization demonstrated that scalar irruption persists

under lattice realization. The instability depends only on spectral properties of a

Laplacian and on the curvature of an entropy functional. These features survive

discretization provided the Laplacian remains self-adjoint and the regulator positive.

The discrete system therefore reproduces band-limited growth, finite unstable spectra,

and nonlinear saturation into patterned condensates, confirming that the mechanism

is not an artifact of continuum modeling.

Taken together, these results establish scalar irruption as a controlled, conservative,

and geometrically interpretable phase transition in a non-expanding plenum. Structure

emerges from smoothing dynamics when entropy curvature exceeds a regulator-defined
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threshold. No background dilation, external potential, or ultraviolet pathology is

required. The instability is intrinsic, bounded, and parameter-determined.

Future extensions may include fully nonlinear evolution beyond the spinodal window,

coupling to vector transport sectors, inclusion of additional conserved charges, and

detailed confrontation with observational power spectra. At the formal level, further

development within derived geometry, renormalization analysis of the regulator sector,

and exploration of multi-field generalizations remain open directions.

The essential conclusion remains invariant across all representations: entropic dif-

ferential alone, embedded within a variationally consistent and ultraviolet-regulated

framework, suffices to generate scale-selected structure in a non-expanding cosmological

setting.
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Appendices

A Functional-Analytic Structure of the Regulated

Free Energy

Let Σ be a compact Riemannian 3-manifold with metric γij and Laplace–Beltrami

operator D2 = DiD
i. Consider the regulated free-energy functional

F [n] =

∫
Σ

(
f(n) +

κ

2
DinD

in
)√

γ d3x, κ > 0.

Sobolev Setting

Assume

n ∈ H1(Σ),

so that n and its first weak derivatives are square-integrable. Then F [n] is well-defined

provided f is C2 with at most polynomial growth.

The first variation is

δF =

∫
Σ

(
f ′(n) δn− κD2n δn

)√
γ d3x,

after integration by parts.

Hence
δF
δn

= f ′(n)− κD2n.

Second Variation and Convexity

Let n = n̄+ εη with η ∈ H1(Σ). The second variation at n̄ is

δ2F [n̄](η, η) =

∫
Σ

(
f ′′(n̄)η2 + κDiηD

iη
)√

γ d3x.

Let {−λk} be the eigenvalues of D2,

D2ψk = −λkψk, λk ≥ 0.
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Expanding

η =
∑
k

akψk,

gives

δ2F =
∑
k

(f ′′(n̄) + κλk) a
2
k.

Convexity holds iff

f ′′(n̄) + κλk > 0 ∀k.

If f ′′(n̄) < 0, instability occurs only for

0 < λk <
|f ′′(n̄)|
κ

.

Thus the unstable spectrum is finite.

Coercivity at High Frequency

Since λk →∞ as k →∞, one has

f ′′(n̄) + κλk → +∞.

Therefore

δ2F ≥ κ‖η‖2
H1 − |f ′′(n̄)|‖η‖2

L2 .

Using the compactness of Σ, the embedding

H1(Σ) ↪→ L2(Σ)

is continuous, so the quadratic form is bounded below and coercive on the orthogonal

complement of the unstable eigenspaces.

Hence the regulated functional defines a well-posed gradient flow in H1(Σ).
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Spectral Gap in the Spinodal Regime

Define the unstable band

U =

{
k | λk <

|f ′′(n̄)|
κ

}
.

Since λk ∼ k2 asymptotically,

|U| <∞.

Let

λunst
max = max

k∈U
λk.

Then the growth rate in linear gradient flow

∂tη = −δF
δn

is

γk = |f ′′(n̄)|λk − κλ2
k.

The maximal growth occurs at

λ∗ =
|f ′′(n̄)|

2κ
.

This establishes existence of a preferred eigenmode independent of background expan-

sion.

Fourth-Order Operator Structure

The linearized operator may be written

L = −f ′′(n̄)D2 + κ(D2)2.

This is elliptic of order four with principal symbol

σ(L)(ξ) = κ|ξ|4.

Since κ > 0, the principal symbol is strictly positive. Therefore L is strongly elliptic,

guaranteeing well-posedness of the associated parabolic problem.
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No backward-parabolic sector appears because the highest-order term remains positive

definite.

B Hamiltonian Structure and Absence of Ostro-

gradsky Instabilities

We analyze the canonical structure of the regulated scalar sector at quadratic order

and demonstrate that the k4 regulator does not introduce higher-time-derivative

instabilities.

Quadratic Action

Recall the gauge-invariant quadratic action

S(2) =
1

2

∫
dη d3x

[
(v′)2 − c2

s(∇v)2 − κeff
1

a2
(∆v)2 +

z′′

z
v2

]
,

where v = zR.

The regulator modifies only spatial derivatives:

(∆v)2 = (∂i∂
iv)2.

No higher time derivatives appear.

Canonical Momentum and Hamiltonian

The canonical momentum conjugate to v is

π =
∂L
∂v′

= v′.

The Hamiltonian density is

H =
1

2

[
π2 + c2

s(∇v)2 + κeff
1

a2
(∆v)2 − z′′

z
v2

]
.
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In Fourier space,

v(η, ~x) =

∫
d3k

(2π)3
vk(η)ei

~k·~x,

the Hamiltonian becomes a sum over decoupled modes:

H =
1

2

∫
d3k

[
|v′k|2 + ω2

k(η)|vk|2
]
,

with

ω2
k(η) = c2

sk
2 + κeff

k4

a2
− z′′

z
.

Absence of Higher-Time-Derivative Degrees of Freedom

Ostrogradsky instabilities arise when the Lagrangian contains higher time derivatives

such as v′′ or (v′)2 coupled to time derivatives of higher order.

In the present case:

L =
1

2

[
(v′)2 − (spatial derivatives only)

]
.

Therefore:

∂2L
∂(v′′)2

= 0.

The EulerLagrange equation remains second order in time:

v′′k + ω2
kvk = 0.

Hence no additional canonical momentum is introduced, and the phase space remains

two-dimensional per mode.

Energy Positivity at High Wavenumber

For fixed conformal time η, as k →∞,

ω2
k(η) ∼ κeff

k4

a2
.

74



Since κeff > 0, one has

ω2
k → +∞.

Therefore high-k modes have positive definite Hamiltonian contribution:

Hk ∼
1

2

(
|v′k|2 + κeff

k4

a2
|vk|2

)
.

No ultraviolet ghost appears.

Comparison with Genuine Higher-Derivative Gravity

In contrast, consider a higher-derivative time action of schematic form

L =
1

2

[
(v′′)2 − (∇v)2

]
.

Then

π1 =
∂L
∂v′
− d

dη

∂L
∂v′′

, π2 =
∂L
∂v′′

.

The phase space doubles, and the Hamiltonian becomes unbounded from below.

No such structure appears in the regulated scalar irruption model.

The regulator introduces higher spatial derivatives only. The time evolution remains

second order. The Hamiltonian is bounded from below at high wavenumber, provided

κeff > 0.

Therefore the regulated scalar sector is free of Ostrogradsky instabilities and remains

a conventional canonical field theory with modified dispersion relation:

ω2
k = c2

sk
2 + κeff

k4

a2
− z′′

z
.
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C Renormalization-Group Interpretation and Ef-

fective Field-Theory Domain

Dimensional Analysis

Consider the quadratic action for the Mukhanov–Sasaki variable:

S(2) =
1

2

∫
dη d3x

[
(v′)2 − c2

s(∇v)2 − κeff
1

a2
(∆v)2 +

z′′

z
v2

]
.

Assign scaling dimensions in comoving coordinates:

[x] = L, [η] = L, [v] = L−1.

Then

[(∇v)2] = L−4, [(∆v)2] = L−6.

To maintain action dimensionless (in units where ~ = 1), one finds

[κeff ] = L2.

Thus κeff defines a squared length scale.

Associated Physical Cutoff Scale

Define the physical wavenumber

kphys =
k

a
.

The dispersion relation is

ω2
k = c2

sk
2
phys + κeffk

4
phys −

z′′

z
.

The crossover between quadratic and quartic behavior occurs at

k2
phys ∼

c2
s

κeff

.
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Define the regulator scale

Λ2
κ :=

1

κeff

.

Then

ω2
k = c2

sk
2
phys +

k4
phys

Λ2
κ

− z′′

z
.

Hence Λκ plays the role of a physical ultraviolet scale.

Wilsonian Interpretation

Treat the theory as an effective field theory obtained after integrating out microscopic

degrees of freedom above some scale ΛUV.

The most general local quadratic spatial operator consistent with isotropy is an

expansion in even powers of kphys:

ω2
k = c2

sk
2
phys +

α4

Λ2
UV

k4
phys +

α6

Λ4
UV

k6
phys + · · · .

Truncating at fourth order corresponds to retaining the leading irrelevant operator.

Identifying

κeff =
α4

Λ2
UV

shows that the regulator term is the lowest-order higher-gradient correction in a

Wilsonian derivative expansion.

Scaling Toward the Ultraviolet

Under spatial rescaling

x→ bx, k → k

b
,

the operators scale as

k2 → b−2k2, k4 → b−4k4.

Thus the quartic operator is irrelevant in the infrared but dominant in the ultraviolet.

In particular, as kphys →∞,

ω2
k ∼ κeffk

4
phys,
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ensuring ultraviolet stiffening.

EFT Validity Domain

The derivative expansion is valid provided

k2
phys

Λ2
κ

� 1

for scales where neglected k6 and higher operators remain small.

Thus the conservative scalar irruption theory is an EFT valid for

kphys � Λκ.

Within this regime, truncation at fourth order is controlled.

Relation to Lifshitz-Type Scaling

The quartic dispersion resembles z = 2 Lifshitz scaling:

ω ∼ k2
phys.

If c2
s is negligible and κeff > 0, the high-k fixed point exhibits anisotropic scaling

symmetry

η → b2η, x→ bx.

Thus the ultraviolet sector is governed by a Lifshitz-type quadratic-in-time, quartic-

in-space operator.

Absence of Fine-Tuning Requirement

Because κeff is associated with an irrelevant operator, its presence does not require

fine tuning to maintain stability. Any positive κeff produces ultraviolet regularization.

Only the sign is dynamically essential.
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Corollary: Bounded Instability Band

Suppose c2
s(a) < 0 in a finite interval. Then instability requires

|c2
s|k2

phys > κeffk
4
phys.

Thus

0 < k2
phys <

|c2
s|

κeff

.

The existence of Λκ guarantees finiteness of this band independent of gravitational

contributions.

The regulator term:

κeff(∆v)2

is the leading irrelevant spatial operator in a Wilsonian expansion. It defines a UV

stiffness scale Λκ, ensures positivity of ω2
k at large k, and preserves EFT control

provided kphys � Λκ.

No additional degrees of freedom are introduced; the theory remains second order in

time and canonically well-defined.

D Spectral Theory of Fourth-Order Elliptic Oper-

ators on Compact Manifolds

Ellipticity and Principal Symbol

Let (M, g) be a smooth compact Riemannian manifold without boundary. Consider

the linear operator

Lκ = −κeff∆2
g + c2

s∆g + V (x),

acting on C∞(M), where κeff > 0 and V (x) ∈ C∞(M).

The principal symbol of Lκ is

σpr(Lκ)(x, ξ) = κeff |ξ|4g.

79



Since κeff > 0 and |ξ|4g > 0 for ξ 6= 0, the operator is strongly elliptic of order four.

Self-Adjointness

Define the domain

D(Lκ) = H4(M),

with Lκ acting on L2(M).

Because ∆g is self-adjoint and V (x) is multiplication by a real-valued function, the

operator Lκ is symmetric on C∞(M) and extends to a self-adjoint operator on H4(M).

Compact Resolvent

Since M is compact and Lκ is elliptic of positive order, the resolvent

(Lκ − λI)−1

is compact for λ not in the spectrum.

Hence the spectrum is discrete:

Spec(Lκ) = {λ0 ≤ λ1 ≤ λ2 ≤ · · · },

with λn → +∞ as n→∞.

Spectral Asymptotics

By Weyl’s law for fourth-order elliptic operators,

N(Λ) = #{λn ≤ Λ} ∼ CM Λ
d
4 , Λ→∞,

where d = dimM.

Thus

λn ∼ C n4/d as n→∞.
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Boundedness of the Unstable Spectrum

Suppose the linearized growth operator takes the form

G = −Lκ + αI,

so that growth rates correspond to eigenvalues

γn = α− λn.

Instability occurs when γn > 0, i.e.

λn < α.

Since λn →∞, only finitely many indices satisfy this inequality.

The unstable spectrum of the regulated scalar sector is finite on compact manifolds.

Because λn →∞, there exists N such that for all n > N , λn > α. Hence γn < 0 for

n > N . Only finitely many modes can satisfy γn > 0.

Energy Coercivity

Define the quadratic form

Q[u] =

∫
M

(
κeff |∆gu|2 − c2

s|∇u|2 + V (x)u2
)
dµg.

For κeff > 0, the leading term satisfies

κeff‖∆gu‖2
L2 ≥ C‖u‖2

H2 − C ′‖u‖2
L2 ,

by elliptic regularity.

Hence

Q[u] ≥ C‖u‖2
H2 − C ′′‖u‖2

L2 ,

establishing coercivity modulo compact perturbations.
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Band-Limited Instability on Rd

If M = Rd, Fourier transform yields symbol

σ(Lκ)(k) = κeff |k|4 − c2
s|k|2 + V̂ .

Instability requires

κeff |k|4 − c2
s|k|2 + V̂ < 0.

This inequality defines either an empty set or a bounded interval in |k| whenever

κeff > 0.

On Rd, the unstable Fourier support is compact in k-space provided κeff > 0.

Absence of Ultraviolet Catastrophe

Since

σ(Lκ)(k) ∼ κeff |k|4 as |k| → ∞,

the operator is positive definite in the ultraviolet.

Thus high-frequency modes are strictly damped in the linearized theory.

Spectral Gap Structure

If the lowest eigenvalue λ0 < 0 in a spinodal window, then there exists a spectral gap

λ0 < λ1 ≤ · · · .

The time scale of irruption is governed by

τ−1 = max
n

γn = α− λ0.

Higher modes decay with rates increasing as n4/d.
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Corollary: Structured Condensation

Because only finitely many modes are unstable and the spectrum is discrete, nonlin-

ear saturation generically produces finite-mode condensation patterns rather than

broadband turbulence in the linear regime.

Functional Calculus Representation

The solution operator for the linearized equation

∂tu = −Lκu

is

u(t) = e−tLκu(0).

Since Lκ is self-adjoint with discrete spectrum,

e−tLκ =
∞∑
n=0

e−tλnPn,

where Pn are orthogonal spectral projectors.

Growth or decay is entirely controlled by the sign of λn.

The fourth-order regulator yields:

(i) strong ellipticity, (ii) discrete spectrum on compact manifolds, (iii) finite unstable mode set, (iv) ultraviolet positivity.

Hence the regulated scalar irruption operator is spectrally well-posed in both compact

and noncompact settings.
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E Nonlinear Stability, Lyapunov Structure, and

Global Attractors

Gradient-Flow Structure

Consider the coarse-grained free-energy functional

F [n] =

∫
M

(
f(n) +

κeff

2
|∇n|2

)
dµg,

with κeff > 0 and f ∈ C3(R).

The chemical potential is

µ =
δF
δn

= f ′(n)− κeff∆gn.

The conserved Cahn–Hilliard-type evolution reads

∂tn = ∇ ·(M∇µ) , M > 0.

Lyapunov Dissipation

Multiply the evolution equation by µ and integrate:

∫
M
µ ∂tn dµg =

∫
M
µ∇ · (M∇µ) dµg.

Integrating by parts and using zero-flux boundary conditions gives

d

dt
F [n] = −

∫
M
M |∇µ|2 dµg ≤ 0.

The free energy F [n] is a Lyapunov functional for the nonlinear regulated dynamics.

Thus

F [n(t)] ≤ F [n(0)] for all t ≥ 0.
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Mass Conservation Constraint

Because

∂tn = ∇ · (M∇µ),

integration over M yields
d

dt

∫
M
n dµg = 0.

Hence the dynamics evolve on the affine hyperplane

Hm =

{
n ∈ L2(M) :

∫
M
n dµg = m

}
.

Coercivity and Boundedness

Assume f(n) satisfies a polynomial lower bound:

f(n) ≥ −C1 + C2|n|p, p > 1.

Then

F [n] ≥ C2‖n‖pLp +
κeff

2
‖∇n‖2

L2 − C1|M|.

Hence boundedness of F implies boundedness in H1(M).

Existence of Global Weak Solutions

Standard theory for fourth-order parabolic equations yields:

If n0 ∈ H1(M), then there exists a global weak solution

n ∈ L∞loc(0,∞;H1(M)) ∩ L2
loc(0,∞;H2(M))

to the regulated nonlinear equation.
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Compactness and Attractor Structure

Because F is decreasing and bounded below, trajectories are precompact in H1 modulo

subsequences. Define the ω-limit set

ω(n0) = {n∗ : ∃tk →∞, n(tk)→ n∗} .

Every element n∗ ∈ ω(n0) satisfies

∇ · (M∇µ∗) = 0,

hence is a stationary solution.

Thus late-time states correspond to critical points of F under the mass constraint.

Nonlinear Stability of Minimizers

Let n∗ be a strict local minimizer of F on Hm.

If the second variation satisfies

δ2F [n∗](ϕ, ϕ) ≥ c‖ϕ‖2
H1

for all ϕ with zero mean, then n∗ is nonlinearly asymptotically stable.

Spinodal Decomposition and Basin Structure

If f ′′(n̄) < 0 at a homogeneous state n̄, then

δ2F [n̄] =

∫
M

(
f ′′(n̄)ϕ2 + κeff |∇ϕ|2

)
dµg

is indefinite, and n̄ is a saddle.

Nonlinear evolution then moves the system toward phase-separated minimizers.

Energy Gap and Pattern Selection

Let λ0 < 0 be the most unstable linear eigenvalue.
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The characteristic nonlinear saturation scale satisfies

‖n(t)− n̄‖H1 ∼

√
|λ0|
κeff

.

Only finitely many unstable modes contribute to the emerging pattern, due to the

spectral bound established previously.

Inclusion of Gravitational Coupling

If gravity is reintroduced, the total energy functional becomes

E [n,Φ] = F [n] +
1

8πG

∫
M
|∇Φ|2dµg,

subject to Poisson constraint

∆gΦ = 4πG(n− n̄).

The combined system remains variational in the quasi-static limit.

Causal Relaxation Extension

With relaxation time τ > 0, the hyperbolic extension reads

τ∂2
t n+ ∂tn = ∇ · (M∇µ).

Energy functional:

Eτ = F [n] +
τ

2
‖∂tn‖2

L2 .

Then
d

dt
Eτ = −‖∂tn‖2

L2 −
∫
M |∇µ|2.

Thus the hyperbolic regulator preserves dissipativity.
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Absence of Finite-Time Blow-Up

Because F is bounded below and coercive, and the highest-order term remains elliptic,

solutions cannot develop ultraviolet blow-up in finite time within the continuum model.

The regulated scalar irruption system admits:

(i) global weak solutions, (ii) Lyapunov monotonicity, (iii) compact global attractor, (iv) finite-mode pattern selection.

Thus the instability mechanism extends beyond linear analysis into a globally well-

posed nonlinear phase-separation dynamics.

F Functional-Integral Formulation and Semiclassi-

cal Expansion Near the Spinodal Point

Euclidean Functional Integral

Consider the regulated scalar action on a compact Riemannian manifold (M, g):

SE[φ] =

∫
M

(
c2

2
|∇φ|2 + Veff(φ)

)
dµg,

where the effective potential satisfies

V ′′eff(φ0) = f ′′(φ0).

The formal Euclidean partition function is

Z =

∫
Dφ e−

1
~SE [φ].

Critical points satisfy

−c2∆gφ+ V ′eff(φ) = 0.
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Quadratic Expansion Around a Homogeneous Background

Let φ = φ0 + η with φ0 constant.

Expand the action to quadratic order:

SE[φ] = SE[φ0] +
1

2

∫
M
η
(
−c2∆g + V ′′eff(φ0)

)
η dµg +O(η3).

Define the fluctuation operator

O = −c2∆g + V ′′eff(φ0).

Let ∆gψk = −λkψk. Then eigenvalues of O are

ω2
k = c2λk + V ′′eff(φ0).

Spinodal Regime and Negative Modes

In the spinodal regime,

V ′′eff(φ0) < 0.

Then

ω2
k = c2λk − |V ′′eff(φ0)|.

Negative eigenvalues occur when

λk <
|V ′′eff(φ0)|

c2
.

Thus only finitely many modes contribute negative directions in the Euclidean action.

The Hessian of SE has finite Morse index in the regulated spinodal regime.

This contrasts with unregulated backward-parabolic models, where the number of

unstable modes is infinite.
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Gaussian Functional Determinant

To quadratic order,

Z ≈ e−
1
~SE [φ0] (detO)−1/2 .

Split the determinant into positive and negative sectors:

detO =
∏
k∈S+

ω2
k

∏
k∈S−

(−|ω2
k|).

The finite number of negative eigenvalues implies

Z = |Z|ei
π
2
N− ,

where N− is the Morse index.

Thus the spinodal point corresponds to a finite-dimensional instability in configuration

space.

Semiclassical Time-Dependent Amplification

Return to Lorentzian signature.

For each unstable mode,

η̈k − |ω2
k|ηk = 0,

with solutions

ηk(t) = Ake
√
|ω2
k| t +Bke

−
√
|ω2
k| t.

Quantum mechanically, the Hamiltonian for each unstable mode reads

Ĥk =
1

2
π̂2
k −

1

2
|ω2
k|η̂2

k.

This is the inverted harmonic oscillator.

Mode Occupation Growth

Let the initial state be Gaussian with variance σ2
0.
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Under time evolution,

〈η̂2
k(t)〉 = σ2

0 cosh(2
√
|ω2
k| t) +

~2

4σ2
0|ω2

k|
sinh(2

√
|ω2
k| t).

Hence particle number grows exponentially:

nk(t) ∼ e2
√
|ω2
k| t.

Finite-Mode Quantum Instability

Because the regulator enforces

ω2
k → +∞ as k →∞,

only finitely many modes exhibit inverted-oscillator behavior.

Therefore:

In the regulated scalar irruption model, quantum instability is finite-dimensional at

any fixed background configuration.

Effective One-Loop Potential Near the Convexity Boundary

The one-loop correction is

V
(1)

eff (φ0) =
~
2

∑
k

logω2
k.

In the spinodal regime the negative modes generate an imaginary part,

ImV
(1)

eff =
~
2

∑
k∈S−

π.

This imaginary part signals decay of the unstable homogeneous phase.
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Renormalization-Scale Interpretation of κeff

In Fourier space,

ω2
k = c2k2 + κeffk

4 + V ′′(φ0).

The quartic term improves ultraviolet behavior of loop integrals:

∫
ddk

(2π)d
1

c2k2 + κeffk4
∼
∫
ddk

k4
(k →∞).

Thus in d ≤ 3 the theory becomes super-renormalizable at one loop.

Effective Field-Theoretic Interpretation

The gradient regulator corresponds to the leading higher-derivative operator in a

derivative expansion:

L =
1

2
(∂φ)2 +

κeff

2
(�φ)2 − V (φ).

Its presence ensures:

(i) finite Morse index, (ii) improved UV behavior, (iii) controlled semiclassical instability.

Semiclassical Picture of Irruption

Near the convexity boundary,

V ′′(φ0)→ 0−,

the lowest unstable eigenvalue approaches zero, and the amplification rate scales as

γmin ∼
√
|V ′′(φ0)|.

Hence scalar irruption may be interpreted as a semiclassical tunneling-free phase

transition triggered by loss of convexity, with exponential amplification replacing

barrier penetration.
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Conclusion of Functional Appendix

The regulated scalar irruption model:

(i) admits a well-defined Gaussian path integral,

(ii) has finite Morse index in the spinodal regime,

(iii) exhibits inverted-oscillator amplification in a finite mode set,

(iv) improves ultraviolet convergence through the k4 term.

G Hamiltonian Structure and Symplectic Geome-

try of the Regulated Scalar Sector

Canonical Variables and Phase Space

Consider the regulated scalar Lagrangian density on a fixed background spacetime:

L =
1

2
φ̇2 − c2

2
|∇φ|2 − κeff

2
(∆φ)2 − V (φ).

The canonical momentum is

π =
∂L
∂φ̇

= φ̇.

The phase space is

P =
{

(φ, π) ∈ H2(M)× L2(M)
}
,

where H2 regularity is required because of the (∆φ)2 term.

Hamiltonian Functional

The Hamiltonian is

H[φ, π] =

∫
M

(
1

2
π2 +

c2

2
|∇φ|2 +

κeff

2
(∆φ)2 + V (φ)

)
dµg.
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Functional derivatives yield

δH

δπ
= π,

δH

δφ
= −c2∆φ+ κeff∆2φ+ V ′(φ).

Hamiltons equations are therefore

φ̇ = π,

π̇ = c2∆φ− κeff∆2φ− V ′(φ).

Combining yields the regulated fourth-order equation

φ̈− c2∆φ+ κeff∆2φ+ V ′(φ) = 0.

Symplectic Form

The canonical symplectic 2-form on phase space is

Ω =

∫
M
δπ(x) ∧ δφ(x) dµg.

For functionals F,G,

{F,G} =

∫
M

(
δF

δφ

δG

δπ
− δF

δπ

δG

δφ

)
dµg.

The flow generated by H satisfies

Ḟ = {F,H}.

Energy Positivity and Spinodal Instability

The quadratic Hamiltonian around a homogeneous state φ0 is

H(2) =
1

2

∫ (
π2 + c2|∇η|2 + κeff(∆η)2 + V ′′(φ0)η2

)
dµg,

where φ = φ0 + η.
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Fourier decomposition yields

H(2) =
1

2

∑
k

(
|πk|2 + ω2

k|ηk|2
)
,

with

ω2
k = c2k2 + κeffk

4 + V ′′(φ0).

If V ′′(φ0) < 0, then for sufficiently small k,

ω2
k < 0.

Thus H(2) becomes indefinite but remains bounded from below in the ultraviolet

because

ω2
k → +∞ as k →∞.

Finite-Dimensional Unstable Subspace

Define the unstable subspace

U = span
{
ψk | ω2

k < 0
}
.

Because the k4 term dominates at large k,

dimU <∞.

Hence the Hamiltonian flow decomposes as

P = U ⊕ S,

where S is the stable infinite-dimensional subspace.

Stable and Unstable Manifolds

Let (φ0, 0) denote the homogeneous equilibrium.

Linearizing Hamiltons equations yields

Ẋ = JHX,
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where

X =

(
η

π

)
, J =

(
0 1

−1 0

)
.

Eigenvalues are

λk = ±
√
−ω2

k.

Thus unstable directions generate exponential growth:

ηk(t) ∼ e
√
|ω2
k| t.

The local unstable manifold is finite-dimensional and symplectically orthogonal to the

stable manifold.

No Ostrogradsky Instability

Although the equation is fourth order in space, it remains second order in time.

Therefore the Hamiltonian involves only first-order time derivatives, and no additional

canonical momentum is introduced.

Hence there is no Ostrogradsky instability associated with higher time derivatives.

Conserved Quantities

Time-translation invariance implies

dH

dt
= 0.

If V depends only on φ2, the theory admits a Z2 symmetry

φ 7→ −φ.

If spatial translations are present,

Pi =

∫
π∂iφ dµg

is conserved.
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Linear Mode Decoupling

The Hamiltonian splits into independent oscillators:

H(2) =
∑
k

Hk, Hk =
1

2

(
|πk|2 + ω2

k|ηk|2
)
.

For ω2
k > 0, each mode is a stable harmonic oscillator.

For ω2
k < 0, each mode is an inverted oscillator.

Phase-Space Volume and Liouville Theorem

The Hamiltonian flow preserves the symplectic volume form

Ω∧N ,

where N is the (formal) dimension of phase space.

Thus scalar irruption corresponds to hyperbolic flow in a finite-dimensional sector of

phase space while preserving global Liouville measure.

The regulated scalar sector:

(i) admits a well-defined symplectic structure,

(ii) has a conserved Hamiltonian functional,

(iii) contains a finite-dimensional unstable manifold in the spinodal regime,

(iv) remains free of higher-time-derivative instabilities.

Thus the dynamical instability underlying scalar irruption is a controlled hyperbolic

sector embedded within a globally Hamiltonian field theory.
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H Spectral Geometry of the Regulated Laplacian

and Weyl Asymptotics

Elliptic Operators on Compact Manifolds

Let (M, g) be a smooth compact d-dimensional Riemannian manifold without bound-

ary. The Laplace–Beltrami operator

∆g : C∞(M)→ C∞(M)

is essentially self-adjoint on L2(M) with discrete spectrum

0 = λ0 ≤ λ1 ≤ λ2 ≤ · · · → ∞,

where

−∆gψk = λkψk, {ψk} forms an orthonormal basis of L2(M).

Consider the regulated elliptic operator

A = −c2∆g + κeff∆2
g +m2,

with c2 > 0 and κeff > 0.

Principal Symbol and Strong Ellipticity

The principal symbol of A is

σpr(A)(x, ξ) = κeff |ξ|4,

which is positive for all ξ 6= 0.

Hence A is strongly elliptic of order four.

Strong ellipticity implies:

(i) compact resolvent, (ii) discrete spectrum, (iii) finite multiplicities.
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Spectral Representation

Applying A to Laplacian eigenfunctions yields

Aψk =
(
c2λk + κeffλ

2
k +m2

)
ψk.

Define

ω2
k = c2λk + κeffλ

2
k +m2.

Thus the regulated operator diagonalizes in the Laplacian basis.

Spinodal Condition and Instability Band

Instability occurs when

ω2
k < 0.

Let m2 = V ′′(φ0) with m2 < 0.

The condition becomes

κeffλ
2
k + c2λk +m2 < 0.

This is a quadratic inequality in λk.

The roots are

λ± =
−c2 ±

√
c4 − 4κeffm2

2κeff

.

Because m2 < 0 and κeff > 0, the discriminant satisfies

c4 − 4κeffm
2 > c4,

and both roots are real with

λ− < 0 < λ+.

Thus instability requires

0 < λk < λ+.
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Finiteness of the Unstable Sector

Because λk →∞ as k →∞, there exist only finitely many eigenvalues satisfying

λk < λ+.

Hence the unstable sector

U = span{ψk : λk < λ+}

is finite-dimensional.

This establishes ultraviolet control rigorously.

Weyl Asymptotics

Weyls law states that the counting function

N(Λ) = #{λk ≤ Λ}

satisfies

N(Λ) ∼ ωd
(2π)d

Vol(M) Λd/2 as Λ→∞,

where ωd is the volume of the unit ball in Rd.

Therefore,

dimU = N(λ+) ∼ Cd Vol(M)λ
d/2
+ .

Substituting λ+ gives

dimU ∼ Cd Vol(M)

(
−c2 +

√
c4 − 4κeffm2

2κeff

)d/2
.

Thus the number of unstable modes scales polynomially with system size and with

the regulator parameters.
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Short-Wavelength Stability

As λk →∞,

ω2
k ∼ κeffλ

2
k → +∞.

Hence

ω2
k > 0 for all sufficiently large k.

The fourth-order term guarantees spectral positivity in the ultraviolet.

Resolvent Bounds

For λ /∈ Spec(A), the resolvent

(A− λ)−1 : L2(M)→ H4(M)

is compact.

Thus the spectrum consists only of isolated eigenvalues of finite multiplicity.

Boundary Effects

If M has boundary, impose either:

Dirichlet:

φ|∂M = 0,

or Neumann:

∇nφ|∂M = 0.

Strong ellipticity persists under standard boundary conditions, and discreteness of the

spectrum remains valid.

Band-Limited Growth

Let γk =
√
−ω2

k for unstable modes.

Then

γ2
k = −

(
c2λk + κeffλ

2
k +m2

)
.

101



The maximum growth rate occurs at

d

dλ

(
−c2λ− κeffλ

2 −m2
)

= 0,

yielding

λ∗ = − c2

2κeff

.

Because λk > 0, the physically relevant extremum lies within the admissible range

only when m2 is sufficiently negative.

Thus the fastest-growing eigenmode lies strictly within the finite band.

The regulated operator:

(i) is strongly elliptic of order four,

(ii) has discrete spectrum on compact manifolds,

(iii) admits only finitely many unstable modes,

(iv) satisfies Weyl asymptotics in the ultraviolet.

Scalar irruption therefore corresponds to a finite-dimensional spectral bifurcation

within an otherwise elliptic geometric operator.

I Analytic Semigroup Generation and Well-Posedness

Abstract Evolution Formulation

Let (M, g) be a compact Riemannian manifold without boundary. Define the Hilbert

space

H := L2(M),

with domain

D(A) := H4(M),

where A is the fourth-order regulated operator

A = −c2∆g + κeff∆2
g +m2, κeff > 0.
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The linearized scalar evolution equation may be written as

∂tφ = −Aφ.

Sectoriality

Because A is strongly elliptic of order four and self-adjoint on L2(M), it is sectorial.

That is, there exists θ ∈ (0, π/2) and M > 0 such that the resolvent estimate

‖(λI +A)−1‖ ≤ M

|λ|

holds for all λ outside a sector

{λ ∈ C : | arg λ| < π − θ}.

Generation of Analytic Semigroup

By standard results in semigroup theory for sectorial operators, −A generates a

strongly continuous analytic semigroup

e−tA : H → H, t ≥ 0.

Thus for any initial data

φ0 ∈ H,

there exists a unique mild solution

φ(t) = e−tAφ0.

If φ0 ∈ H4(M), the solution is classical and satisfies

φ ∈ C1([0, T ];L2) ∩ C([0, T ];H4).

Continuous Dependence

The semigroup estimate

‖e−tA‖ ≤ Ceωt
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holds for some ω ∈ R determined by the spectral bound of A.

Therefore

‖φ(t)‖L2 ≤ Ceωt‖φ0‖L2 ,

establishing continuous dependence on initial data.

Spectral Decomposition of the Semigroup

Using the Laplacian eigenbasis {ψk},

φ0 =
∑
k

akψk,

the solution evolves as

φ(t) =
∑
k

ake
−tω2

kψk,

where

ω2
k = c2λk + κeffλ

2
k +m2.

Unstable modes correspond precisely to ω2
k < 0 and produce exponential growth

e|ω
2
k|t.

Because only finitely many such k exist, instability remains finite-dimensional.

Energy Functional and Dissipativity

Define the quadratic energy

E[φ] =
1

2

∫
M

(
κeff |∆gφ|2 + c2|∇φ|2 +m2φ2

)
dµg.

Then
d

dt
E[φ] = −‖A1/2φ‖2

L2

for the stable sector.

Thus the semigroup is dissipative on the complement of the unstable eigenspace.
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Nonlinear Extension

Consider a nonlinear perturbation

∂tφ = −Aφ+N (φ),

with N locally Lipschitz from H2 to L2 and of at most polynomial growth.

By standard fixed-point arguments in Banach spaces, there exists T > 0 such that a

unique local solution exists for initial data in H2.

Global existence holds provided

‖φ(t)‖H2

remains bounded.

Band-Limited Instability and Stable Manifold

Let

H = U ⊕ S

be the decomposition into unstable and stable spectral subspaces.

There exists a finite-dimensional unstable manifold tangent to U at φ = 0.

The center-stable manifold theorem ensures that nonlinear dynamics near criticality

are governed by the finite-dimensional unstable eigenspace.

The regulated scalar evolution:

(i) generates an analytic semigroup,

(ii) admits unique solutions for admissible initial data,

(iii) has finite-dimensional instability,

(iv) remains ultraviolet well-posed.

Scalar irruption is therefore a controlled spectral bifurcation within a rigorously

well-defined evolution system.

105



J Center Manifold Reduction and Amplitude Equa-

tion Near Criticality

Spectral Setup Near the Critical Threshold

Let the regulated linear operator be

Aµ = −c2∆g + κeff∆2
g + µ,

where µ is a control parameter proportional to the effective entropy curvature (for

example µ ∼ f ′′(n̄) in the coarse-grained description).

Assume there exists a critical value µ = µc such that

ω2
k∗(µc) = 0

for a single eigenmode ψk∗ , while all other eigenvalues satisfy

ω2
k(µc) > 0.

Thus the spectrum decomposes as

H = span{ψk∗} ⊕Hs,

with Hs strictly stable.

Nonlinear Evolution Equation

Consider the nonlinear evolution

∂tφ = −Aµφ+N (φ),

where N is smooth and at least quadratic:

N (φ) = λ2φ
2 + λ3φ

3 + · · · .
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Center Manifold Existence

At µ = µc, the operator has a simple zero eigenvalue. Standard center manifold theory

implies:

There exists a one-dimensional center manifold

Wc = {Aψk∗ + h(A) : A ∈ R},

where h(A) ∈ Hs and

h(A) = O(A2).

Dynamics near φ = 0 reduce to dynamics on this manifold.

Amplitude Equation

Write

φ(x, t) = A(t)ψk∗(x) + h(A(t)).

Projecting the evolution equation onto ψk∗ yields

Ȧ = σ(µ)A− gA3 +O(A5),

where

σ(µ) = −ω2
k∗(µ), g > 0

for a supercritical bifurcation (assuming stabilizing cubic nonlinearity).

Normal Form

Near criticality,

σ(µ) ≈ α(µ− µc),

with α > 0.

Thus the reduced normal form becomes

Ȧ = α(µ− µc)A− gA3.
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Steady States

For µ < µc:

A = 0

is stable.

For µ > µc:

A = 0

is unstable and two nontrivial equilibria appear:

A± = ±

√
α(µ− µc)

g
.

This is a supercritical pitchfork bifurcation.

Finite-Dimensional Reduction

Near the instability threshold, the full PDE reduces to the single ODE

Ȧ = α(µ− µc)A− gA3,

which governs the onset of scalar irruption.

Thus the instability is dynamically finite-dimensional in the precise sense that only

a bounded subset of spectral modes lies within the unstable band determined by

the regulator and background parameters. The nonlinear evolution saturates at

finite amplitude because higher-order terms in the free-energy functional render the

homogeneous branch energetically unfavorable but prevent unbounded descent along

any direction in configuration space. Growth is therefore excluded at arbitrarily small

scales: the ultraviolet sector is controlled by the positive-definite higher-order operator,

which forces the dispersion relation to become strictly stabilizing as the wavenumber

increases. The ensuing nonlinear phase transition is structurally stable under small

perturbations of parameters and initial data, since the bifurcation arises from a change

in the sign of a finite number of eigenvalues rather than from any essential singularity

in the governing operator.
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Spatial Pattern Formation

The leading-order solution in the broken-symmetry phase is

φ(x) ≈ A±ψk∗(x),

so the spatial structure of the irrupted domain is inherited from the critical Laplacian

eigenmode.

If the critical eigenspace is multi-dimensional (e.g., degeneracy on symmetric mani-

folds), the reduced dynamics generalize to a vector amplitude equation

Ȧ = σA− g|A|2A,

yielding pattern-selection dynamics.

Interpretation

The scalar irruption transition may therefore be characterized in several mathematically

equivalent ways. It appears first as a spectral instability occurring at the critical

condition , where a discrete mode crosses from positive to negative effective frequency

squared. In parameter space, this transition constitutes a codimension-one bifurcation,

since it is triggered by the variation of a single effective control parameter—such as the

curvature or the regulator-weighted compressibility—through a critical value. Near

threshold, the dynamics reduce to a finite-dimensional amplitude system governed by

the unstable eigenspace, with higher modes remaining linearly stable and slaved to the

dominant growing sector. Under generic stabilizing nonlinearities in the free-energy

functional, the bifurcation is supercritical, leading to bounded pattern formation

rather than runaway divergence and thus defining a controlled phase transition in the

scalar sector.

No ultraviolet catastrophe arises because:

(i) only finitely many modes destabilize,

(ii) higher modes remain strictly damped,

(iii) nonlinear saturation bounds amplitude.
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Corollary: Entropic Criticality

If µ is identified with the coarse-grained entropy curvature parameter,

µ ∝ −f ′′(n̄),

then the transition µ = µc corresponds precisely to crossing the spinodal boundary.

Scalar irruption is thus the dynamical realization of entropic criticality.

The regulated scalar system undergoes a mathematically standard supercritical bifur-

cation with:

finite-dimensional instability, bounded amplitude, structurally stable phase selection.

The instability is therefore not merely spectral but dynamically organized by a universal

amplitude equation near threshold.

K Derived Critical Locus and Homotopy-Type Tran-

sition

Variational Setup

LetM be a compact Riemannian manifold without boundary and consider the classical

action functional

Scl[φ] =
∫
M

(
c2

2
|∇φ|2 + κeff

2
|∆gφ|2 + V (φ;µ)

)
dµg,

V”(0;µ) = µ.

The EulerLagrange equation is

E(φ) = −c2∆gφ+ κeff∆2
gφ+ V ′(φ;µ) = 0.

Define the critical locus

Crit(Scl) = {φ ∈ H4(M) : E(φ) = 0}.
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Hessian and Morse Index

The second variation at φ = 0 is

δ2Scl(0) =
∫
M (c2|∇ψ|2 + κeff |∆gψ|2 + µψ2) dµg.

In spectral coordinates relative to Laplacian eigenfunctions ψk satisfying

-∆gψk = λkψk,

Qk(µ) = c2λk + κeffλ
2
k + µ.

The Morse index of the trivial critical point is

Ind(0;µ) = #{k : Qk(µ) < 0}.

For µ sufficiently positive, all Qk > 0 and the index vanishes. At critical parameter

values satisfying

Qk∗(µc) = 0,

Change in Critical Topology

Let µ < µc so that Qk∗(µ) < 0 for a finite set of modes. Then the trivial solution φ = 0

is no longer a local minimum but a saddle with Morse index equal to the number of

unstable eigenvalues.

By the Morse lemma, near nondegenerate critical points the action is locally equivalent

to

Scl = −x2
1 − · · · − x2

m + y2
1 + · · ·+ y2

n + higher-order terms.

When a single eigenvalue crosses zero, the topology of the sublevel sets

{ φ : Scl[φ] ≤ c}

Thus the lamphronlamphrodyne transition corresponds to a change in the Morse index

of the trivial configuration and therefore to a change in the homotopy type of the

configuration space sublevel sets.

Derived Critical Locus

In the BV formalism, the classical equations define the critical locus as a derived

scheme
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RCrit(Scl) = Spec
(
Sym

(
Tφ[−1]

))
D = DE(φ).

At φ = 0, this operator is

D0 = −c2∆g + κeff∆2
g + µ.

For µ 6= µc, the complex

H4(M)
D0−→ L2(M)

At µ = µc, the kernel acquires a nontrivial finite-dimensional component spanned by

the critical eigenmodes.

Thus the derived critical locus acquires higher homology in degree −1, corresponding

to new ghost-number-one directions in the BV complex.

Homotopy-Type Transition

Let Xµ = Crit(Scl;µ) denote the classical solution space. Then as µ crosses µc:

The trivial solution loses nondegeneracy.

New nontrivial branches of solutions emerge, parameterized by the center manifold.

The homotopy type of Xµ changes by attachment of cells corresponding to unstable

modes.

In derived language, the cotangent complex

LXµ

Geometric Interpretation of Lamphron and Lamphrodyne States

Lamphron states correspond to regions in parameter space where the Hessian of the

action is positive definite and the critical locus is discrete and nondegenerate.

Lamphrodyne states correspond to regions where the Hessian becomes indefinite, the

Morse index increases, and new branches of solutions appear.

Thus the lamphronlamphrodyne distinction is equivalent to the statement that the

classical moduli space undergoes a bifurcation with a change in derived structure.
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Spectral Flow Interpretation

Let D(µ) denote the linearized operator. The spectral flow of D(µ) through zero

counts the net number of eigenvalues changing sign as µ varies.

The spectral flow equals the change in Morse index:

SF(D;µc) = ∆Ind.

This spectral flow measures precisely the number of new unstable directions and

therefore the dimension of the emerging center manifold.

The lamphronlamphrodyne transition is not merely analytic instability but a genuine

change in the topology of the critical locus of the action functional.

In classical terms, it is a Morse bifurcation.

In derived terms, it is a modification of the cotangent complex and of the homotopy

type of the moduli space of solutions.

In dynamical terms, it coincides with the emergence of finite-dimensional amplitude

dynamics.

The entropic sign reversal therefore manifests simultaneously as spectral flow, Morse

index jump, center-manifold bifurcation, and derived geometric transition.

L Renormalization of the Gradient Regulator and

Effective Field Theory Scaling

Consider the regulated action on a compact Riemannian manifold (M, g)

S[φ] =
∫
M

(
1
2
(∂φ)2 + κ

2
(∆gφ)2 + V (φ)

)
dµg,

In flat space with Euclidean signature and metric δij, the quadratic part reads

S2 = 1
2

∫
ddx (∂iφ∂iφ+ κ(∆φ)2 +m2φ2) ,

Passing to momentum space,

S2 = 1
2

∫
ddk

(2π)d
φ̃(k) (k2 + κk4 +m2) φ̃(−k).

The propagator is therefore

G(k) = 1
k2+κk4+m2.
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For k →∞, one has

G(k) ∼ 1
κk4 ,

Let Λ denote a momentum cutoff. Integrating out modes in the shell Λ/b < |k| < Λ

with b > 1 generates renormalized couplings. Under the Wilsonian rescaling

k 7→ k′ = bk, x 7→ x′ = x/b,

φ(x) = b∆φφ′(x′),∫
ddx (∂φ)2 7→ bd−2+2∆φ

∫
ddx′(∂′φ′)2.

The regulator term scales as∫
ddxκ(∆φ)2 7→ κ bd−4+2∆φ

∫
ddx′(∆′φ′)2.

Using ∆φ = (d− 2)/2, the scaling exponent of κ is

d - 4 + d - 2 = 2d - 6,

[κ] = −1.

Thus κ has dimensions of length squared and is irrelevant in the renormalization-group

sense at low momenta but dominates in the ultraviolet. This establishes that the

gradient regulator is naturally interpreted as a higher-derivative correction in an

effective field theory valid below a coarse-graining scale ` ∼
√
κ.

In curved spacetime, one replaces k2 by eigenvalues of −∆g. The same asymptotic

argument applies because Weyls law implies that large eigenvalues scale as λk ∼ k2/d

in counting measure, and the quartic term dominates asymptotically.

Therefore the regulator defines an effective theory with controlled ultraviolet behavior

and a natural coarse-graining scale. Its renormalization produces subleading corrections

to m2 and to the quartic coupling in V (φ) but does not destabilize the ultraviolet

completeness of the linearized operator so long as κ > 0.

M Measure-Theoretic Entropy Functional and Coarse-

Graining Limits

Let (M,B, µ) be a finite measure space with µ(M) = 1 for normalization. Let

ρ ∈ L1(M, µ) with ρ ≥ 0 and
∫
ρ, dµ = 1.

Define the Shannon entropy functional
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S[ρ] = −
∫
M ρ log ρ dµ.

For ρ absolutely continuous with respect to µ, S is well-defined and concave on the

convex set of probability densities.

Let P` denote a coarse-graining operator defined by convolution with a mollifier K`,

ρ`(x) = (P`ρ)(x) =
∫
MK`(x, y)ρ(y) dµ(y),

Then ρ` defines a smoothed density. By Jensens inequality,

S[ρ`] ≥ S[ρ],

Consider now a free-energy functional

F[ρ] =
∫ (

f(ρ) + κ
2
|∇ρ|2

)
dµg,

In the limit `→ 0, one has ρ` → ρ in L1, and the gradient term converges in the sense

of distributions provided ρ ∈ H1(M).

Under successive coarse-graining scales `n → `∞, the functional F flows to an effective

functional

Feff [ρ] =
∫ (

feff(ρ) + κeff

2
|∇ρ|2

)
dµg,

In measure-theoretic terms, the lamphronlamphrodyne transition corresponds to the

change in sign of the second variation

δ2F [ρ0](ψ, ψ) =
∫

(f ′′(ρ0)ψ2 + κ|∇ψ|2) dµg.

When f ′′(ρ0) > 0, the quadratic form is positive definite in H1(M). When f ′′(ρ0) < 0,

the form becomes indefinite but remains bounded below due to the gradient term.

Thus in the weak topology of H1, the entropy functional admits a well-defined second

variation and a controlled instability band characterized by the competition between

the concavity of f and the Sobolev norm induced by κ.

From the standpoint of probability measures, the instability does not violate conserva-

tion of total mass∫
M ρ dµ = 1,

This measure-theoretic formulation makes explicit that the instability is not a violation

of normalization or of conservation but a redistribution in the space of densities

governed by a concaveconvex competition in the free-energy functional.
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N Well-Posedness, Semigroup Generation, and Spec-

tral Band Structure of the Regulated Operator

Let (M, g) be a smooth compact Riemannian manifold without boundary. Consider

the linearized regulated scalar operator acting on H2(M),

L = - κ∆2
g + a∆g +m2,

∂tφ = −Lφ.

Self-adjointness and ellipticity

Since −∆g is a positive self-adjoint operator on L2(M) with discrete spectrum λk
∞
k=0,

and since ∆2
g is also self-adjoint with domain H4(M), it follows that L is essentially

self-adjoint on C∞(M) and extends to a self-adjoint operator on L2(M) with domain

H4(M).

The principal symbol of L is

σprin(L)(x, ξ) = κ|ξ|4g,

Spectral decomposition

Let −∆gψk = λkψk be an orthonormal eigenbasis of L2(M), with 0 = λ0 ≤ λ1 ≤ λ2 ≤
. . . and λk →∞.

Then

L ψk = (κλ2
k − aλk +m2)ψk.

Denote the eigenvalues of L by

µk = κλ2
k − aλk +m2.

The spectrum is discrete and unbounded above because µk ∼ κλ2
k as k →∞.

Semigroup generation

Define the operator

A = -L.
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Since L is self-adjoint and bounded below, A is self-adjoint and bounded above. The

HilleYosida theorem implies that A generates a strongly continuous semigroup etA on

L2(M).

Explicitly, for initial data φ0 ∈ L2(M),

φ(t) = e−tLφ0 =
∑∞

k=0 e
−tµk〈φ0, ψk〉ψk.

Hence the Cauchy problem is well posed in L2(M), and in fact in Hs(M) for all s ≥ 0

by elliptic regularity.

Band-limited instability

Instability corresponds to modes with µk < 0. Since µk is a quadratic polynomial in

λk,

µ(λ) = κλ2 − aλ+m2.

If a > 0, the quadratic has a minimum at

λ∗ = a
2κ
,

µmin = m2 − a2

4κ
.

Instability occurs if and only if

m2 < a2

4κ
.

In that case the inequality µ(λ) < 0 holds for λ in the interval

λ− < λ < λ+,

λ± = a±
√
a2−4κm2

2κ
.

Since λk → ∞, only finitely many eigenvalues lie in this interval. Therefore the

unstable spectrum is finite-dimensional.

In particular, the number of unstable modes equals the number of Laplacian eigenvalues

λk contained in (λ−, λ+).

Ultraviolet control

Because µk ∼ κλ2
k as λk →∞, one has
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µk → +∞ as k →∞.

Thus high-frequency modes are strictly stable. The instability, when present, is

necessarily band-limited and cannot extend to arbitrarily large wavenumber.

Energy estimate

Define the quadratic energy functional

E[φ] = 1
2

∫
M (κ(∆gφ)2 − a|∇φ|2 +m2φ2) dµg.

Then for smooth solutions of ∂tφ = −Lφ,

d
dt‖φ‖2

L2=−2〈φ,Lφ〉=−2
∑
k µk|〈φ,ψk〉|2.

Therefore, growth occurs only along the finite set of eigenfunctions with µk < 0, and

the growth rate is exactly |µk| in each such eigendirection.

The regulated fourth-order operator is uniformly elliptic, generates a strongly con-

tinuous semigroup, possesses a discrete spectrum with finite unstable band when

parameters satisfy the instability condition, and enforces strict ultraviolet stabilization

through the κλ2
k term. The instability is therefore spectrally confined, mathematically

well posed, and structurally compatible with conservative evolution in a compact

spatial domain.

118



References

[1] Arnold, V. I. (1989). Mathematical Methods of Classical Mechanics. Springer.

[2] Batalin, I. A., and Vilkovisky, G. A. (1981). Gauge algebra and quantization.

Physics Letters B, 102(1), 27–31.

[3] Henneaux, M., and Teitelboim, C. (1992). Quantization of Gauge Systems. Prince-

ton University Press.

[4] Alexandrov, M., Kontsevich, M., Schwarz, A., and Zaboronsky, O. (1997). The ge-

ometry of the master equation and topological quantum field theory. International

Journal of Modern Physics A, 12(07), 1405–1429.

[5] Evans, L. C. (2010). Partial Differential Equations. American Mathematical

Society.

[6] Taylor, M. E. (1996). Partial Differential Equations I–III. Springer.

[7] Zeidler, E. (1990). Nonlinear Functional Analysis and Its Applications. Springer.

[8] Turing, A. M. (1952). The chemical basis of morphogenesis. Philosophical Trans-

actions of the Royal Society B, 237, 37–72.

[9] Cross, M. C., and Hohenberg, P. C. (1993). Pattern formation outside of equilib-

rium. Reviews of Modern Physics, 65(3), 851–1112.

[10] Ising, E. (1925). Contribution to the theory of ferromagnetism. Zeitschrift fr

Physik, 31, 253–258.

[11] Onsager, L. (1944). Crystal statistics. I. A two-dimensional model with an order-

disorder transition. Physical Review, 65, 117–149.

[12] Strogatz, S. H. (1994). Nonlinear Dynamics and Chaos. Westview Press.

[13] Gilmore, R. (1993). Catastrophe Theory for Scientists and Engineers. Dover.

[14] Kolmogorov, A. N. (1965). Three approaches to the quantitative definition of

information. Problems of Information Transmission, 1, 1–7.

[15] Shannon, C. E. (1948). A mathematical theory of communication. Bell System

Technical Journal, 27, 379–423.

[16] Weinberg, S. (1995). The Quantum Theory of Fields, Volume I. Cambridge

University Press.

119



[17] Birrell, N. D., and Davies, P. C. W. (1982). Quantum Fields in Curved Space.

Cambridge University Press.

[18] Kadanoff, L. P. (2000). Statistical Physics: Statics, Dynamics and Renormaliza-

tion. World Scientific.

[19] Bratteli, O., and Robinson, D. W. (1987). Operator Algebras and Quantum

Statistical Mechanics. Springer.

[20] Mac Lane, S. (1998). Categories for the Working Mathematician. Springer.

[21] May, J. P. (1999). A Concise Course in Algebraic Topology. University of Chicago

Press.

[22] Gelfand, I. M., and Fomin, S. V. (2000). Calculus of Variations. Dover.

[23] Smale, S. (1967). Differentiable dynamical systems. Bulletin of the American

Mathematical Society, 73, 747–817.

[24] Hawking, S. W. (1975). Particle creation by black holes. Communications in

Mathematical Physics, 43, 199–220.

[25] Penrose, R. (2004). The Road to Reality. Jonathan Cape.

120


	Introduction
	Effective-Theory Status and Conservation Structure
	Coarse-Grained Free Energy and Regulator
	Constitutive Closure and Causality
	Linear Stability and Band-Limited Growth
	Interpretation
	Variational Formulation of the Coupled System
	Linear Stability Analysis and the Irruption Criterion
	Nonlinear Energy Functional and Global Instability
	Stress–Energy Structure and Variational Consistency
	Well-Posedness and Spinodal Instability
	Minimal Cosmological Embedding
	Interpretive Constraint
	Integration into the Five-Engine Plenum Architecture
	Entropy Vaults and Crack Points
	Relation to PoincarÃ©-Triggered Lattice Recrystallization
	Neutrino Fossil Registry as Memory Operator
	Non-Expanding Cosmological Interpretation
	Bifurcation Analysis
	Frame Choice, Diffusive Flux, and Stress–Energy Consistency
	Particle Frame and Energy Frame
	Constitutive Closure
	Stress–Energy Tensor with Gradient Regularization
	Separation of Roles

	Linear Scalar Perturbations in Longitudinal Gauge
	Perturbed Chemical Potential
	Perturbed Conservation Law
	Modified Euler Equation

	Effective Growth Equation
	Observable Consequences
	Structural Summary
	Matter-Era Transfer Function with Gradient Regulator
	Gauge-Invariant Treatment via the Mukhanov–Sasaki Variable
	Covariant Scalar Perturbations with Gradient Energy

	Assumptions and Regime of Validity
	Regulated Transfer Function and High-k Tail in the Linear Power Spectrum
	Set-up: conservative perturbations with a gradient-stress closure
	Subhorizon reduction and the modified growth equation
	A modified Jeans scale and a finite instability window
	Matter-dominated high-k asymptotics and power suppression
	Transfer-function form and the asymptotic suppression law

	Finite Spinodal Window and Band-Limited Irruption
	Combined Jeans–Spinodal Instability Structure
	Dimensional Analysis and Characteristic Scales
	Phase Structure and Transition to Lamphron–Lamphrodyne Regimes
	Equivalence Between Scalar–Entropy and Conserved Density Formulations
	Scalar Reparameterization
	Entropy Functional Interpretation
	Equivalence of Linearized Growth Rates

	Korteweg Stress and Conservative Gradient Energy
	Entropy Curvature and Effective Compressibility
	Lamphron and Lamphrodyne States
	Principal Symbol and Second Variation of the Effective Operator
	Second Variation and Stability
	Relation to the Effective Operator
	Geometric Interpretation

	Spectral Decomposition and Resonant Structure Formation
	Quantized Scalar Irruption Operator
	Observable Consequences in a Non-Expanding Plenum
	Entropy Conservation and Global Constraints
	Synthesis: Scalar Irruption as Entropic Phase Transition
	Variational Degeneracy and the Geometry of the Critical Locus
	AKSZ/BV Formulation of Scalar Irruption
	From Derived Bifurcation to Spectral Realization
	Crystal Plenum Discretization and Lattice Realization of Scalar Irruption
	Discrete Irruption Criterion
	PoincarÃ©-Triggered Lattice Recrystallization
	Crystallization After Irruption
	Discrete–Continuous Correspondence

	Limiting Cases and Structural Degeneracies
	Comparisons with Other Frameworks
	Future Directions
	Conclusion
	Functional-Analytic Structure of the Regulated Free Energy
	Hamiltonian Structure and Absence of Ostrogradsky Instabilities
	Renormalization-Group Interpretation and Effective Field-Theory Domain
	Spectral Theory of Fourth-Order Elliptic Operators on Compact Manifolds
	Nonlinear Stability, Lyapunov Structure, and Global Attractors
	Functional-Integral Formulation and Semiclassical Expansion Near the Spinodal Point
	Hamiltonian Structure and Symplectic Geometry of the Regulated Scalar Sector
	Spectral Geometry of the Regulated Laplacian and Weyl Asymptotics
	Analytic Semigroup Generation and Well-Posedness
	Center Manifold Reduction and Amplitude Equation Near Criticality
	Derived Critical Locus and Homotopy-Type Transition
	Renormalization of the Gradient Regulator and Effective Field Theory Scaling
	Measure-Theoretic Entropy Functional and Coarse-Graining Limits
	Well-Posedness, Semigroup Generation, and Spectral Band Structure of the Regulated Operator

