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Abstract

We present a mathematically controlled mechanism for band-limited insta-
bility in a conserved relativistic fluid, formulated as a coarse-grained free-energy
theory with explicit ultraviolet regulation. The model identifies scalar irruption
with the loss of convexity of an effective thermodynamic functional, rather than
with backward diffusion. Instability occurs only within a finite wavenumber
band and is suppressed at high frequency by either gradient-energy regular-
ization or finite-correlation kernels. The resulting dynamics are well-posed,
conserve particle number exactly, and admit a causal constitutive completion.
Gravitational coupling is introduced only after the minimal closed system is
established, ensuring that conservation laws and regulator structure are fixed
at the level of the matter sector. The framework thereby provides a defensible
route from spinodal instability to scale-selected structure formation without
invoking metric expansion or ultraviolet pathologies.



1 Introduction

Standard cosmological structure formation is typically modeled through gravitational
instability in an expanding background geometry. In contrast, the present framework
assumes a non-expanding plenum endowed with a scalar field ¢, a vector flow v, and an
entropy density S. The dynamics of these fields are governed not by metric expansion
but by entropic smoothing and transport. Within this setting, the emergence of
structure must be explained without recourse to inflationary vacuum potentials or
background scale factors.

Scalar irruption is proposed as the fundamental mechanism of structure formation
under these assumptions. Informally, it denotes the abrupt local amplification of
a scalar field when entropy curvature crosses a critical threshold. The aim of this
essay is to replace that informal statement with a mathematically precise derivation,
beginning from an action principle and proceeding through stability analysis to a

rigorous instability criterion.

We assume throughout that the spatial manifold (M, g) is smooth, compact without
boundary unless otherwise stated, and equipped with a Riemannian metric g. All
fields are taken to be sufficiently regular for the variational calculus employed.

2 Effective-Theory Status and Conservation Struc-

ture

The model developed here is explicitly an effective non-equilibrium fluid theory. The
fundamental dynamical variable is a strictly conserved scalar density n, interpreted as
particle-number density or comoving matter density. Entropy is not introduced as
an independent ontological field; instead, coarse-grained thermodynamic structure is

encoded in an effective free-energy functional Fn|.

We assume a spacetime manifold (M, g,,,,) with signature (—, +, +, +) and a timelike
four-velocity field u* satisfying

wu, = —1.
Particle number conservation is imposed exactly through the current

J“Znuﬂ‘i‘j#; qu#:07



with
vV, J" = 0.

No violation of local conservation is permitted at any stage. All instability arises

through constitutive structure rather than through modification of conservation laws.

3 Coarse-Grained Free Energy and Regulator

Let h,, = g, + u,u, denote the spatial projector orthogonal to v*, and define the
spatial covariant derivative

D, :=h,"V,.
On hypersurfaces orthogonal to u*, define the regulated free-energy functional
Fln] = / vV <f(n) + gDinDin> &z,
3t

where v is the induced spatial metric determinant, f(n) is an effective coarse-grained
free-energy density, and k£ > 0 is a regulator coefficient encoding finite correlation
length.

The associated chemical potential is the variational derivative

p=o= f'(n) — kD*n, D? := D;D".
n

The coefficient k provides an explicit gradient-energy cost, suppressing arbitrarily

short-wavelength structure and thereby regularizing the ultraviolet sector.

4 Constitutive Closure and Causality

The simplest constitutive relation generalizing Fick’s law is
j# = _Mhﬂyvu,ua

with mobility M > 0.

This closure produces a relativistic CahnHilliard-type equation. However, as a

parabolic theory it implies infinite signal speed. To maintain compatibility with



relativistic causality at the effective level, we adopt a minimal causal relaxation law:
Tuavaj'u + j” - _Mhlwleljlv uﬂju = 07

with relaxation time 7 > 0.

In the limit ¢ > 7, the parabolic form is recovered, while short-time dynamics remain
hyperbolic. The instability spectrum derived below is unaffected at leading order in
this regime.

5 Linear Stability and Band-Limited Growth

We first analyze the minimal closed matter system on a fixed background. Let

n = n + on with n spatially homogeneous.

Expanding the chemical potential to first order gives

Su = f"(n)on — kD*dn.

In the comoving frame on subhorizon scales,
D? ~ a™%V?
and linearized number conservation yields
Oon = Ma V?6u — 3Héon,

where H is the background expansion rate (which may be set to zero in a static plenum
limit).

In Fourier space, dn ~ e*%_ we obtain

Oony = y(k,t) ong,
with growth rate

(k1) = M (— - ﬁ’“—i> 3.

In the spinodal regime where
f"(n) <0,



define
a:= M|f"(n)|, b:= Mk.

Then 2 v

This immediately implies:
|f//‘

o Instability occurs only for finite band 0 < kppys < 4/ .

K

e Ultraviolet modes are suppressed by the &% term.

e The fastest-growing physical wavenumber satisfies

PR 0]

phys = T 5,

The instability is therefore band-limited and well-posed. The regulator x defines a

K
NIy
]

which suppresses arbitrarily small-scale growth.

physical correlation length

No backward-parabolic pathology appears because the highest-order operator remains
positive-definite.

6 Interpretation

Scalar irruption is identified with the crossing of the convexity boundary
5 F =0,

that is, the transition from positive to negative second variation of the coarse-grained
free energy. The instability corresponds to spinodal phase separation in the conserved
density sector.

The model thus describes phase decomposition in an effective thermodynamic land-
scape, not reverse entropy flow. The regulator ensures ultraviolet stability, and
conservation is preserved exactly.



7 Variational Formulation of the Coupled System

Let ¢ : M x R — R denote a scalar field, v a vector field on M, and S an entropy
density functionally dependent on ¢ unless otherwise specified. We begin with an

action functional of the form

2
A= [ | (%(atqs)?— CVE Vo U, S)) iy dt,

(1)

where dji, is the Riemannian volume form, c is a characteristic smoothing scale, and

U(p,S) is an effective potential coupling ¢ to entropy.

We assume that entropy is defined by a functional of the scalar field,

S[¢] = —¢log ¢,

interpreted pointwise. More generally, one may take

S[é] = —/Mcblogcbdug,

but for local instability analysis the pointwise density is sufficient.

We consider a coupling of the form

U(6,S) = 56"+ B6 A5,

where o and 3 are constants and A, is the Laplace-Beltrami operator.

The Euler-Lagrange equation for ¢ follows from

SA

%—O.

A straightforward variation yields

0l — PNd+V v —agp— BA,S =0.

(6)

If we pass to a dissipative regime by introducing first-order temporal dynamics



appropriate to smoothing processes, we consider instead the evolution equation

O = 02A9¢ — V- (ov)+ap+ [BpA,S. (7)

Equation will serve as the starting point for instability analysis. The final term,
proportional to pA,S, encodes entropic curvature coupling. Scalar irruption will be

shown to arise when this term dominates diffusive smoothing.

8 Linear Stability Analysis and the Irruption Cri-

terion

We now consider a background configuration ¢ that is spatially uniform and stationary
under . Assume v = 0 for simplicity in the local analysis. Then the equation

reduces to

O = N0+ ad + Bp A,S. (8)

Let ¢ = ¢g + €1, where £ < 1 and 1 is a perturbation. Expanding S[¢] to first order
yields

S[g] = Sl¢o] + 5" [polv) + O(?). (9)

Since S'[¢o] = —(1 + log ¢g), we compute

AgS = —(1 4 log ¢g)Agtp. (10)

Substituting into the linearized equation gives

O = Agih + arp — o (1 + log o) Agt). (11)

Collecting Laplacian terms,

O = (¢ = Bepo(1 + log ¢o)) Ayt + anth. (12)



Let 15, be an eigenfunction of A, with eigenvalue —\;, Ay > 0. Then

Ohr, = — (¢ = Bo(1 4 log do)) b + . (13)

The growth rate v; is therefore

T = — (¢ — Boo(1 +1og dg)) i, + . (14)

We obtain the following result.

[Scalar Irruption Criterion] Suppose a > 0. If there exists k such that

¢ — Bo(1 +1og ¢o) < 0,

then for sufficiently large \x, the growth rate 7, becomes positive, and the uniform
state ¢ is linearly unstable. This instability corresponds to scalar irruption.

If the coefficient of \; is negative, then

— (¢ = Beo(1 + log ¢)) M

is positive and grows unbounded as Ay, — 0o. Since o > 0, we may choose Ay, sufficiently
large such that v, > 0. Therefore 1 grows exponentially in time, establishing linear
instability.

The condition

Bo(1+log o) > ¢ (15)

is the entropic differential threshold for scalar irruption. It expresses that entropy

curvature coupling overwhelms diffusive smoothing.

9 Nonlinear Energy Functional and Global Insta-
bility

To extend beyond linear analysis, define the energy functional



2
Bl = [ (G760 =502 J0P,s) du, (16)

If ¢ evolves according to a gradient flow

oE
atgbz _%7 (17)

then stationary points correspond to critical points of F.

The second variation §2F evaluated at ¢, determines stability. A direct computation
shows that under condition , the quadratic form associated with 62E becomes
indefinite. Therefore ¢, ceases to be a local minimizer and becomes a saddle. This
establishes nonlinear instability in the energy landscape.

10 Stress—Energy Structure and Variational Con-

sistency

To ensure that the regulator term is not merely a phenomenological closure but a
genuine energetic contribution, we now derive a consistent stress—energy tensor from a

covariant effective action. The matter sector is defined by the Lagrangian density
K
L=+/—g (—g(n) — §h‘“’VunV,,n> :

where €(n) is an effective energy density and x > 0 is the gradient-energy coefficient
introduced previously. The projector h*” = g"” + utu” enforces that gradient energy

is spatial in the comoving frame.

Variation with respect to the metric yields the stress—energy tensor

2 oL

T = —— .
V') 5g;u/

Carrying out the variation produces
174 14 174 14 1 v (0% 124
™ = (e + p)u*u” + pg"” + K (V“nV n— ég“ VnV n) + M,

where p(n) = ne'(n) — e(n) is the effective pressure and ©* contains additional



projection terms if one insists on strictly spatial gradients in all frames. In the
comoving frame these reduce to the familiar Korteweg-type stress contributions known
from capillarity and phase-field theory.

Because this tensor is derived from a covariant action, conservation follows from
diffeomorphism invariance,

v, T =0,

provided the matter equations of motion are satisfied. The regulator therefore has a
manifest energetic cost and is not introduced ad hoc. The gradient term modifies both
isotropic pressure and anisotropic stress, with contributions scaling as k?én and k*on
in Fourier space. These corrections will later provide the scale-dependent observational

signature.

11 Well-Posedness and Spinodal Instability

The central mathematical issue is whether the instability mechanism is pathological.
The structure derived above ensures that it is not. The highest-order spatial operator
entering the linearized evolution equation is positive-definite. The apparent “negative
diffusion” arises not from reversal of the leading derivative term but from the sign of
the second variation of the coarse-grained free-energy density.

To make this precise, consider the second variation of F[n| about a homogeneous
background 7,

SF = | 7 (f"(#) (6n)* + k D;6nD'6n) d’x.
¢

The system is linearly stable if and only if this quadratic form is positive-definite.
Instability arises when f”(7) < 0, in which case long-wavelength modes reduce the free
energy. The gradient term proportional to x prevents arbitrarily small-scale growth
and therefore regularizes the ultraviolet sector. The instability band is finite, and the
growth rate is bounded.

This structure is identical in form to relativistic generalizations of spinodal decompo-
sition. The instability reflects loss of convexity of the free-energy density, not reversal
of entropy flow. The regulator introduces a physical correlation length

f ()]

below which the continuum description ceases to support amplification.

0~

10



Because the leading operator remains fourth-order parabolic in the comoving frame,
the initial-value problem is well-posed. If the causal relaxation extension is retained,
the full system is hyperbolic at short times and diffusive only in the late-time limit.

12 Minimal Cosmological Embedding

We now embed the matter sector in a spatially homogeneous Friedmann—Robertson—
Walker background,

ds* = —dt* + a(t)*d7?, u' = (1,0,0,0).

On subhorizon scales, the spatial Laplacian reduces to D? ~ a~2V?. Linearizing about
n(t, @) = n(t) + on(t,¥) yields the growth equation

k? K

Oony, = M (]f”(n)\ — n;) dng — 3Hony.

a?
The instability therefore competes with Hubble damping. Modes satisfying

T (0]

h
phys K

experience amplification, with fastest growth at

k/'2 o ‘f”(ﬁ) ’
phys,x — % .
The preferred physical wavelength
A\ — 2
kphys,*

is directly determined by the regulator scale and the curvature of the free-energy
density. If | f”| and k evolve slowly, the selected scale remains approximately constant
in physical units. If they evolve significantly, the instability spectrum acquires a
calculable time dependence.

This establishes a direct parameter-to-scale map without invoking exponential metric

expansion.

11



13 Interpretive Constraint

At this stage the theory contains no independent entropy field and no ontological
duplication of degrees of freedom. All instability derives from the curvature of a single
effective functional F[n| governing a conserved density. The language of “entropy
vaults” or “crack points” can therefore be translated rigorously into the condition

f” (/ﬁ,) — 0’
which marks the convexity boundary of the coarse-grained free-energy density.

Scalar irruption is thus identified with spinodal phase separation in a relativistic
effective fluid possessing a finite correlation length. The instability is band-limited,

the equations are well-posed, and conservation laws are maintained.

Further structure, including gravitational backreaction and potential scale-dependent
modifications of the scalar perturbation sector, can now be developed on this fixed

mathematical foundation without altering the core conservation structure.

14 Integration into the Five-Engine Plenum Archi-

tecture

Scalar Irruption via Entropic Differential (SIED) does not operate in isolation but
functions as one dynamical engine within a larger plenum architecture. Let the total
plenum dynamics be governed by five coupled operators:

E={G,R,P,Z,N},

where G denotes Gradient Anisotropic Smoothing (GAS), R denotes Deferred Ther-
modynamic Reservoirs (DTR), P denotes Poincar-Triggered Lattice Recrystallization
(PTLR), Z denotes Scalar Irruption via Entropic Differential (SIED), and N denotes
the Neutrino Fossil Registry (NFR).

The full plenum evolution equation may be written schematically as

0ip = G[¢] + R[] + Pl¢] + I[o] + Ng].

12



Each operator modifies the scalar field ¢ in a distinct thermodynamic regime. GAS

contributes diffusive smoothing of the form

Glo] = c*Ago,

DTR introduces delayed entropy injection modeled by a memory kernel K (t):

RIGI(t) = / K(t - r)p(r) dr,

PTLR acts discretely via lattice symmetry recurrence, modeled as a nonlinear projec-
tion

Plo] = La(9),

onto a crystallographic subspace A.

SIED contributes the entropic curvature coupling

IW] - 5¢Ag5-

NFR records fossilized entropy traces through a weak residual operator

Nigl = e /M 0z, 9)é(y) dy,

with e < 1.

Scalar irruption corresponds to regimes in which Z dominates G locally, overwhelming

smoothing.

15 Entropy Vaults and Crack Points

To formalize the “entropy vault” and “crack point” language present in earlier concep-

tual descriptions, define the entropy curvature scalar

Rg = —AQS.

13



A region U C M is said to be an entropy vault if

ks(z) >0 forallz e U,

meaning entropy is locally concave downward and effectively compressed.

A crack point occurs at xyp € M when

Ks(To) > Ke,

for some critical threshold k. determined by

ﬁ(bO’%c = 62-

At such points, the effective diffusion coefficient becomes negative:

Deg = ¢ — Boks.

When D.g < 0, the Laplacian term changes sign, converting smoothing into amplifica-
tion. This defines the mathematical analog of a crack in the plenum.

If Dog < 0 on a non-empty open set U, then there exists a finite time 7" such that
¢r2(v) increases monotonically for ¢ < T'.

Within U, the evolution reduces locally to
O = _|Deff’Ag¢-

Since —A, is positive semidefinite, the operator generates growth in high-frequency
modes. Integration over U shows that the L? norm increases until nonlinear terms
saturate the instability.

16 Relation to Poincar-Triggered Lattice Recrys-

tallization

Consider a scalar field discretized over a lattice A. Let ¢,, denote the scalar at lattice
site n. PTLR acts via recurrence:

14



where recurrence times satisfy Poincar return conditions.

When lattice recurrence induces localized entropy compression, the entropy differential
satisfies

AAS < —Ke.

Thus PTLR may generate preconditions for SIED. Scalar irruption therefore appears

as a secondary instability following recurrence-induced anisotropy.

17 Neutrino Fossil Registry as Memory Operator
Let S(z,t) evolve according to

0,8 = —v¢ + 61, S.

Residual entropy traces after irruption events remain encoded in weakly interacting
fields v(x,t) satisfying

O = eAgv + x9.

These traces serve as fossilized memory of prior irruptions. In linear approximation, v

records integrated scalar amplification events:

t
v(z,t) =~ X/ e =Rz, 7) dr.
0

Thus the Neutrino Fossil Registry mathematically corresponds to a retarded integral
memory kernel.

15



18 Non-Expanding Cosmological Interpretation

Let the metric g be time-independent. The absence of scale factor a(t) distinguishes
this framework from standard cosmology. Structure arises not from background

expansion but from sign inversion in effective diffusion.

Define the comoving scalar density

Total mass is conserved:

d

provided boundary flux vanishes. Scalar irruption redistributes density internally

without requiring metric dilation.

19 Bifurcation Analysis

Consider the parameter family

D()\) = ¢ — ),

with A = Bogks.
The bifurcation point occurs at A = 2.

[Irruption as Pitchfork-Type Instability] Near A = ¢?, the uniform state undergoes a
supercritical bifurcation provided higher-order stabilizing terms are positive definite.

Expand the nonlinear evolution near threshold:
oY = D()‘)Agw + 77¢3-

For D(XA) > 0, perturbations decay. For D(\) < 0, growth occurs until balanced by
the cubic term 1. Standard bifurcation theory yields a supercritical branch of stable

non-uniform equilibria.

16



This establishes scalar irruption as a genuine phase transition in entropic geometry

rather than an arbitrary amplification event.

20 Frame Choice, Diffusive Flux, and Stress—Energy

Consistency

The presence of gradient—driven fluxes requires a clear distinction between bulk motion
and diffusive transport. Without such a distinction, one risks identifying the peculiar
velocity with a constitutive diffusion current, which is inconsistent with relativistic

conservation structure.

20.1 Particle Frame and Energy Frame

Let J* denote the conserved particlee-number current,

v, J" =0

We decompose

JH = nu* + j*,
where v*u, = —1 and u,j" = 0.
The choice of frame determines how u* is defined:
In the Eckart (particle) frame, u* is aligned with J#, so that j* = 0.

In the Landau-Lifshitz (energy) frame, u* is defined by the timelike eigenvector of
T* and j* represents a physical diffusion current relative to the energy flow.

For definiteness, we adopt the Landau—Lifshitz frame. The bulk velocity u* is therefore
determined by the stress—energy tensor, while diffusive effects enter only through j*.

20.2 Constitutive Closure

The regulated scalar sector induces a chemical potential

=5 = f'(n) — kD*n.

I

17



A conservative diffusive closure takes the form
J==-Mhr"V,pu,
where M > 0 is a mobility and
Py = Guu + uyuy,

is the spatial projector orthogonal to u*.

Importantly, 7# modifies the particle current but does not define the bulk velocity.

The bulk velocity remains the velocity appearing in the stress—energy tensor.

20.3 Stress—Energy Tensor with Gradient Regularization

The regulator term must be reflected in the stress—energy tensor if it is to have physical

meaning.

A minimal Korteweg-type stress consistent with the gradient energy is

1
" = (e + p)uru” + pg"” + K <V“nV”n — ig“”vanvo‘n> .

The energy density € and pressure p are derived from the same coarse—grained free—
energy density f(n) to ensure thermodynamic consistency.

With this definition,
vV, " =0

holds provided the scalar sector and diffusion current satisfy their respective conserva-

tion equations.

20.4 Separation of Roles

In this formulation:
The bulk velocity u* governs gravitational dynamics through T+,
The diffusion current j* governs relaxation toward chemical equilibrium.

The regulator xk appears both in p and in T", giving it an energetic interpretation

rather than treating it as a purely kinematic correction.

18



This separation ensures that the cosmological velocity divergence 6 appearing in linear
perturbation theory refers strictly to the bulk motion determined by the stress—energy
tensor. Chemical-potential gradients enter the perturbation system only through
modifications of the effective pressure sector (and, where retained, the anisotropic
stress), rather than through a redefinition of the velocity variable itself. In particular,
no identification of the bulk peculiar velocity ¢ with —Vp is required or assumed at

any stage of the derivation.

With this structure fixed, the scalar perturbation equations may be derived in longitu-

dinal gauge without ambiguity.

21 Linear Scalar Perturbations in Longitudinal Gauge

We now analyze scalar perturbations about a spatially flat Friedmann—Robertson—

Walker background. In longitudinal gauge, the perturbed metric takes the form
ds® = — (14 2®)dt* + a(t)*(1 — 2V)6;da'da?

where ® and ¥ are the Bardeen potentials.
The conserved particle-number current is written
JH = nut + J*,
with u* = (1 — ®, U/a) to first order, and J* orthogonal to u*.
We decompose the density as
n(t, @) = n(t) + on(t, ),
and define the density contrast

on

n

J

21.1 Perturbed Chemical Potential

The chemical potential derived from the functional is

pw=f(n) —kD*n.

19



Expanding to first order yields

Su = f"(n) 6n — ka *V?on.

In Fourier space, this becomes

k’2
o, = f"(n) dny, + m?(mk.

Note that the gradient correction modifies the effective sound-speed sector in a
scale-dependent way.

21.2 Perturbed Conservation Law
The conservation equation V,J* = 0 gives, to linear order,

o1 .
0+ -V -v—-3¥=0.
a

The spatial components of the current define the velocity perturbation. Using the
constitutive relation

J'=—MhIV,pu,

we obtain M
v=——Vou.
n
In Fourier space,
M —
17k = —T’ikéuk.
n

Substituting into the continuity equation yields

ME?

5k+3\ifk:— o=
an

Inserting the expression for dpuy gives

a?

- : ME? k?
(Sk + 3\Ifk = — (f’l(ﬁ) (Sk + K,?(Sk) .

20



21.3 Modified Euler Equation

The perturbed Euler equation follows from spatial projection of V, T*” = 0. Including
the Korteweg stress, one obtains

. 1 1
U+ HU = —-V® — —Vpes,
a an

where the effective pressure perturbation is

2
Opet = c29p — n0n,

with ¢2 = dp/dp evaluated on the background.

The gradient term contributes a k2-dependent correction to the pressure perturbation,
and hence to the effective sound speed.

22 Effective Growth Equation

Combining the continuity and Euler equations in Fourier space yields a second-order
equation for dy,

) . 2);2 kM
Or + 2H 61, + (CS 47TGp> 5k+%¥€6k20'

a?

The additional £* term is the signature contribution of the regulator. It modifies the
Jeans instability criterion. The modified dispersion relation in the subhorizon limit

becomes
2 k,4
W= —4nGp+ a—,
a? at

where « collects constants proportional to x and M.
This implies three important structural consequences.

First, small-scale modes are stabilized by the k* term even when ¢ < 0 in the spinodal
regime. The ultraviolet sector remains controlled.

Second, there exists a finite band of unstable modes determined by the condition

2 2
0< kphys < kcrit’

21



where

2 —
s ek 167Gpa
kait = 5, <1+ 1+T :

Third, the fastest-growing mode occurs at a calculable scale depending explicitly on k.

23 Observable Consequences

The presence of the k* regulator modifies the transfer function at high wavenumber.
In contrast to standard ACDM, which predicts a smooth power-law falloff modulated
by baryon acoustic oscillations, this model predicts a sharp suppression beyond a
regulator-controlled scale.

The two-point correlation function acquires a modified small-scale cutoff determined by
k. If k evolves slowly, this cutoff remains approximately fixed in physical coordinates,
unlike horizon-driven inflationary scales which are tied to expansion history.

Furthermore, the regulator induces scale-dependent anisotropic stress. In general,
d— U £0,

even in the absence of free-streaming radiation. This provides a direct observational
wedge via weak lensing measurements, since lensing depends on the combination

O+ .

The instability spectrum therefore produces three potential empirical discriminants: a
preferred physical clustering scale, a high-k suppression distinct from cold dark matter
transfer functions, and a scale-dependent anisotropic stress signature.

24 Structural Summary

The model is now expressed as a closed relativistic fluid with

V=0, V7" =0,

a coarse-grained free-energy functional with regulated second variation, and a gravita-
tional coupling determined by explicit stress—energy contributions.

22



The instability mechanism is mathematically equivalent to relativistic spinodal decom-
position with a finite correlation length. The negative diffusion language is replaced
by loss of convexity of the free-energy density. The ultraviolet sector is controlled by
a gradient-energy regulator that produces a calculable £* correction to the dispersion
relation.

At this stage, the theory makes falsifiable predictions at the level of the linear matter
power spectrum and gravitational slip.

24.1 Matter-Era Transfer Function with Gradient Regulator

We now compute an explicit, asymptotically controlled modification of the linear matter
power spectrum arising from the regulator term k.g in the conservative Korteweg
sector.

Working in the longitudinal gauge and restricting to the matter-dominated era with
w~0,V~®, and ¢ ~ 0, the subhorizon scalar perturbations satisfy the standard
continuity—Euler system with a modified pressure sector. Incorporating the gradient

regulator through
Reff kz
a2

Spr = C2p Ok + P Ok,

the combined growth equation becomes

. X 2k2 k‘4
S + 2H8 + <C;2 + - 47er> 5 = 0.
In matter domination,
2 2
a(t) oc 7, 3 nGp =2

Substituting these relations gives

- 4 . Kok 2
b N (JALC U I
k+3tk+< a? 3t2> k=0,

where we have neglected the ordinary sound speed term c? for clarity in the dust-like

limit.

23



Large-Scale Regime

For sufficiently small comoving wavenumber k, the regulator term is negligible com-

pared to the gravitational term. The equation reduces to

. 4 . 2
O0p + =0k — =50, =0
kT 310 T 30k )
whose growing solution is
D(k,a) x a.

Thus on scales k < kj(a) the growth is indistinguishable from Einstein—de Sitter
evolution.

Regulator-Dominated Regime

For sufficiently large k, the regulator term dominates over gravity. The equation

becomes

I{eff/{,A

51§+2H(;k—|— 0 ~ 0.

at

4 while H? o< a3, the restoring term dominates at early times

Because kegk?/at oc a™
for fixed k. Growth is therefore suppressed once the regulator overtakes gravitational

instability.
Define a,, (k) as the scale factor at which

Reff ]C4

4
on

= A7 Gp(acy).

Using p o< a3 in matter domination, we obtain

4 on
Qon

which implies
Aoy < k4

Modes that enter the regulator-dominated regime early cease growing at a,,. Their
late-time growth factor therefore satisfies

D(k, Gioday) X Aon(k) oc k™%

24



Asymptotic Transfer Function

Define the transfer function relative to standard matter-era growth as

D
T,i(k?) _ n(ka atoday) ‘

Atoday

Then asymptotically,
T.(k) — 1 for k < k.,

and
T.(k) < k=% for k> k,,

where £k, is the regulator scale determined by Keg.

A smooth analytic interpolation consistent with these limits is
K\

The matter power spectrum therefore becomes
Py(k,a) = Poim(k) T, (k)? a?,
which yields the asymptotic behavior
Po(k) < k™ (k < k),
and

P.(k) occ k™% (k> k).

Physical Interpretation

The gradient regulator introduces a calculable high-k suppression that steepens the
power spectrum by an additional 58 factor relative to the primordial tilt in the
conservative matter-era approximation. This suppression arises from a scale-dependent

effective sound speed
/CZ
Cgﬂ“(ka CZ) = Heff?v

25



which defines a modified Jeans criterion

2 12
cogk

~ 41Gp.

The resulting cutoff scale is therefore directly tied to the regulator parameter k.q and
admits an explicit parameter-to-spectrum mapping.

24.2 Gauge-Invariant Treatment via the Mukhanov—Sasaki
Variable

We now recast the regulated scalar sector in a manifestly gauge-invariant form. This
serves two purposes. First, it eliminates any ambiguity about whether the earlier
longitudinal-gauge calculation has inadvertently conflated gauge artifacts with physical
growth. Second, it identifies precisely where the gradient regulator enters the canonical
action and therefore how it must modify the mode equation for scalar perturbations.

We work on a spatially flat FRW background
ds® = —dt* + a(t)*d7?,

and we consider scalar perturbations of a single effective fluid degree of freedom whose
microphysics is encoded by a pressure functional that depends not only on the density
but also on spatial gradients of a conserved scalar, such as number density n or energy
density p. In the conservative Korteweg closure, this dependence produces, at linear
order, a scale-dependent pressure perturbation of the schematic form

Reff
(12

Ope = €3 0p + —5 K Spi, (18)

where ¢? is the usual adiabatic sound speed and ke > 0 is the regulator parameter

(with dimensions of length squared) descending from the gradient-energy coefficient in
the underlying coarse-grained functional.

Gauge-invariant curvature perturbation and effective sound speed

Let R denote the comoving curvature perturbation. For a single adiabatic degree

of freedom and negligible anisotropic stress at leading order, the standard quadratic
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action can be written in conformal time 7 as

5 =3 [dndssn? (R = e(TRY] . (19)

where primes denote d/dn and

20> H
Z2 = % Wlth € = —m7 (20)
ad

in the canonical single-field case. In the present effective-fluid setting, it is more robust
to regard z(n) as the standard background function determined by p + p and the
adiabatic sound speed c¢2; = p/p, while the regulator modifies the gradient sector by
replacing the constant sound speed with a scale-dependent effective sound speed.

To see this explicitly, note that implies, for Fourier modes, the closure

]C2
opr = cog(k,m) dpr, c2g(kym) = c2(n) + Reft e (21)

The key point is that the regulator contributes only through the spatial-gradient sector
of the quadratic action; it does not alter the definition of R, and it does not require
any gauge choice to be stated.

24.3 Covariant Scalar Perturbations with Gradient Energy

We now construct the scalar perturbation sector directly from the covariant stress—
energy tensor derived earlier, in order to isolate precisely how the gradient regulator

enters linear cosmological dynamics.

We work on a spatially flat Friedmann-Robertson-Walker background
ds® = —dt* + a(t)?*5;;dx"da? u' = (1,0,0,0),

and perturb both the metric and the conserved density n by scalar modes.

The perturbed metric in general scalar form may be written
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The conserved density decomposes as
n(t, @) = n(t) + on(t, ),
and the four-velocity acquires a scalar perturbation through

u, = (—1—A, adyv).

The stress—energy tensor derived from the regulated Lagrangian contains two contri-
butions: the perfect-fluid part and the gradient-energy (Korteweg) sector. At linear
order, the density and pressure perturbations take the form

dp = €'(n) on, op = ne”(n) on,
while the gradient contribution yields an additional term proportional to spatial
derivatives of on.

Explicitly, from
Reff

2
the linearized pressure perturbation becomes

L=—e(n)—

"NV, n,

Ke
opr = cg opr + af k* S pp.,
where o
»_ Op _ ne'(n)
=7 = .
* 0p  €(n)

The regulator therefore enters exclusively through a k?-dependent correction to the
pressure perturbation. No additional propagating field appears, and the number of

scalar degrees of freedom remains unchanged. The effect is entirely constitutive.

Furthermore, because the gradient energy arises from a covariant Lagrangian, the
modified pressure sector respects energy—momentum conservation,

v, =0,

ensuring that the perturbation equations derived from the Einstein equations are

mutually consistent.

At this stage, the regulator has been shown to modify the linear scalar sector through
a scale-dependent pressure term without introducing gauge artifacts or additional
dynamical variables. We may now pass to a manifestly gauge-invariant description to

28



identify the canonical variable governing scalar perturbations.

Mukhanov—Sasaki equation with regulator

Define the Mukhanov—Sasaki variable v = zR. Varying yields the mode equation

2_2

1
vy + (czﬁ(k, n) k ;) v =0, (22)

with % given by . Substituting into exhibits the regulator as an explicit

k* contribution:

N N k4 Z”
1
U+ (Cs<77) k™ + Heﬁ—a(n)z - ?) v = 0. (23)

Equation is the gauge-invariant counterpart of the growth equation derived
earlier in the subhorizon matter-era approximation. The new content here is not the

functional form, which is the same, but the status: the k* term is now manifestly
physical because it appears in the canonical action for the gauge-invariant mode.

Hamiltonian Positivity and Absence of Ghosts

Before analyzing subhorizon behavior, it is important to verify that the regulator does
not introduce pathological degrees of freedom at the quadratic level. Because the
modification enters through the spatial-gradient sector of the action , the kinetic

structure remains unchanged.

From ((19) with scale-dependent sound speed,

1 (V2v)2 2"
S 5 /dnd x |:U <cs(7])(VU) + Keff (77)2 > v s

where we have used v = zR and integrated by parts to make the spatial operators
explicit.

The canonical momentum is

Ty =10,
so the Hamiltonian density becomes
L, 17, 2 (V20)? 2",
H= 57 + 3 (cs(n)(Vv) + Keff )2 -V
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The regulator contributes a positive-definite quartic-gradient term provided

Keft > 0.

Thus the highest-derivative spatial operator in the quadratic Hamiltonian is strictly
positive. In Fourier space the gradient sector contributes

1 k4
5 (CikQ + /‘ieﬁ‘g) |Uk»|27

which grows as k* for large k.

Two consequences follow immediately.

First, no Ostrogradsky instability arises, since the action remains first order in time
derivatives and higher order only in spatial derivatives. The kinetic term is canonical
and positive-definite.

Second, the ultraviolet dispersion relation satisfies

/{34
2
Wi, ~ Fdeffﬁ as k — oo,

so w? — 400 in the ultraviolet. The regulator therefore enforces hyperbolic well-
posedness and prevents runaway growth at arbitrarily small scales.

Any instability that occurs must therefore arise from intermediate scales where the
effective mass term or ¢ becomes negative, rather than from the highest-derivative

operator. The theory remains ultraviolet stable by construction.

25 Assumptions and Regime of Validity

The construction presented above defines a regulated scalar sector embedded in a
relativistic fluid background. In order to prevent overinterpretation of the linear

analysis, we collect here the precise assumptions under which the derivations hold.

The free-energy functional and its gradient regularization are treated as an effective
description valid at scales larger than a microphysical correlation length ¢, with
Keg ~ (? arising from coarse-graining. The derivative expansion is truncated at
fourth order in spatial gradients, corresponding to the k* term in Fourier space. No
higher-derivative operators are retained in the minimal core.
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The background spacetime is taken to be spatially flat FRW with metric
ds? = —dt? + a(t)*dz?,

The linear perturbation analysis assumes that the amplitude of scalar perturbations
remains sufficiently small that quadratic truncation is valid. The WKB interpretation
of the mode equation applies when the effective frequency wy(n) varies slowly compared

to the mode period, i.e.

< 1.

!
Wi

When a finite spinodal interval a,,, < a < a.g is invoked, the sign of cg(a) is assumed to
be negative only within that interval and positive outside it. The regulator parameter

ke 1s assumed positive and slowly varying relative to the Hubble timescale.

Radiation, multi-fluid couplings, baryonic acoustic physics, and non-linear mode
coupling are not included in the minimal conservative core. These effects may modify
quantitative predictions but do not alter the structural band-limitation mechanism
derived from the k* regulator term.

Subhorizon limit and matching to the matter-era growth equation

On subhorizon scales, and in epochs where 2”/z varies slowly compared to the mode
frequency, admits a WKB interpretation with effective frequency
k4 Z”
2 _ 2 2
w =c kK + Kep—— — —. 24

k(n) 5(77) ffa(n)Q - ( )
In the dust-like matter era, one typically has ¢> ~ 0 and 2”/z ~ a>H? (up to order-one
factors). Thus the regulator dominates the gradient sector at sufficiently large k,
producing a scale-dependent stiffening that prevents gravitational growth. In the
complementary regime of small k, the k* term is negligible and one recovers standard
growth.

If one wishes to connect directly to density contrast evolution, one may use the usual
subhorizon relations between R, the Newtonian potential, and § in a specified matter
model. The important structural claim, however, is already contained in : the
regulator induces a k* term in a gauge-invariant equation of motion, and therefore
any high-k suppression or band-limitation derived from it is not a gauge artifact.
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Mapping to Density Contrast in the Subhorizon Regime

Although equation is written for the gauge-invariant variable v = 2R, the
observable matter power spectrum is expressed in terms of the density contrast §. It is
therefore useful to make explicit the relation between R and § in the regime relevant

for structure formation.

On subhorizon scales during matter domination, the comoving curvature perturbation
R is related to the Newtonian potential ® by

Rg—q>—%(¢>+Hq>).

In the quasi-static limit appropriate to growing-mode evolution in a dust-like era, P ~0
and R becomes approximately constant for modes well outside the regulator-dominated

band.
For subhorizon modes satisfying k£ > aH, the Poisson equation gives

/{Z2

Hence
k2

Op ¥ ———
F AnGpa?

Dy
Since @, is algebraically related to R, in this regime, any modification of the mode
equation for R, induced by the k* regulator term propagates directly into the evolution
equation for 0. In particular, when the regulator stiffens the dispersion relation so
that v ,
2 22 <

wi = k™ + Reft 5 = —

becomes positive and large for sufficiently high £, the associated suppression of v

implies suppression of @, and therefore of dy.

Thus the scale-dependent regulator imprint in is not confined to curvature
variables but directly modifies the density-contrast growth law in the subhorizon

regime.

Interpretive consequence

The conservative gradient regulator can therefore be stated in the most reviewer-legible
way as follows. The instability or growth properties of the scalar sector are encoded by
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the sign structure of w?. The regulator ensures ultraviolet well-posedness by enforcing
w? — 400 as k — oo at fixed 7, since the leading term is k.gk?/a* with kg > 0.
Any intermediate-scale growth regime, whether gravitational or spinodal in origin, is
therefore necessarily band-limited and cannot run away to arbitrarily high wavenumber
within the linear theory.

This completes the gauge-invariant reformulation of the regulated scalar sector and
provides a canonical bridge between the fluid-level closure and an explicit, testable

modification of the scalar perturbation mode equation (23]).

26 Regulated Transfer Function and High-k£ Tail

in the Linear Power Spectrum

This section derives the simplest observable consequence of the regulated model: an
explicit, parameter-controlled suppression of small-scale power. The purpose is not to
claim a full ACDM-quality Boltzmann solution, but to exhibit a distinctive asymptotic
tail that follows directly from the k.g-regularization and therefore cannot be removed
by rephrasing the interpretation. The derivation is carried out under a controlled set

of approximations and then translated into a transfer-function statement for P(k).

26.1 Set-up: conservative perturbations with a gradient-stress

closure

We work in longitudinal gauge with scalar potentials ® and ¥, and we assume vanishing
vorticity. The bulk velocity is encoded by the usual divergence variable § = a='V - 7.
The governing linearized fluid system in Fourier space takes the standard form

op = —(1+w) (0 — 3%y) — 3H (%’“ — wék) , (25)
. l{;2 5pk k2
O, = —H(1 —3w)0; + P (@k + m) 2k (26)

where overdots denote derivatives with respect to cosmic time ¢, w = p/p, and oy
is the scalar anisotropic-stress potential. The conservative regulated closure enters
through 0py (and optionally o) derived from a Korteweg-type gradient energy. In
the minimal conservative core one takes o, = 0 and adopts a scale-dependent pressure
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perturbation

Reff
CL2

Spy = 2 p oy + k* p oy, (27)

where ¢? is the usual adiabatic sound speed (possibly time-dependent), and keg > 0 is
a length-squared parameter encoding the energetic cost of gradients in the conserved
density. The sign and magnitude of kg are part of the model definition; keg > 0 is
the ultraviolet regulator ensuring that the highest-derivative contribution to the linear
operator remains stabilizing.

26.2 Subhorizon reduction and the modified growth equation

To isolate the small-scale transfer tail, we take the subhorizon quasi-static limit in the
matter-dominated era, which is the simplest regime where analytic asymptotics are
clean. Concretely, we set w ~ 0, dy ~ 0, U), ~ d;, and use the Poisson equation

]CZ
?@k ~ 471G p Oy, (28)

With o4, = 0 and (27)), equations (25)—(26]) combine into a second-order equation for
0. Differentiating and substituting yields, after standard algebra,

21.2 4
cik Ketk
SR
a a

O + 2H o, + ( — 47er) 6 ~ 0. (29)
Equation is the conservative, frame-clean statement of the regulated linear theory.
The k*-term is not introduced as diffusion; it is the linear imprint of a gradient-energy
contribution to the stress. It therefore modifies the growth of density fluctuations by
introducing a scale-dependent restoring force that becomes dominant at sufficiently
large comoving k.

26.3 A modified Jeans scale and a finite instability window

A convenient way to summarize the competition between gravity and gradient regu-
larization is via an effective squared sound speed,

2
2 2
cig(k,a) =+ Reft - (30)
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The instantaneous Jeans criterion compares the pressure-restoring term to gravity:

Cgff(ka CL) k2

S 2 4nGp. (31)

Defining the critical comoving Jeans wavenumber k;(a) by equality gives an explicit
quadratic equation in k% /a?,

k2 k4
(ﬁa—j + ffeffa—i = 4rGp, (32)

whose physically relevant solution is

k%(a) _ =2+ \/ct + 16TGP Kegt
S :

(33)

a 2K

When ¢ > 0, simply defines the scale above which gravitational growth is
suppressed. When a finite spinodal epoch is permitted, meaning that c?(a) < 0 for
Gon < @ < Qof, the same expression shows a structurally important feature: ultraviolet
stability is preserved by keg > 0, but an intermediate band of modes can become
unstable because the negative c¢?>-term drives growth at moderate k while the positive
k*-term stabilizes sufficiently large k. In other words, the regulated theory can
support an “irruption band” without backward-parabolic pathology; the band edges
are determined by and are finite whenever kg > 0.

26.4 Matter-dominated high-kt asymptotics and power sup-

pression

We now extract the high-£ behavior of solutions to during matter domination.
In an Einstein—de Sitter background one has

2 1
t ¢33 H=— 0= ———.

a7 (34)

For sufficiently large comoving &, and outside any finite spinodal interval, the regulator
term dominates the bracket in (29):

K/eﬂkA
4

a

Op + 2HS, +
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It is convenient to pass to conformal time 7 defined by dn = dt/a(t), and to denote

d/dn by primes. Using H = d’/a and (-) = a='(-)’, equation becomes

k4
(S]Z + Hd]; + /ieffp 5kz ~ 0. (36)

In matter domination one has a(n) oc n* and H = 2/n. Writing a(n) = a,(n/n.)? gives

2 kE* (n, !
(S[Z + 562 + Heﬁa—z <ﬁ) 6]€ ~ (. (37)

Define the rescaled variable d(n) = ug(n). A direct computation yields

o\ 2
i i | —] —= ~ 0. 38
“’“L(“Hai(n) 772)”'“ (38)

For large k the =% term dominates over 2/n? except at very late times. In that regime
the leading-order equation

k2 (2
A 00, o) = v (%) (39)

is an adiabatically varying oscillator. The WKB approximation applies, giving

we(1y) ~ ﬁ [(Jl exp(i / " (i) dﬁ) 4Gy exp(—i / " (i) dﬁ)} o (40)

Since Qx(n) o< 2, the phase integral converges:
n ~ ~ k? ) n o k,2 ) 1 1
() dy = Vhew —ni [ 77" di) = V/Fe 1), o) (41)

for some initial time 7;,. The amplitude factor satisfies Q,;l/ ? 7, hence ug(n) grows
at most linearly in 7, while &(n) = n~'u(n) approaches a bounded oscillatory profile.
This establishes the essential tail statement: sufficiently high-k modes do not undergo
gravitational growth in the matter era; their growth is shut off by the regulator, and
their amplitude is asymptotically bounded (up to slow envelope corrections coming

from the neglected —2/n? term and from any small physical viscosity).
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26.5 Transfer-function form and the asymptotic suppression

law

To translate this into a power-spectrum statement, define the k-dependent growth
factor Dy (k,a) as the amplitude of the growing mode of §; normalized to unity at
some early reference scale factor a; in matter domination. Then the linear matter

power spectrum may be written as
Pk, a) = Porim(k) | T (k) |* D (K, a), (42)

where T, (k) contains pre-matter-era processing (or, in a minimal comparison, may
be set to unity if one begins evolution at a; deep in matter domination). The novel
content in the regulated model is that D,(k,a) becomes scale dependent even in

matter domination.

Equation (29) and the asymptotics above imply the following robust two-regime
behavior. For k < k;(a), the regulator is negligible and one recovers the standard
growing mode D, (k,a) ~ a/a; up to small pressure corrections. For k > k;(a), the
regulator dominates and the growth factor saturates,

D.(k,a) ~ D.(k,ass) for k> kj(a), (43)

where ag,y is the epoch at which the k*-term overtakes the gravitational term in
for that mode. As a consequence, relative to an unregulated matter-growth law

Dggs(a) = a/a;, one obtains a high-k suppression

Pu(k,a) (Dﬁ(k,a

)\ . .
Pras(k, a) a/a; ) <1 for k> k(a), (44)

with k,(a) given explicitly by (33)). This is the key reviewer-legible wedge: the model
predicts a regulator-controlled cutoff whose functional form is set by kg through
, producing a characteristic small-scale suppression distinct from collisionless
CDM unless additional microphysical parameters are introduced to mimic the same
k-dependence.

In the next section we will treat the finite spinodal interval a,, < a < aqg in which cg(a)
becomes negative while ke > 0, and we will show that the same conservative scaffold
yields a bounded instability band with calculable band edges and a fastest-growing
comoving wavenumber. That refinement turns “suppression” into “irruption” in the

strict dynamical sense, while preserving well-posedness and ultraviolet control.
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27 Finite Spinodal Window and Band-Limited Ir-

ruption

We now consider a finite interval in which the effective adiabatic sound speed becomes

negative while the regulator remains strictly positive. Concretely, let
(a) <0 for ey < a < dog, ket > 0 for all a. (45)

Outside this interval the system is linearly stable (modulo gravitational Jeans growth).
Inside the interval the compressibility becomes negative and a regulated instability

can occur.

Starting from the conservative growth equation obtained previously in matter domi-

nation,
A(a) k? N Heff4k4
a

a?

5}4 + 2H(5k + < - 47TG/3> 0 = 0, (46)

we first isolate the intrinsic instability by neglecting the gravitational term and

restricting attention to subhorizon modes during the spinodal window. Equation (46])

reduces to 2( ) 12 1
B + 2H3, + <C$(a3 4 ) 5 = 0. (47)
a a
Define
Ala) = —c2(a) >0 on (aon, doft)- (48)

Then the effective squared frequency is

wB(a) = ~Afa) k N Kotk ‘ (49)

a? at

Instability occurs when w?(a) < 0, i.e.

ikt Ala) 2
freft < (CL) .

at a? (50)
Cancelling a factor of k?/a® gives the band condition
K A
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Hence unstable modes satisfy

0 <k < kmax(a), k2. (a) = a‘. (52)

The ultraviolet sector remains stable because the k* term dominates for sufficiently
large k.

To determine the fastest-growing mode, approximate the growth rate (ignoring Hubble
friction when subdominant) by

Ala) k* Kok

o) BT e (53)
Maximizing with respect to k,
8 AkQ Iieff]{?4 2Ak 4I£effk3
B el = — =0 b4
ok ( a? a* ) a? a* ’ (54)
which for k # 0 yields
A(a)
k%(a) = 2,
Ho) = 5 (55)
The corresponding physical wavenumber is
k2 Ala)
2 *
kphys,*<a) = E = 2/feff . (56)

If A(a) is approximately constant across the interval, the instability selects a fixed
physical length scale
2 2Keft

A = =27 )
kphys,* A

(57)

The finite duration of the spinodal window implies that only modes satisfying the
band condition for a nonzero time interval undergo amplification. The approximate
accumulated growth exponent is

toft
Iy = /
ton

so that modes near k, receive maximal enhancement, while modes near the band edges

\/ A E perk? H] dt, (58)

a? a*

are marginal.

The resulting late-time power spectrum therefore acquires a feature centered near
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k. whose width and amplitude depend on the depth and duration of the negative-c?
interval. Throughout the evolution the highest spatial derivative remains fourth order
with positive coefficient kg, ensuring well-posedness and ultraviolet control.

28 Combined Jeans—Spinodal Instability Structure

We now restore the gravitational sector and analyze the full linear growth equation
during the finite spinodal interval. Starting from

. . 2 k2 k’4
b + 2H8 + <Cs(a§ TRLE 47TG;3) 5 =0, (59)
a a
we again define
A(a) := —c*(a) > 0 for Aon < @ < Qo (60)

Inside the spinodal window, the effective frequency becomes

A(a) k*  Kegk® _
wi(a) = — (az + §4 — A7 Gp. (61)

Instability occurs when w?(a) < 0, i.e.

ketk?  A(a) k2 _
_ <a§ — 4xGp < 0. (62)

at
Multiplying through by a* gives the quartic inequality
kexk® — A(a) a®’k* — 47Gpa* < 0. (63)
Define x := k%. The instability condition becomes a quadratic inequality

KegZ® — A(a) a’z — 4rGpa* < 0. (64)

The corresponding quadratic equation

Kegt® — A(a) a’xr — 4nGpa* =0 (65)
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has roots

Ala) a®* & \/A(a)?a* + 167G ke a*
2/€eff '

zy(a) = (66)

Since x = k% > 0, instability occurs for

r_(a) < k* <z (a). (67)

One finds that x_(a) is negative (because the constant term is negative), so the
physical instability band is
0 < k? < 24(a). (68)

Thus the upper band edge is

A(a) a® + \/A(a)?at + 167Gp ke a

k2 = 69
(@) - (69)
Two limiting regimes are instructive.
Weak Gravity Limit
If
167G p ke < Aa)?, (70)
then 4
) » D 2 ()
Reff
which reproduces the purely spinodal band derived previously.
Strong Gravity Limit
If instead
167G P ke > Ala)?, (72)
then

—
Bunla) a2y [ L. (73)

In this regime, gravity enlarges the unstable band relative to the pure spinodal case.
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Fastest Growing Mode

To identify the fastest growing mode, approximate the instantaneous growth rate
(neglecting Hubble friction for subhorizon modes) as
Ala)k?  Kegh!

vi(a) = 4rGp + o (74)

Differentiating with respect to k and setting to zero yields

i 2A(0)k  Akegk®
ok a2 at

0, (75)

so that Ala)
a
kX (a) = —=d’. 76
Remarkably, the fastest-growing comoving mode is independent of the gravitational
term at leading order; gravity shifts the band edges but does not shift the location of

the maximum of the quadratic-minus-quartic structure.
The corresponding physical wavenumber is

2 _ Ala)

phys,x ™

) 7
ST (77)
so a constant negative compressibility across the spinodal interval produces a fixed
physical irruption scale.

Interpretation

The combined system therefore exhibits a bounded instability band whose upper edge
is modified by gravitational coupling but whose intrinsic scale selection is governed by
the ratio A(a)/keg. Ultraviolet stability is preserved by the positive fourth-order term,
while infrared behavior is controlled by gravitational amplification. The instability
is therefore neither pure Jeans collapse nor pure phase separation, but a regulated
hybrid mechanism with calculable band structure and a well-defined fastest-growing
mode.
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29 Dimensional Analysis and Characteristic Scales

The regulator parameter kog has dimensions of length squared. In natural units with

c=1,

[Heﬁ] = L2€ ~ /) Reff.

In the presence of an effective sound speed 2, the characteristic physical wavenumber
at which the gradient regulator balances the pressure sector is determined by
2

27.2 4 2 |ez] 2m Keff
Cskphys ~ I{eﬂ‘kjphys7 kphys,* ~ Reff A* ~ kphys,* ~ 27T ‘c§| ’

During a spinodal epoch in which ¢? < 0, this same relation determines the fastest-
growing physical mode in linear theory. In the conservative FRW embedding, the

comoving fastest mode evolves according to

K2(q) = a2l2@)

2Kerr

The modified Jeans condition,
k2 k4 = k*
L+ ety = ATGP, Wi ~ Koz — 400,

These relations demonstrate that the instability scale is not arbitrary but controlled by
the ratio |c2|/kex and by background density. Observable structure therefore encodes
regulator and compressibility parameters directly.

30 Phase Structure and Transition to Lamphron—

Lamphrodyne Regimes

The regulated spinodal analysis of the preceding section establishes that scalar growth
arises from a finite instability band determined by the curvature of the coarse-grained
free-energy functional and the ultraviolet regulator keg. In particular, the instability
condition is governed by the sign of the second variation of the effective thermodynamic
potential and remains dynamically well-posed due to the fourth-order stabilizing term.
The fastest-growing mode is fixed by the ratio A(a)/keq, and the ultraviolet sector
remains damped for all parameter values with keg > 0.

The lamphronlamphrodyne refinement that follows does not introduce a new dynamical

ingredient but rather recasts the previously derived instability structure in a local
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geometric formulation. Specifically, the quantity
X = —BAGS

is a curvature-dependent effective mass contribution that can be interpreted as the
local projection of the second variation of the entropy functional onto the scalar sector.
Within the regulated framework, x encodes the sign of the entropic compressibility at
a given spacetime point.

During epochs in which the coarse-grained compressibility is positive, corresponding to
f” > 0in the density formulation or equivalently to x < 0 in the curvature formulation,
the system lies in the lamphron regime. In this phase, the principal part of the effective
linear operator remains parabolic, and all Fourier modes outside the gravitationally
allowed Jeans window are damped. The regulator enforces ultraviolet control, and the
homogeneous configuration is linearly stable.

When the system enters the finite spinodal interval a., < a < aqg, the compressibility
becomes negative in a bounded epoch. In the curvature formulation this corresponds
to the emergence of regions in which y > 0 on a set of nonzero measure. These regions

define lamphrodyne domains. The local operator
ﬁeﬁIC2Ag+Oé+X

then acquires an indefinite second variation in those domains, but the highest-order
term remains elliptic because ¢ > 0 and keg > 0 at the level of the conserved density
dynamics. Consequently, the transition is not a literal backward-parabolic pathology;
it is a controlled sign inversion in the lower-order sector embedded within a fourth-order
parabolic scaffold.

The distinction between lamphron and lamphrodyne states therefore corresponds
precisely to whether the local entropy curvature drives the system toward convex
free-energy behavior or into a concave spinodal regime. In the density formulation
this is expressed by the sign of f”(n); in the curvature formulation it is encoded by
the sign of y. The two descriptions are mathematically equivalent provided S = S[p]
is understood as a coarse-grained functional of a conserved density.

This reformulation permits the lamphron—lamphrodyne dichotomy to be interpreted
as a phase transition in the effective thermodynamic geometry of the scalar—vector—
entropy system. The band-limited instability derived earlier supplies the global spectral
structure, while the lamphrodyne definition identifies the local geometric criterion for
the onset of growth. The regulator scale k. ensures that any such transition preserves

44



well-posedness and prevents ultraviolet divergence.

We now introduce the lamphron and lamphrodyne states explicitly as dynamical
phases of the regulated scalar—entropy system.

31 Equivalence Between Scalar—Entropy and Con-

served Density Formulations

The regulated spinodal construction was formulated above in terms of a conserved

scalar density n (or p) with a coarse-grained free—energy functional
Fln] = / VY (f(n) + gDinDin> dz,
pI

with associated chemical potential

=5 = f'(n) — kD*n.

1

The instability criterion was shown to be governed by the sign of the second variation,
§PF = / (f”(ﬁ) (6n)? + /iDiénDién) ,

with spinodal growth occurring when f”(n) < 0 while £ > 0 maintains ultraviolet
control.

We now demonstrate that the scalar—entropy formulation introduced later is not an
independent dynamical hypothesis but a reparameterization of this same structure.

31.1 Scalar Reparameterization

Let ¢ denote a monotone function of the conserved density,
¢ = ®(n), ®'(n) > 0.
Under such a transformation, the gradient term becomes
DinD'n = %D@D%,

(®'(n))
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and the free—energy density transforms as

fo) = 7o) Fo) =g

The functional can therefore be rewritten entirely in terms of ¢:

Flo] = /E Vi (f(¢) + @D@m) d’x,

with
K

(®'(n))*

Thus the scalar field ¢ inherits both the metastable curvature structure and the

R(9) =

regulator from the density formulation.

31.2 Entropy Functional Interpretation

If one introduces a coarse—grained entropy density S(¢) and defines an effective
Helmholtz functional

Fie)= [ (U(e) - TS(6) + 5Di0D's).

then

and the instability criterion becomes

f//((g) — U//((b) . TS//(¢) < O

The sign reversal responsible for irruption is therefore the negativity of the entropy—

modified compressibility, not a reversal of the highest—order spatial operator.

31.3 Equivalence of Linearized Growth Rates

Linearizing either formulation about a homogeneous background yields

K2 k4
056 = 11 (11"@1%; — vk ) 50

at

which is identical to the dispersion relation obtained from the density formulation.
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The lamphron—lamphrodyne refinement that follows should therefore be understood
as a geometric re-expression of the same regulated spinodal structure, not as the
introduction of new degrees of freedom.

32 Korteweg Stress and Conservative Gradient En-

ergy

The regulator introduced through the gradient term in the free-energy functional must
appear consistently in the stress—energy tensor if the model is to remain conservative
and covariantly closed. In this section we make that identification explicit and derive
the corresponding modification of the scalar perturbation sector.

We begin from the spatially projected free-energy functional on hypersurfaces orthog-
onal to u”,

Fln] = /Et VY (f(n) + gDinDin> d’z,

where D; is the spatial covariant derivative defined through the projector

iy = Guv + uyu,.

To incorporate the gradient regulator at the level of gravity coupling, we promote the

gradient term to a covariant contribution in the matter Lagrangian density,
K
L=v—g [P(n) - §h‘“’vunvyn} .

Varying with respect to g,, yields a stress—energy tensor of Korteweg type,

proj’

1
T = (e + p)uru” + pg"” + K (V“nV”n — Eg“”vanvan) + I

where ngyoj enforces orthogonality to u* if one insists on strictly spatial gradients in
the comoving frame. The thermodynamic scalars £(n) and p(n) are derived from the

same effective potential f(n) that determines the chemical potential.

This expression makes a single, non-negotiable commitment: the regulator carries an
energetic cost. It therefore contributes to gravitational sourcing and to the anisotropic

stress sector. Covariant conservation,
Vv, =0,
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is then part of the model definition rather than an auxiliary assumption.

Linearizing around an FRW background with n = n(t) 4+ on(¢, ), one finds that the

gradient term modifies the pressure perturbation as

Reff ; o _
a2 k p5k7

Spr = C2poy +

where kg absorbs background factors from the conversion between n and p and from

the projection structure.

The anisotropic stress arising from the traceless part of the Korteweg tensor scales as

Reff
O X /CQ(Sk,
a2

and therefore becomes relevant only at sufficiently large comoving wavenumber.

The crucial structural consequence is that the regulator modifies the effective squared
sound speed according to

2 2 k?
cop(k,a) = ci(a) + /‘ieﬁ?.

The k* term in the growth equation therefore arises not from diffusion but from
conservative gradient energy. The ultraviolet sector is stabilized by construction
because keg > 0 ensures positivity of the highest-order spatial operator. No backward-
parabolic pathology is present at the level of the principal symbol.

The lamphron-lamphrodyne refinement that follows should therefore be understood
as a geometric restatement of this stability structure. It does not introduce a new
field nor a new dynamical degree of freedom; rather, it expresses the sign structure
of the effective mass and curvature terms in the scalar sector using the language of

entropy curvature and vacuum response.

33 Entropy Curvature and Effective Compressibil-
ity
The previous section established that the regulator modifies the effective squared

sound speed according to

k‘2
ek, a) = (a) + Reft -
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The ultraviolet stability of the system is therefore controlled by kg > 0, while the
large-scale stability is governed by the sign of the background compressibility encoded

in ¢?(a).

We now make explicit how this effective sound speed arises from the curvature of
the coarse-grained free-energy density and how a sign change in ¢? corresponds to a
geometric change in entropy curvature.

Recall that the chemical potential derived from the regulated free-energy functional is
pw=f(n) — kD*n.
Linearizing about a homogeneous background n = n gives

S = f"(n)on — kD*dn.

The effective adiabatic sound speed follows from the thermodynamic relation

up to background conversion factors between n and p. Thus the sign of ¢? is determined

directly by the second variation of the coarse-grained free-energy density.

In particular, the homogeneous state is linearly stable when
f"(n) >0,

and becomes unstable when
f"(n) <O0.

This is precisely the spinodal condition in non-equilibrium thermodynamics: the
instability is not a reversal of diffusion but a local indefiniteness of the second variation
of the entropy (or free-energy) functional.

It is therefore natural to define an entropy-curvature scalar that captures this structure
geometrically. Let S denote the coarse-grained entropy density associated with n, and
define its spatial curvature through the projected Laplacian,

A,S = W™V, V8.

The sign structure of f”(72) may be equivalently expressed through the curvature of S
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because

SF = | 7 (f"(7)(6n)? + kD;onD'én) d’x,
¢

and the gradient term enforces convexity at high wavenumber while the sign of f”

governs convexity at long wavelength.

The transition between stabilizing and destabilizing regimes is therefore equivalently
described as a change in entropy curvature at the background level. When the second
variation becomes indefinite, the system enters a regime in which long-wavelength
modes experience effective negative compressibility, while short-wavelength modes
remain stabilized by the gradient regulator.

This geometric reformulation prepares the introduction of lamphron and lamphrodyne
states. The dichotomy will not introduce new degrees of freedom; rather, it will
express the sign structure of f”(n) and the induced curvature of S in a local geometric
language that makes the instability domain manifest.

34 Lamphron and Lamphrodyne States

We now introduce a refinement of the scalar-entropy coupling in terms of dual
thermodynamic regimes, termed lamphron and lamphrodyne states. These are not
additional fields but distinct dynamical phases of the scalar—vector—entropy system.

Let ¢ denote the primary scalar density and introduce an effective vacuum response
field x defined implicitly through the entropy curvature:

X = —BA,S.

The evolution equation may then be rewritten as

0ip = *Dgd = V - (V) + ag + X¢.

We define a lamphron state as a regime in which xy < 0 almost everywhere, so that
entropy curvature enhances smoothing and suppresses amplification. Conversely, a
lamphrodyne state occurs when x > 0 on a region of nonzero measure, so that entropy
curvature contributes to scalar growth.

A lamphrodyne domain U C M is an open set such that x(z) > 0 for all z € U.
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In lamphron regions, the effective mass term remains stabilizing. In lamphrodyne
regions, the effective mass becomes negative in the diffusive sector, inducing scalar

irruption.

To formalize this dichotomy, define the effective linear operator

Leog = 02A9+Q+X.

If the principal symbol of L. changes sign in a region, the PDE transitions from
parabolic smoothing to backward parabolic amplification. Thus lamphrodyne states
correspond precisely to local sign inversion of the principal symbol.

35 Principal Symbol and Second Variation of the
Effective Operator

The lamphron-lamphrodyne distinction was introduced above through the sign of the

effective curvature term
X = _BAQS7

and through the effective linear operator

Leg = A, + o+ x.

It is essential to clarify that lamphrodyne behavior does not correspond to a reversal
of the highest—order spatial operator in the sense of a change from parabolic to
backward-parabolic type. The principal symbol of Leg remains that of ¢?A,, which is
elliptic and therefore generates parabolic smoothing in the evolution equation.

The instability instead arises from the sign of the second variation of the effective

free—energy functional.

35.1 Second Variation and Stability

Let the scalar sector be governed by a functional of the form

Flg] = /E | NGl (f(d)) + gDmDigb) P,
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Linearizing about a homogeneous background ¢ yields the quadratic form

§F = / (f"(®) (0¢)* + kD;6¢D'69) .

In Fourier space, this becomes
2 "¢ k2 2
O°F = f"(¢) th |6 |”.

Stability requires
2

- k
(o) + Ry > 0 for all k.

When f”(¢) < 0, the quadratic form becomes indefinite over a finite band of wavenum-
bers,

K _ 1)

0<
a? K

The ultraviolet sector remains stable because the k? term in the quadratic form
dominates at large k.

35.2 Relation to the Effective Operator

The lamphrodyne condition x > 0 corresponds, at linear order, to the regime in which
a+x <0

after absorbing background terms into the definition of f”(¢).

The growth of perturbations is therefore governed by the sign of the second variation
of F rather than by a literal inversion of the Laplacian in the principal symbol.

The evolution equation remains of regulated parabolic type; the instability is band—
limited and controlled by the gradient penalty coefficient .

52



35.3 Geometric Interpretation

In this formulation, lamphron regions correspond to points in field space where the
effective compressibility

0 f

0¢?

is positive, while lamphrodyne regions correspond to those where it becomes negative.

The instability boundary is therefore defined by

f"(¢) =0,

which is the geometric locus at which the free—energy landscape transitions from

convex to locally concave.

The lamphron—lamphrodyne refinement is thus a geometric characterization of a
regulated spinodal transition in field space rather than a change in the parabolic

character of the highest—order operator.

36 Spectral Decomposition and Resonant Struc-

ture Formation

To analyze spatial patterning induced by scalar irruption, expand ¢ in eigenfunctions

of the Laplace—Beltrami operator:

¢(z,t) = Zak(t)?/fk(ﬂf)a Ay = =M,
k=0

WlthO:)\0<)\1§/\2§

Substituting into the linearized irruption regime yields

ap = (— M + @ + xi) ax,

where Y denotes the spectral projection of x onto .

Growth occurs when
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a+xi > AN
Thus only a band of modes satisfying

o+ Xk
2

)\k<

are unstable. This band-limited instability naturally produces quasi-periodic structure
formation analogous to baryon acoustic oscillation—like resonances, without invoking

metric expansion.

If y is spatially localized and positive in a bounded region, then the unstable spectrum
is discrete and finite.

Since A\ — 0o as k — oo and xj is bounded by x2, there exists K such that for all
k> K, c*\;, > a + x5. Hence only finitely many modes are unstable.

This explains why scalar irruption yields structured condensation rather than runaway
ultraviolet divergence.

37 Quantized Scalar Irruption Operator

We now sketch a semiclassical quantization of scalar irruption.

Promote ¢ to an operator-valued field gg on a Hilbert space H. The classical Hamilto-

nian density corresponding to the Lagrangian in is

1, A,
'H:§7r —|—5V¢ +U(o,95),

where ™ = 0,¢ is the conjugate momentum.

Quantization imposes canonical commutation relations

~

[p(x), 7(y)] = ihd(z — y).

In lamphrodyne regimes where y > 0, the quadratic part of the Hamiltonian acquires
negative eigenvalues, producing inverted harmonic oscillator sectors:
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1. 1 .-
Hy, = 5”1?; - 5%3?252-

Such sectors exhibit exponential amplification of vacuum fluctuations, analogous to
particle production in time-dependent backgrounds. However, here the trigger is

entropic curvature rather than metric expansion.

In a lamphrodyne domain, the vacuum state is dynamically unstable under the
quantized Hamiltonian, leading to exponential growth of mode occupation numbers.

For an inverted harmonic oscillator,
N 9%
Qbk = wk¢k7

whose solutions grow exponentially. The number operator expectation value diverges

as ekt

Thus scalar irruption admits a consistent quantum interpretation as entropically driven

mode excitation.

38 Observable Consequences in a Non-Expanding

Plenum

Since the metric is static, observable signatures arise from redistribution rather than

expansion. Consider a two-point correlation function

C(r) = {(¢(z)o(x +1)).
In the linear regime, unstable modes imprint oscillatory features:
Cr) ~ ) ey (a)ibp(x + 1),
keu

where U denotes unstable modes.

These correlations mimic acoustic-like resonances in spatial power spectra while
preserving constant global volume. Hence BAO-like signatures can emerge purely

from entropic bifurcation.
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39 Entropy Conservation and Global Constraints

Despite local amplification, global scalar mass is conserved under zero-flux boundary

conditions:

d
— dpg = 0.
dt/M¢ g

Integrating over M and applying the divergence theorem yields zero net flux
provided v-n =0 and V¢ -n =0 on OM.

Scalar irruption therefore redistributes rather than creates total scalar density. Struc-

ture formation is internally reorganizational.

40 Synthesis: Scalar Irruption as Entropic Phase

Transition

Scalar irruption is now seen to possess four equivalent formulations. In PDE language
it is a sign reversal of effective diffusion. In spectral language it is band-limited
exponential growth of Laplacian modes. In thermodynamic language it is curvature-
induced entropy release. In quantum language it is an inverted oscillator instability
induced by entropic geometry.

The mechanism requires no expanding metric, no vacuum tunneling, and no external
inflaton potential. It emerges from internal entropy differentials within a non-expanding

plenum.

41 Variational Degeneracy and the Geometry of

the Critical Locus

The preceding synthesis exhibits scalar irruption in four equivalent classical languages.
However, the unifying feature behind these formulations has not yet been made explicit.
The instability does not arise from the introduction of new degrees of freedom but

from a change in the structure of the critical locus of the action functional.
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Let

2
Salo] = /M (%V¢2 + %¢2 + §¢2AQS> djtg.

The EulerLagrange equation derived from S, reproduces the effective linear operator

Leg = C2Ag +a+y, X = —[A,S.

In the lamphron regime, the second variation

5254(4] = / 56 Londd dpiy
M

is positive definite and the classical critical point is isolated and stable.

In the lamphrodyne regime, the second variation becomes indefinite on a finite spectral
band. The critical locus ceases to be isolated and instead acquires unstable directions.
This is precisely the variational signature of a phase transition: the Hessian of the
action changes signature, and the Morse index of the critical point increases.

Crucially, global conservation demonstrated in the previous section implies that the
instability redistributes scalar density within a constrained manifold of fixed total mass.
The transition is therefore not explosive but reorganizational: the configuration space
develops new saddle directions while remaining confined to a conserved hypersurface.

From this perspective, scalar irruption is equivalently characterized as:

1. a spectral band crossing zero in the principal symbol,
2. a sign change in the second variation of the action,

3. a change in the Morse index of the classical solution.

The natural mathematical language for handling such degeneracies is not merely
classical PDE analysis but the geometry of derived critical loci. When the Hessian
becomes degenerate, the classical critical set must be replaced by a derived space that

keeps track of unstable directions and gauge redundancies.

This observation motivates the transition to the BatalinVilkovisky formalism. The BV
extension does not introduce new physical instabilities; rather, it encodes the geometry
of the classical degeneracy in a graded symplectic framework that keeps the gauge
structure explicit and ensures that the instability is consistent with diffeomorphism

invariance.
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In this sense, the AKSZ/BV reformulation is not an embellishment of the instability but
its natural geometric completion: the lamphronlamphrodyne transition corresponds
to a change in the homotopy type of the derived critical locus of the action functional.

42 AKSZ/BV Formulation of Scalar Irruption

We now reformulate scalar irruption within the Batalin—Vilkovisky (BV) and Alexandrov—
Kontsevich-Schwarz—Zaboronsky (AKSZ) framework in order to exhibit its gauge
structure and derived geometric consistency.

Let M be a smooth compact manifold and consider the graded manifold
F = T"[-1]Map(T[1]M,R),

whose degree-zero component corresponds to the scalar field ¢. Introduce ghosts ¢ for
diffeomorphism symmetry and antifields ¢* and ¢* of opposite degree.

The classical action functional for the scalar—entropy system may be written in AKSZ

B
2

form as

2
Sald] = /M (%Vch 26 ¢2Ags) dty.

The BV extension introduces antifields and ghost couplings:

1
Spy = Sa + / ¢*Lep+ ¢ =e, ¢l
M 2

where L. denotes the Lie derivative along the ghost vector field.

The BV bracket is defined by

(F.G} :/ (&F&G o F6G  6F oG 5rF5lG)'
M

56 56~ 06" 06 | bc o dc e

The classical master equation requires

{Sgv,Sev} = 0.

The BV-extended scalar—entropy action satisfies the classical master equation provided
the entropy functional S|[¢] is diffeomorphism-invariant.
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The entropy density S = —¢log ¢ is a scalar under diffeomorphisms. Therefore its
Laplacian A,S transforms covariantly. The ghost variation of S cancels against the
antifield terms by standard AKSZ construction. Hence the BV bracket vanishes.

In lamphrodyne regimes, the quadratic part of the BV action develops negative
eigenvalues in its kinetic operator. The derived critical locus of Sgy therefore acquires
additional nontrivial homology in degree zero, corresponding to irruption branches.

Thus scalar irruption corresponds, in derived geometric language, to a change in the
homotopy type of the critical locus of the action functional. The instability is not
merely analytic but alters the derived stack of classical solutions.

This completes the BV /AKSZ formulation of scalar irruption as an entropically induced
derived bifurcation.

43 From Derived Bifurcation to Spectral Realiza-

tion

The BV/AKSZ formulation establishes that scalar irruption corresponds to a change
in the homotopy type of the derived critical locus of the action functional. At the
classical level this transition appears as a change in the signature of the Hessian;
at the derived level it appears as a shift in the cohomological structure governing
infinitesimal deformations.

To pass from this geometric formulation to a concrete computational realization, one
must exhibit the same instability structure in a representation where spectral data are
explicit. The essential requirement is that the discretization preserve three structural
features:

First, the instability must arise from a sign change in the quadratic form determined
by the second variation of the action.

Second, the growth must be band-limited rather than ultraviolet divergent.

Third, global scalar conservation must be maintained so that amplification remains
reorganizational rather than generative.

These properties are not artifacts of smooth geometry; they depend only on the
spectral properties of the Laplacian and on the variational structure of the entropy
coupling. Consequently they descend naturally to any representation in which the
Laplacian admits a well-defined eigenbasis and the action admits a discrete second
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variation.

Let {9} denote an orthonormal eigenbasis of —A, with eigenvalues A\; > 0. In the

continuum lamphron regime the quadratic part of the action takes the form

0%Sa =Y (A + o+ x) [tn]*

k

Lamphrodyne transition corresponds to the crossing of zero of this coefficient for a
finite subset of modes. The instability therefore depends only on the spectral data
{A\x} and on the effective diffusion coefficient.

A discrete Laplacian on a lattice possesses the same spectral structure: it is a self-
adjoint operator with nonnegative spectrum. The sign reversal condition therefore
translates without alteration into a statement about the eigenvalues of —A,. The
derived bifurcation of the smooth theory thus acquires a purely algebraic form: certain
discrete modes cross from positive to negative curvature directions in the quadratic

form.

In this sense the lattice realization is not a separate model but a spectral representation
of the same variational instability. The derived change in the critical locus becomes a
finite-dimensional change in the signature of the quadratic form on the space of lattice
modes.

This observation justifies constructing a Crystal Plenum discretization. It demonstrates
that scalar irruption does not depend on smooth manifold structure, coordinate charts,
or differential operators per se. It depends only on spectral properties of a Laplacian
and on the curvature of the entropy functional. Those properties are preserved under
discretization provided the lattice Laplacian is symmetric and the entropy functional
remains local.

We now proceed to construct this discrete realization explicitly.

44 Crystal Plenum Discretization and Lattice Re-

alization of Scalar Irruption

We now construct a discrete realization of scalar irruption within the Crystal Plenum
framework, in which the manifold (M, g) is replaced by a lattice A endowed with a

discrete Laplacian.

Let A be a finite or countably infinite lattice with adjacency relation ~. The scalar
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field becomes a function

o:N—R,

and the discrete Laplacian is defined by

(Do) = > (65— 1)

i
The entropy density at site ¢ is defined as

S; = —¢;log ¢;.

The discrete evolution equation corresponding to becomes

¢ = A(And); + ag; + Bdi(ALS);.

44.1 Discrete Irruption Criterion

Let ¢; = ¢g + €v; with ¢y uniform. Linearizing yields

Uy = A(ANY); + by — Beo(1 + log ¢o) (Ant).

Define the effective diffusion constant

Dot = ¢ — Bo(1 + log ¢y).

Let A\ denote eigenvalues of —A,. Then growth rates are

Ve = —Deg>\k + .

If Deg < 0, then the lattice system exhibits scalar irruption through exponential

amplification of a finite set of eigenmodes.

Since the spectrum of A, is bounded above on a finite lattice, only modes with
sufficiently small Ay satisfy 7, > 0. Hence growth occurs in a controlled band, leading
to patterned condensation.
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44.2 Poincar-Triggered Lattice Recrystallization

In the crystal plenum, recurrence phenomena arise through approximate Poincar
return times of lattice configurations. Let ¢(t) evolve under the discrete dynamics. A
recurrence time 7' satisfies

O(T) — ¢(0) <e.

Recurrence can amplify local entropy curvature by concentrating deviations. If at

recurrence time 1,

(AAS )1 < —K¢
for some site ¢, the irruption condition is triggered.

Thus Poincar-Triggered Lattice Recrystallization acts as a catalyst for scalar irruption

by generating localized curvature spikes in the entropy landscape.

44.3 Crystallization After Irruption

Nonlinear saturation of unstable modes yields new equilibrium configurations ¢;
satisfying

0= c*(Ang™)i + ad} + 56; (ArS");.
These equilibria correspond to discrete crystal-like scalar condensates.

If the nonlinear saturation term is positive definite, the post-irruption equilibria
minimize a discrete free energy functional.

Define the discrete free energy

Eplg] = Z (%2 Z(@ — ¢i)* — %¢? — ggb?(AAS)i) )

7 j~i

Critical points satisfy the equilibrium equation above, and positive definiteness of the

quartic stabilization term ensures local minimality.

44.4 Discrete—Continuous Correspondence

Let lattice spacing be h. Then
Apdy = 2D () + O(R?).
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Thus the discrete irruption condition converges to the continuous condition as h — 0.

This demonstrates that scalar irruption is not an artifact of continuum modeling but
persists under crystallographic discretization. The Crystal Plenum therefore provides

a geometrically concrete realization of entropically driven scalar phase transitions.

45 Limiting Cases and Structural Degeneracies

It is instructive to examine several limiting regimes of the regulated scalar sector in

order to clarify what is genuinely novel in the construction.

If keg — 0, the k* term vanishes and the theory reduces to a conventional fluid
with sound speed 2. In a regime where ¢? < 0, the linear system becomes backward-
parabolic and therefore ill-posed. The regulator is thus not decorative; it is the element
that restores well-posedness and enforces band limitation.

If ¢ — 0 while ke > 0, the theory reduces to a scale-dependent pressure model
in which high-£ modes are stabilized but low-k modes evolve gravitationally as in
dust. In this limit, deviations from ACDM appear only beyond a regulator-controlled
wavenumber.

If gravitational coupling is formally switched off by taking G — 0, the instability
structure reduces to the conservative spinodal form controlled entirely by ¢ and k..
Growth then reflects internal free-energy curvature rather than gravitational collapse.

If the background expansion is frozen by setting a(t) = 1, the model reduces to a static
plenum with regulated phase separation. The FRW embedding therefore does not
generate the instability; it modulates it through redshifting of physical wavenumbers.

Finally, if 3 — 0 in the original entropy-coupled formulation, the effective negative
compressibility sector disappears and the lamphrodyne regime collapses to purely
stabilizing dynamics. The instability is therefore directly traceable to entropy curvature
rather than to the regulator itself.

These limiting cases show that the regulated irruption mechanism occupies a distinct
structural position between standard Jeans instability and unregulated backward
diffusion. Its characteristic feature is a finite instability band bounded in both infrared
and ultraviolet by independently identifiable physical parameters.
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46 Comparisons with Other Frameworks

The mechanism developed here occupies a distinct structural position relative to
several established paradigms of structure formation and instability theory. Although
it shares formal similarities with known mechanisms, its ontological commitments and

regulator structure differ in essential ways.

Contrast with Inflationary Instability

In slow-roll inflationary cosmology, structure originates from quantum fluctuations of
a scalar inflaton field stretched to superhorizon scales by accelerated metric expansion.
The instability mechanism is geometric: mode amplification occurs because physical
wavelengths outpace the Hubble radius, freezing curvature perturbations.

By contrast, scalar irruption does not rely on accelerated expansion, horizon crossing,
or vacuum energy domination. The instability arises from the internal thermodynamic
curvature of a conserved density functional. The regulator enforces ultraviolet control
directly through a gradient-energy term rather than through redshifting by expansion.

Scale selection is therefore intrinsic and parameter-determined, not horizon-imprinted.

Contrast with Standard Jeans Instability

The classical Jeans mechanism arises from competition between gravitational attraction
and positive pressure support. Instability occurs for wavelengths exceeding the Jeans
length, determined by the sound speed and background density.

Scalar irruption modifies this structure in two respects. First, compressibility may be-
come negative in a finite interval, generating an instability independent of gravitational
attraction. Second, the presence of a k* regulator term bounds the unstable band
from above. The resulting instability is therefore neither purely infrared (Jeans-type)
nor ultraviolet-divergent, but spectrally finite. Gravity shifts band edges but does not
determine the intrinsic preferred scale.

Relation to Cahn—Hilliard and Spinodal Decomposition

Mathematically, the regulated instability resembles spinodal phase separation in a

conserved order parameter governed by a Cahn-Hilliard equation. In that setting,
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instability arises from loss of convexity of a free-energy density, and gradient-energy

regularization suppresses short-wavelength divergence.

Scalar irruption may be regarded as a relativistic and cosmologically embedded
generalization of this structure. The key difference lies in the gravitational coupling,
the cosmological background, and the interpretation of the scalar as a matter density
rather than a chemical order parameter. The ultraviolet regulator plays the same
structural role as in Cahn—Hilliard theory but is derived from a covariant stress—energy

sector rather than imposed phenomenologically.

Relation to Effective Field Theory of Fluids

In effective field theory treatments of cosmological fluids, higher-derivative corrections
are often introduced as gradient expansions encoding short-distance physics. The
ke term may be interpreted in this language as the leading operator in a derivative

expansion consistent with conservation and symmetry.

However, in the present framework the regulator is not merely a perturbative correction
but an essential structural component. It controls well-posedness, determines the
instability band, and fixes the physical irruption scale. Removing it collapses the
theory into either ill-posed backward diffusion or trivial stability.

Geometric Interpretation

Unlike inflationary scenarios that attribute structure to spacetime expansion, or purely
mechanical phase transitions that treat curvature as secondary, scalar irruption at-
tributes instability directly to entropy curvature in a fixed geometric background.
The lamphronlamphrodyne distinction formalizes this geometrically: instability corre-
sponds to local sign inversion of an effective curvature-induced mass term within an

otherwise elliptic operator.

Summary of Structural Distinctions

The framework developed here may therefore be characterized as follows. It is
conservative rather than source-driven, regulator-controlled rather than ultraviolet-
divergent, curvature-triggered rather than expansion-triggered, and band-limited rather
than scale-free. Its preferred clustering scale is intrinsic and parameter-determined,
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and its instability is a phase transition in thermodynamic geometry rather than a

consequence of background dilation.

These distinctions clarify that scalar irruption is neither a rephrasing of inflation nor
a simple restatement of Jeans collapse, but a hybrid regulated spinodal mechanism
embedded in a relativistic fluid with explicit conservation structure.

47 Future Directions

The present formulation establishes scalar irruption as a regulated, band-limited
instability arising from loss of convexity in a conserved relativistic density functional.
Several natural extensions follow from this foundation.

First, the nonlinear regime warrants systematic treatment beyond quadratic stabi-
lization. While the finite spinodal window determines the fastest-growing mode in
linear theory, the long-time morphology of condensates depends on higher-order terms
in the effective free-energy functional. A fully nonlinear analysis could determine
whether late-time equilibria correspond to stable solitonic structures, periodic lattices,
or metastable glass-like configurations. In particular, a rigorous existence and regular-
ity theory for global solutions in the presence of the k* regulator would clarify the

admissible phase diagram of the plenum.

Second, the coupling between scalar irruption and vector flow remains only partially ex-
plored. The inclusion of vorticity, shear viscosity, and anisotropic stress may modify the
instability band or produce secondary instabilities analogous to KelvinHelmholtztype
modes in compressible fluids. A consistent treatment within the covariant stressenergy
framework would determine whether irruption seeds rotational structure or remains

purely compressive.

Third, the gravitational sector may be developed beyond the linear regime. While
the present work derives the modified growth equation and transfer function, a full
EinsteinBoltzmann treatment would be required to confront precision cosmological
data. In particular, the regulator-induced k* correction predicts scale-dependent
gravitational slip and a distinctive high-k suppression that should be propagated
through lensing kernels, CMB anisotropies, and nonlinear halo formation models.

Fourth, the derived-geometric formulation suggests a deeper structural question. The
lamphronlamphrodyne transition corresponds to a change in the homotopy type of the
classical solution space. A systematic study of this transition within the BV /AKSZ
framework could clarify whether irruption corresponds to a derived Morse bifurcation
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and whether the instability admits a cohomological classification. Such analysis may

reveal whether entropic phase transitions possess universal homological signatures.

Fifth, the discrete Crystal Plenum realization invites renormalization analysis. As
lattice spacing varies, the effective parameters «, 3, and keg flow under coarse graining.
Determining the renormalization group structure of the regulated instability would
establish whether scalar irruption is stable under scale transformations or requires fine
tuning. In particular, the scaling dimension of the gradient regulator controls whether

the k* term remains relevant in the infrared limit.

Finally, observational discriminants must be sharpened into quantitative forecasts.
The regulator fixes a preferred physical clustering scale during the spinodal interval.
If such an interval occurred in the cosmological past, residual imprints should survive
in the matter power spectrum, weak-lensing shear correlations, and possibly in relic
neutrino or gravitational-wave backgrounds. A program of parameter estimation
would determine whether the allowed window for kg is already constrained by existing
surveys or whether the mechanism predicts novel small-scale deviations accessible to

future instruments.

48 Conclusion

Scalar irruption has been formulated as an entropically driven instability in a non-
expanding plenum, beginning from a strictly variational construction and proceeding
through spectral, cosmological, and derived-geometric reformulations. The central
mechanism is the loss of convexity of a coarse-grained free-energy functional governing
a conserved scalar density. When the second variation of that functional changes
sign, a finite band of modes becomes unstable while the ultraviolet sector remains
controlled by an explicit gradient regulator.

The analysis established that the instability is not a consequence of metric expansion,
vacuum tunneling, or inflaton dynamics. Instead, it arises from the sign reversal of an
effective diffusive coefficient induced by entropy curvature. The highest-order spatial
operator remains positive definite, ensuring well-posedness. Amplification is therefore
band-limited and regulator-controlled rather than backward-parabolic or ultraviolet
divergent. The preferred physical scale of growth is determined by the ratio of entropy
curvature to the regulator parameter, yielding an explicit parameter-to-scale map.

Embedding the regulated fluid into a cosmological background demonstrated that
the same structure produces a modified growth equation for scalar perturbations.
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The regulator generates a k* contribution to the dispersion relation and induces a
scale-dependent effective sound speed. In the matter-dominated regime this produces
a calculable small-scale suppression of power, while in a finite spinodal interval a
bounded irruption band appears. The fastest-growing mode is determined intrinsically
by the compressibilityregulator ratio and is not shifted at leading order by gravitational
coupling. The instability thus interpolates between Jeans collapse and spinodal phase

separation within a single conservative scaffold.

The gauge-invariant reformulation via the MukhanovSasaki variable confirmed that
the k* regulator term survives at the level of the canonical quadratic action. The
ultraviolet control and band-limited instability are therefore not gauge artifacts but
physical consequences of the regulated stressenergy sector. Observable implications
follow directly: a preferred clustering scale, modified high-k asymptotics in the linear

matter power spectrum, and scale-dependent anisotropic stress.

At the level of geometric structure, the lamphronlamphrodyne distinction was shown
to correspond to the sign of local entropy curvature. The transition between these
regimes is a change in the signature of the quadratic form governing perturbations. In
PDE language it appears as effective diffusion sign inversion; in spectral language as
bounded exponential growth of Laplacian modes; in thermodynamic language as a
convexity-to-concavity transition of the free-energy density; in cosmological language
as a regulated instability window; and in quantum language as the emergence of

inverted harmonic-oscillator sectors.

The BV/AKSZ extension exhibited scalar irruption as a derived bifurcation: the
instability alters the homotopy type of the critical locus of the action functional. This
places the mechanism within a formally consistent gauge-theoretic framework and
shows that the transition is not merely analytic but structural at the level of the

derived solution space.

Finally, the Crystal Plenum discretization demonstrated that scalar irruption persists
under lattice realization. The instability depends only on spectral properties of a
Laplacian and on the curvature of an entropy functional. These features survive
discretization provided the Laplacian remains self-adjoint and the regulator positive.
The discrete system therefore reproduces band-limited growth, finite unstable spectra,
and nonlinear saturation into patterned condensates, confirming that the mechanism

is not an artifact of continuum modeling.

Taken together, these results establish scalar irruption as a controlled, conservative,
and geometrically interpretable phase transition in a non-expanding plenum. Structure
emerges from smoothing dynamics when entropy curvature exceeds a regulator-defined
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threshold. No background dilation, external potential, or ultraviolet pathology is
required. The instability is intrinsic, bounded, and parameter-determined.

Future extensions may include fully nonlinear evolution beyond the spinodal window,
coupling to vector transport sectors, inclusion of additional conserved charges, and
detailed confrontation with observational power spectra. At the formal level, further
development within derived geometry, renormalization analysis of the regulator sector,

and exploration of multi-field generalizations remain open directions.

The essential conclusion remains invariant across all representations: entropic dif-
ferential alone, embedded within a variationally consistent and ultraviolet-regulated
framework, suffices to generate scale-selected structure in a non-expanding cosmological
setting.
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Appendices

A Functional-Analytic Structure of the Regulated
Free Energy

Let ¥ be a compact Riemannian 3-manifold with metric v;; and Laplace-Beltrami

operator D? = D;D!. Consider the regulated free-energy functional

Fln] = /2 (f(n) + gDinDin> VA, k> 0.

Sobolev Setting

Assume
n € H'(X),

so that n and its first weak derivatives are square-integrable. Then F[n] is well-defined
provided f is C? with at most polynomial growth.

The first variation is
OF = / (f'(n) on — kD*nén) / d’z,
>

after integration by parts.

H
ence 5F

R U/ _ 2
. f'(n) — kD*n.
Second Variation and Convexity

Let n = i + en with n € H'(X). The second variation at 7 is

2 F[n)(n,n) = / (f"(n)n* + kDnD'n) \/y d*x.

by

Let {—\¢} be the eigenvalues of D?,

Dy, = — Nty A > 0.
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Expanding

n=> aix,
k

gives

0°F = Z f"(0) + £Ak) a

Convexity holds iff
f"(n) + kA >0 VEk.

If f”(n) < 0, instability occurs only for

0< A\, <

/()]
o
Thus the unstable spectrum is finite.

Coercivity at High Frequency

Since A\, — oo as k — o0, one has

1"(n) + KA, — +o0.

Therefore
8 F > wllnlin — 1" (@)lInll7..

Using the compactness of ¥, the embedding
HY(X) — L*(%)

is continuous, so the quadratic form is bounded below and coercive on the orthogonal
complement of the unstable eigenspaces.

Hence the regulated functional defines a well-posed gradient flow in H'(X).
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Spectral Gap in the Spinodal Regime

Define the unstable band

u

{k|>\k< |f”/iﬁ>|}.

Since A\, ~ k? asymptotically,

|U| < 0.
Let
AUBSY — max Ag.
max wett "

Then the growth rate in linear gradient flow

is

The maximal growth occurs at

This establishes existence of a preferred eigenmode independent of background expan-

sion.

Fourth-Order Operator Structure

The linearized operator may be written
L = —f"(n)D?* + k(D?)?.
This is elliptic of order four with principal symbol

o(L)(€) = rlgl".

Since k > 0, the principal symbol is strictly positive. Therefore £ is strongly elliptic,

guaranteeing well-posedness of the associated parabolic problem.
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No backward-parabolic sector appears because the highest-order term remains positive
definite.

B Hamiltonian Structure and Absence of Ostro-

gradsky Instabilities

We analyze the canonical structure of the regulated scalar sector at quadratic order
and demonstrate that the k* regulator does not introduce higher-time-derivative
instabilities.

Quadratic Action

Recall the gauge-invariant quadratic action

1 1 2"
2) _ 3 2 2 2 2 2
5@ = E/dnd x {(v') — (Vo) —/{eﬁaz(Av) + ot

where v = zR.

The regulator modifies only spatial derivatives:

(Av)? = (9;0'v)%.

No higher time derivatives appear.

Canonical Momentum and Hamiltonian

The canonical momentum conjugate to v is

oL ,
T=—=— =2
o’
The Hamiltonian density is
H 1 2+2(V)2+ 1(A)2 2"
= — |7+ (Vv Kei— (AV)* — —v
2 s 2 z
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In Fourier space,

the Hamiltonian becomes a sum over decoupled modes:

1

=5 [ @rlp + ko]

with 1 ,
2 2.2 z
w =k 4 Reg— — —.

k(n) s ffa2 P

Absence of Higher-Time-Derivative Degrees of Freedom

Ostrogradsky instabilities arise when the Lagrangian contains higher time derivatives

such as v” or (v)? coupled to time derivatives of higher order.

In the present case:

L == [(v')* — (spatial derivatives only)] .

N —

Therefore:

The EulerLagrange equation remains second order in time:

" 2
Uk + kak — 0

Hence no additional canonical momentum is introduced, and the phase space remains

two-dimensional per mode.

Energy Positivity at High Wavenumber
For fixed conformal time 7, as kK — oo,

k‘4
wi(n) ~ Fﬁeﬂf@-
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Since keg > 0, one has

w,% — 4-00.

Therefore high-k modes have positive definite Hamiltonian contribution:
1 112 k4 2
Hy ~ 5 (\Uk| + e el ) -
No ultraviolet ghost appears.

Comparison with Genuine Higher-Derivative Gravity

In contrast, consider a higher-derivative time action of schematic form

1 "
L= B [(v")? = (Vv)?] .
Th
- _oc_doc oL
= B dn ov"’ "2 G

The phase space doubles, and the Hamiltonian becomes unbounded from below.
No such structure appears in the regulated scalar irruption model.

The regulator introduces higher spatial derivatives only. The time evolution remains
second order. The Hamiltonian is bounded from below at high wavenumber, provided
Keg > 0.

Therefore the regulated scalar sector is free of Ostrogradsky instabilities and remains

a conventional canonical field theory with modified dispersion relation:

k4 P
2 _ 272
wj, = k™ + Ket— — —.
a z
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C Renormalization-Group Interpretation and Ef-

fective Field-Theory Domain

Dimensional Analysis

Consider the quadratic action for the Mukhanov—Sasaki variable:

1 1 2"
29 _ 3 N2 2 2 2 2
g2 — 5/dnd x [(U) — (Vo) —KGHGQ(A”U) + v

Assign scaling dimensions in comoving coordinates:

[l =L, =L, [oJ=L"

Then
(V)] = L7, [(Av)’]=L"

To maintain action dimensionless (in units where A = 1), one finds

[/ieff] = LQ.

Thus ke defines a squared length scale.

Associated Physical Cutoff Scale

Define the physical wavenumber
k

Kphys = —
The dispersion relation is

2 212 4
wk — Cskphys + H;eﬁ‘kphys -

The crossover between quadratic and quartic behavior occurs at

2

2 Cs

phys ™

Reff
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Define the regulator scale

1
2 . _
A2 =
Reff
Then A
ka ZN
2 21.2 phys
wy = ikl - —.
k s Vphys A2 >

K

Hence A, plays the role of a physical ultraviolet scale.

Wilsonian Interpretation

Treat the theory as an effective field theory obtained after integrating out microscopic

degrees of freedom above some scale Ayy.

The most general local quadratic spatial operator consistent with isotropy is an

expansion in even powers of kphys:

« « .
2 _ 212 4 74 6 ;6
W = Cg4 kphys + A2_ kphys + A4_kphy5 + -
uv 10A%

Truncating at fourth order corresponds to retaining the leading irrelevant operator.

Identifying

Reff = 75—
Aty
shows that the regulator term is the lowest-order higher-gradient correction in a

Wilsonian derivative expansion.

Scaling Toward the Ultraviolet

Under spatial rescaling
xr—br, k— 7
the operators scale as

K2 b72k2, kY - bk

Thus the quartic operator is irrelevant in the infrared but dominant in the ultraviolet.

In particular, as kpnys — 00,
4

2
Wy ~ KJCHkphys’
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ensuring ultraviolet stiffening.

EFT Validity Domain

The derivative expansion is valid provided

2

k
phys
e <1

for scales where neglected k® and higher operators remain small.

Thus the conservative scalar irruption theory is an EFT valid for

kphys < AN.

Within this regime, truncation at fourth order is controlled.

Relation to Lifshitz-Type Scaling

The quartic dispersion resembles z = 2 Lifshitz scaling:

2

w ~ kphys‘

If ¢ is negligible and kg > 0, the high-k fixed point exhibits anisotropic scaling

symmetry

n— b*n, x — ba.

Thus the ultraviolet sector is governed by a Lifshitz-type quadratic-in-time, quartic-

in-space operator.

Absence of Fine-Tuning Requirement

Because kqg is associated with an irrelevant operator, its presence does not require

fine tuning to maintain stability. Any positive keg produces ultraviolet regularization.

Only the sign is dynamically essential.
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Corollary: Bounded Instability Band

Suppose c2(a) < 0 in a finite interval. Then instability requires

4

|21k ys > Fettkppys-

phys

Thus

el

Reff

2
0 < kppys <

The existence of A, guarantees finiteness of this band independent of gravitational

contributions.

The regulator term:

ﬁeg(Av)2

is the leading irrelevant spatial operator in a Wilsonian expansion. It defines a UV
stiffness scale A, ensures positivity of w? at large k, and preserves EFT control
provided Kppys << A

No additional degrees of freedom are introduced; the theory remains second order in

time and canonically well-defined.

D Spectral Theory of Fourth-Order Elliptic Oper-

ators on Compact Manifolds

Ellipticity and Principal Symbol

Let (M, g) be a smooth compact Riemannian manifold without boundary. Consider

the linear operator
L, = _/{eﬂ‘AE + A, + V (),

acting on C*°(M), where kg > 0 and V(z) € C®(M).

The principal symbol of L, is

Ope (L) (,€) = Fetr|€]y-
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Since keg > 0 and |€ |3 > 0 for € # 0, the operator is strongly elliptic of order four.

Self-Adjointness

Define the domain
D(Ly) = HY (M),

with £, acting on L?(M).

Because A, is self-adjoint and V' (z) is multiplication by a real-valued function, the
operator L, is symmetric on C*°(M) and extends to a self-adjoint operator on H*(M).

Compact Resolvent

Since M is compact and L, is elliptic of positive order, the resolvent
(L — M)

is compact for A not in the spectrum.

Hence the spectrum is discrete:
Spec(Ly) ={ Ao <A <A <--- ]

with A, — 400 as n — oo.

Spectral Asymptotics
By Weyl’s law for fourth-order elliptic operators,
N(A) = #{\, <A}~ Cy AT, A — oo,

where d = dim M.

Thus
)\nNC’n4/d as n — Q.
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Boundedness of the Unstable Spectrum

Suppose the linearized growth operator takes the form
G§=—-L,+al,
so that growth rates correspond to eigenvalues

Vo = @ — A\p.

Instability occurs when ~,, > 0, i.e.

A < Q.

Since A, — 00, only finitely many indices satisfy this inequality.
The unstable spectrum of the regulated scalar sector is finite on compact manifolds.

Because A\, — oo, there exists N such that for all n > N, A\, > a. Hence ~,, < 0 for
n > N. Only finitely many modes can satisfy v, > 0.

Energy Coercivity

Define the quadratic form

Qlu] = /M (Kett| Agu|® — 2| Vul”> + V(2)u?) dp,.

For keg > 0, the leading term satisfies
Reit | Agul[ 72 > Cllullfe — C'Jull7s,

by elliptic regularity.

Hence

Qu] = Cllullyy> — C"[lullZ,

establishing coercivity modulo compact perturbations.
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Band-Limited Instability on R?

If M = R?, Fourier transform yields symbol

o(L)(k) = reg|k|* — E|k)> + V.

Instability requires
Kot |k|* — k> +V < 0.

This inequality defines either an empty set or a bounded interval in |k| whenever
Ker > 0.

On R¢, the unstable Fourier support is compact in k-space provided keg > 0.

Absence of Ultraviolet Catastrophe

Since

0(Lw)(k) ~ enlk|* as  [k] — oo,
the operator is positive definite in the ultraviolet.

Thus high-frequency modes are strictly damped in the linearized theory.

Spectral Gap Structure
If the lowest eigenvalue A\g < 0 in a spinodal window, then there exists a spectral gap

)\0<)\1§...

The time scale of irruption is governed by

771 = maxy, = a— .
n

Higher modes decay with rates increasing as n*/¢.
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Corollary: Structured Condensation
Because only finitely many modes are unstable and the spectrum is discrete, nonlin-

ear saturation generically produces finite-mode condensation patterns rather than
broadband turbulence in the linear regime.

Functional Calculus Representation

The solution operator for the linearized equation
8tu = —ﬁmu

u(t) = e *“=u(0).

Since L, is self-adjoint with discrete spectrum,

oo
€_t£K = Z €_t/\npn7
n=0

where P, are orthogonal spectral projectors.
Growth or decay is entirely controlled by the sign of A,,.

The fourth-order regulator yields:
(i) strong ellipticity, (ii) discrete spectrum on compact manifolds, (iii) finite unstable mode se

Hence the regulated scalar irruption operator is spectrally well-posed in both compact
and noncompact settings.
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E Nonlinear Stability, Lyapunov Structure, and
Global Attractors

Gradient-Flow Structure

Consider the coarse-grained free-energy functional

Fln] = /M () + 19017 dis,

with keg > 0 and f € C3(R).

The chemical potential is

p=o-= J'(n) — ket Agn.

The conserved Cahn-Hilliard-type evolution reads

on =V -(MVpu), M > 0.

Lyapunov Dissipation

Multiply the evolution equation by p and integrate:

/u@tndug:/ uV - (MVp)du,.
M M

Integrating by parts and using zero-flux boundary conditions gives

d

—Fn] = —/ M|Vl dug < 0.
dt iy

The free energy Fln| is a Lyapunov functional for the nonlinear regulated dynamics.

Thus
Fin(t)] < Fn(0)] for all t > 0.
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Mass Conservation Constraint

Because

integration over M yields

d
S ndp, =o.
dt J "M

Hence the dynamics evolve on the affine hyperplane

H,, — {n € IAM) - /Mnd,ug :m}.

Coercivity and Boundedness
Assume f(n) satisfies a polynomial lower bound:

f(n)>—=Ci+Csnl?,  p>1.

Then
Keff
Fln) 2 ol + 2| Vnl — G M),

Hence boundedness of F implies boundedness in H'(M).

Existence of Global Weak Solutions

Standard theory for fourth-order parabolic equations yields:

If ng € H'(M), then there exists a global weak solution
n € L. (0, 00; H'(M)) N L, (0, 003 H* (M)

to the regulated nonlinear equation.
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Compactness and Attractor Structure

Because F is decreasing and bounded below, trajectories are precompact in H' modulo

subsequences. Define the w-limit set

w(ng) = {n. : Ity — oo, n(ty) — n.}.
Every element n, € w(ng) satisfies

hence is a stationary solution.

Thus late-time states correspond to critical points of F under the mass constraint.

Nonlinear Stability of Minimizers

Let n, be a strict local minimizer of F on H,,.

If the second variation satisfies

S F (e, ¢) > cllellin

for all ¢ with zero mean, then n, is nonlinearly asymptotically stable.

Spinodal Decomposition and Basin Structure

If f”(n) < 0 at a homogeneous state 7, then

52 Fli] = /M (F" (1) + ret Vo) iy

is indefinite, and 7 is a saddle.

Nonlinear evolution then moves the system toward phase-separated minimizers.

Energy Gap and Pattern Selection

Let A\p < 0 be the most unstable linear eigenvalue.
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The characteristic nonlinear saturation scale satisfies

_ A
) =l ~ /22

Only finitely many unstable modes contribute to the emerging pattern, due to the
spectral bound established previously.

Inclusion of Gravitational Coupling

If gravity is reintroduced, the total energy functional becomes

1

_ 2
£ln, @) = Finl + o /M VD [2dp,,

subject to Poisson constraint

Ay® = 41G(n —n).

The combined system remains variational in the quasi-static limit.

Causal Relaxation Extension

With relaxation time 7 > 0, the hyperbolic extension reads
7O +0m =V - (MVp).
Energy functional:

]
£ = Fln] + Z o

Th
en g

e = —loml ~ [ M7

Thus the hyperbolic regulator preserves dissipativity.
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Absence of Finite-Time Blow-Up

Because F is bounded below and coercive, and the highest-order term remains elliptic,

solutions cannot develop ultraviolet blow-up in finite time within the continuum model.

The regulated scalar irruption system admits:

(i) global weak solutions, (ii) Lyapunov monotonicity, (iii) compact global attractor,

Thus the instability mechanism extends beyond linear analysis into a globally well-
posed nonlinear phase-separation dynamics.

F Functional-Integral Formulation and Semiclassi-

cal Expansion Near the Spinodal Point

Euclidean Functional Integral

Consider the regulated scalar action on a compact Riemannian manifold (M, g):

2
eidl = [ (5190 + Viato) ) dy
M
where the effective potential satisfies

ot (0) = ["(¢o).
The formal Euclidean partition function is

7 - /qu e~ 7589

Critical points satisfy
—C* D¢+ Vig(6) = 0.
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Quadratic Expansion Around a Homogeneous Background

Let ¢ = ¢o + n with ¢y constant.

Expand the action to quadratic order:

Selo] = Selonl + 5 [ 1(=C*8, + Virlow) nels, + 0.

Define the fluctuation operator

O = —Ag + Vir(¢o)-
Let Ayt = =M. Then eigenvalues of O are

le = CQ)VC + elléf((bo)'

Spinodal Regime and Negative Modes

In the spinodal regime,

ot (¢0) < 0.
Then
wi = N — [Vi(do)]-
Negative eigenvalues occur when
s - [Vii(oo)|

c2

Thus only finitely many modes contribute negative directions in the Euclidean action.
The Hessian of Sg has finite Morse index in the regulated spinodal regime.

This contrasts with unregulated backward-parabolic models, where the number of
unstable modes is infinite.
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Gaussian Functional Determinant

To quadratic order,
7 ~ e~ #5elt] (det (’))71/2 )

Split the determinant into positive and negative sectors:

det O = H wi H (—|wi]).

keS,  keS_

The finite number of negative eigenvalues implies

where N_ is the Morse index.

Thus the spinodal point corresponds to a finite-dimensional instability in configuration
space.

Semiclassical Time-Dependent Amplification

Return to Lorentzian signature.

For each unstable mode,
ik — lwilne = 0,
with solutions

e(t) = ApeVI¥ilt 4 Brem VIl

Quantum mechanically, the Hamiltonian for each unstable mode reads

o 1

1 A
Hy = 5, — 5!“}2\7713-

This is the inverted harmonic oscillator.

Mode Occupation Growth

Let the initial state be Gaussian with variance o3.
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Under time evolution,

2

~AD 2 2 . 2
1) = h(2 t) + —5— sinh(2 t).
<77k( )> 0p COS ( |wk| ) 408‘w2| Sin ( ‘wk| )

Hence particle number grows exponentially:

np(t) ~ e2VILilt,

Finite-Mode Quantum Instability

Because the regulator enforces
2
wp — +o0o as k — oo,

only finitely many modes exhibit inverted-oscillator behavior.
Therefore:

In the regulated scalar irruption model, quantum instability is finite-dimensional at
any fixed background configuration.

Effective One-Loop Potential Near the Convexity Boundary

The one-loop correction is

h
Vi (¢0) = 5 D_logu.
k

In the spinodal regime the negative modes generate an imaginary part,

m _h
Im Vi = 5 > o
keS—

This imaginary part signals decay of the unstable homogeneous phase.
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Renormalization-Scale Interpretation of x.g

In Fourier space,
wi = Ak + kegk® + V" (o).

The quartic term improves ultraviolet behavior of loop integrals:

/ d?k 1 / d?k (k )
~ - N .
(2m)? 2k? + Keghk? k4 >

Thus in d < 3 the theory becomes super-renormalizable at one loop.

Effective Field-Theoretic Interpretation

The gradient regulator corresponds to the leading higher-derivative operator in a

derivative expansion:

1 2 Reff 2
L =5(00)"+ —(0o)" — V(9).

Its presence ensures:

(1) finite Morse index, (ii) improved UV behavior, (iii) controlled semiclassical instability.

Semiclassical Picture of Irruption

Near the convexity boundary,

VH(¢0) - 0_7

the lowest unstable eigenvalue approaches zero, and the amplification rate scales as
“Ymin ™~ V |V//(¢O)|

Hence scalar irruption may be interpreted as a semiclassical tunneling-free phase
transition triggered by loss of convexity, with exponential amplification replacing

barrier penetration.
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Conclusion of Functional Appendix

The regulated scalar irruption model:

(i) admits a well-defined Gaussian path integral,
(ii) has finite Morse index in the spinodal regime,
(iii) exhibits inverted-oscillator amplification in a finite mode set,

(iv) improves ultraviolet convergence through the k* term.

G Hamiltonian Structure and Symplectic (Geome-

try of the Regulated Scalar Sector

Canonical Variables and Phase Space

Consider the regulated scalar Lagrangian density on a fixed background spacetime:

L= Lir i Eetagz v
) 2 2 '
Th ical i
€ canonica. momentum 1S aﬁ .
m=— = d)
06

The phase space is
P ={(¢,m) € H (M) x L*(M)},

where H? regularity is required because of the (A¢)? term.

Hamiltonian Functional

The Hamiltonian is

Ho.r = [ (374 SIVoR + 5002 + V) ) iy
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Functional derivatives yield

OH SH

oo e —CPAG + kg NG+ V' ().

Hamiltons equations are therefore
¢ =m,
= AP — kg A2 — V'(9).

Combining yields the regulated fourth-order equation

b — NG+ kg A2+ V'(¢) = 0.

Symplectic Form

The canonical symplectic 2-form on phase space is

Q= / dm(x) Nép(x) duy.
M
For functionals F, G,
0F0G  OF 6G
= —— — —— | du,.
rey= | (6¢ ox o 5¢) o
The flow generated by H satisfies

F ={F H}.

Energy Positivity and Spinodal Instability

The quadratic Hamiltonian around a homogeneous state ¢ is

1 1
H® = §/ (7% + AV + ke (An)* + V" (¢0)n*) iy,

where ¢ = ¢¢ + 7.
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Fourier decomposition yields

1
1O = 23 (fmal? + fll?).
k

with
wp = K + kegk® + V" (o).

If V"(¢o) < 0, then for sufficiently small k,

wi < 0.

Thus H® becomes indefinite but remains bounded from below in the ultraviolet

because

wp — 400 as k — oo,

Finite-Dimensional Unstable Subspace

Define the unstable subspace

U = span {¢y, | wp < 0}.

Because the k* term dominates at large k,

dimU < oo.

Hence the Hamiltonian flow decomposes as
P=USS,

where S is the stable infinite-dimensional subspace.

Stable and Unstable Manifolds

Let (¢, 0) denote the homogeneous equilibrium.
Linearizing Hamiltons equations yields
X = JHX,
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where

Eigenvalues are

>\k =4+ —wi.
Thus unstable directions generate exponential growth:

=i

ne(t) ~ e

The local unstable manifold is finite-dimensional and symplectically orthogonal to the
stable manifold.

No Ostrogradsky Instability

Although the equation is fourth order in space, it remains second order in time.

Therefore the Hamiltonian involves only first-order time derivatives, and no additional

canonical momentum is introduced.

Hence there is no Ostrogradsky instability associated with higher time derivatives.

Conserved Quantities

Time-translation invariance implies

dH
— =0
dt

If V depends only on ¢?, the theory admits a Z, symmetry
¢ = —0.
If spatial translations are present,

P = / Waiqbd#g
is conserved.
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Linear Mode Decoupling

The Hamiltonian splits into independent oscillators:

(Imel* + willmil*) -

N —

H® =)"H,, H=
k

For w? > 0, each mode is a stable harmonic oscillator.

For w} < 0, each mode is an inverted oscillator.

Phase-Space Volume and Liouville Theorem

The Hamiltonian flow preserves the symplectic volume form

QAN

Y

where N is the (formal) dimension of phase space.

Thus scalar irruption corresponds to hyperbolic flow in a finite-dimensional sector of

phase space while preserving global Liouville measure.

The regulated scalar sector:

(i) admits a well-defined symplectic structure,
(i) has a conserved Hamiltonian functional,
iii) contains a finite-dimensional unstable manifold in the spinodal regime,
g
(iv) remains free of higher-time-derivative instabilities.

Thus the dynamical instability underlying scalar irruption is a controlled hyperbolic
sector embedded within a globally Hamiltonian field theory.
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H Spectral Geometry of the Regulated Laplacian
and Weyl Asymptotics

Elliptic Operators on Compact Manifolds

Let (M, g) be a smooth compact d-dimensional Riemannian manifold without bound-

ary. The Laplace—Beltrami operator
Ay C®(M) — CF(M)
is essentially self-adjoint on L*(M) with discrete spectrum
O=X <A <A< —o00
where

— Ay, = N, {4} forms an orthonormal basis of L*(M).

Consider the regulated elliptic operator
A= —CQAg + HeffAf] +m?,

with ¢ > 0 and keg > 0.

Principal Symbol and Strong Ellipticity

The principal symbol of A is

e (A)(,8) = Ketl€]*,

which is positive for all £ # 0.
Hence A is strongly elliptic of order four.

Strong ellipticity implies:

(i) compact resolvent, (ii) discrete spectrum, (iii) finite multiplicities.
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Spectral Representation

Applying A to Laplacian eigenfunctions yields

Ay, = (02)\k + /‘ieﬁ‘)\% + m2) Y.

Define
u)z =N\ + /ieg)\i +m?.

Thus the regulated operator diagonalizes in the Laplacian basis.

Spinodal Condition and Instability Band

Instability occurs when
wi < 0.

Let m? = V" (¢o) with m? < 0.
The condition becomes
ffeﬂ‘)\i + AN +m? < 0.
This is a quadratic inequality in \.
The roots are

—c? £/ — dkogm?

2/191{

A =

Because m? < 0 and keg > 0, the discriminant satisfies
¢t — dkegm? >

and both roots are real with
Ao <0< Ay

Thus instability requires
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Finiteness of the Unstable Sector

Because A\, — oo as k — oo, there exist only finitely many eigenvalues satisfying

A < )\Jr.

Hence the unstable sector
U = span{ty, : \p < A}

is finite-dimensional.

This establishes ultraviolet control rigorously.

Weyl Asymptotics
Weyls law states that the counting function
N(A) = #{A < A}

satisfies
Wq

(2m)4

N(A) ~ Vol(M)A¥?  as A — oo,

where wy is the volume of the unit ball in R%.

Therefore,
dimU = N(\,) ~ Cy Vol(M) A2,

Substituting A, gives

—? +ct — 4neﬁm2>d/2

2 Keff

dimU ~ Cd VOI(M) <

Thus the number of unstable modes scales polynomially with system size and with
the regulator parameters.
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Short-Wavelength Stability

As A\, — oo,
Wi ~ et As — +00.

Hence

wi >0 for all sufficiently large k.

The fourth-order term guarantees spectral positivity in the ultraviolet.

Resolvent Bounds

For A ¢ Spec(A), the resolvent
(A=N"1: LA(M) — HY (M)
is compact.

Thus the spectrum consists only of isolated eigenvalues of finite multiplicity.

Boundary Effects

If M has boundary, impose either:
Dirichlet:
Plom = 0,

or Neumann:

Strong ellipticity persists under standard boundary conditions, and discreteness of the
spectrum remains valid.

Band-Limited Growth

Let 4, = /—w3 for unstable modes.

Then

Yo = — (X + Ke A, + m°) .
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The maximum growth rate occurs at

d
P\ (—02)\ — KA\ — m2) =0,
yielding
U
T 2/{eff.

Because A\ > 0, the physically relevant extremum lies within the admissible range

only when m? is sufficiently negative.
Thus the fastest-growing eigenmode lies strictly within the finite band.

The regulated operator:

(i) is strongly elliptic of order four,
(ii) has discrete spectrum on compact manifolds,
(iii) admits only finitely many unstable modes,

(iv) satisfies Weyl asymptotics in the ultraviolet.

Scalar irruption therefore corresponds to a finite-dimensional spectral bifurcation
within an otherwise elliptic geometric operator.

I Analytic Semigroup Generation and Well-Posedness

Abstract Evolution Formulation

Let (M, g) be a compact Riemannian manifold without boundary. Define the Hilbert

space

H = L*(M),

with domain

D(A) := H*(M),

where A is the fourth-order regulated operator

A= —C2Ag + K/eﬁAz + m2, Kesr > 0.
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The linearized scalar evolution equation may be written as

Sectoriality

Because A is strongly elliptic of order four and self-adjoint on L*(M), it is sectorial.
That is, there exists 6 € (0,7/2) and M > 0 such that the resolvent estimate

M
1A +A) | < B

holds for all A outside a sector

{AeC:larg\| <m—6}.

Generation of Analytic Semigroup

By standard results in semigroup theory for sectorial operators, —A generates a

strongly continuous analytic semigroup

e H - H, t>0.

Thus for any initial data

¢0€H7

there exists a unique mild solution
o(t) = e .
If ¢g € H*(M), the solution is classical and satisfies

6 € C'([0,T); L) N C([0, T]; HY.

Continuous Dependence

The semigroup estimate
HeftAH < Cvewt
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holds for some w € R determined by the spectral bound of A.

Therefore

le(®)llz2 < Ce*||doll e,

establishing continuous dependence on initial data.

Spectral Decomposition of the Semigroup

Using the Laplacian eigenbasis {1},

do =) aiy,

k

the solution evolves as

B(t) = age” "y,

k

where
2 2 2 2
Wy = C A\ + Kefi Aj, + m”.

Unstable modes correspond precisely to w? < 0 and produce exponential growth
elklt,

Because only finitely many such k exist, instability remains finite-dimensional.

Energy Functional and Dissipativity

Define the quadratic energy

1
B0l =5 | (unl g0l + Vol + m*e?) dyy

Then p
a — _1AY26)2,
S Blg] = AV

for the stable sector.

Thus the semigroup is dissipative on the complement of the unstable eigenspace.
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Nonlinear Extension

Consider a nonlinear perturbation

with N locally Lipschitz from H? to L? and of at most polynomial growth.

By standard fixed-point arguments in Banach spaces, there exists T > 0 such that a

unique local solution exists for initial data in H?2.

Global existence holds provided
[6(8) | 122

remains bounded.

Band-Limited Instability and Stable Manifold
Let
H=U®S
be the decomposition into unstable and stable spectral subspaces.
There exists a finite-dimensional unstable manifold tangent to U at ¢ = 0.

The center-stable manifold theorem ensures that nonlinear dynamics near criticality
are governed by the finite-dimensional unstable eigenspace.

The regulated scalar evolution:

(i) generates an analytic semigroup,
(ii) admits unique solutions for admissible initial data,
(iii) has finite-dimensional instability,
(iv) remains ultraviolet well-posed.

Scalar irruption is therefore a controlled spectral bifurcation within a rigorously

well-defined evolution system.
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J Center Manifold Reduction and Amplitude Equa-
tion Near Criticality

Spectral Setup Near the Critical Threshold
Let the regulated linear operator be
A, = —chg + HeﬁAz + i,

where p is a control parameter proportional to the effective entropy curvature (for

example p ~ f”(n) in the coarse-grained description).

Assume there exists a critical value u = . such that
wi* (1e) =0
for a single eigenmode 1, , while all other eigenvalues satisfy

wi(pe) > 0.

Thus the spectrum decomposes as
H = span{ty, } & Hs,

with H, strictly stable.

Nonlinear Evolution Equation

Consider the nonlinear evolution
ath = _Augb +N(¢)a
where N is smooth and at least quadratic:

N(9) =g + N3¢ + -+ .
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Center Manifold Existence

At p = e, the operator has a simple zero eigenvalue. Standard center manifold theory

implies:

There exists a one-dimensional center manifold
We = {AYy, + h(A) : A € R},

where h(A) € H, and
h(A) = O(A?).

Dynamics near ¢ = 0 reduce to dynamics on this manifold.

Amplitude Equation

Write
oz, t) = A(t)r. (x) + h(A(1)).

Projecting the evolution equation onto vy, yields
A=o(p)A - gA® +0(A),

where

o(p) = —wi (1),  g>0

for a supercritical bifurcation (assuming stabilizing cubic nonlinearity).

Normal Form

Near criticality,
o(p) = alp — pe),

with o« > 0.

Thus the reduced normal form becomes

A=a(p—p)A—gA®.
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Steady States

For pu < p.:

A=0
is stable.
For pu > p.:

A=0

is unstable and two nontrivial equilibria appear:

Ay =ty QTR

9

This is a supercritical pitchfork bifurcation.

Finite-Dimensional Reduction

Near the instability threshold, the full PDE reduces to the single ODE
A=a(p—p)A—gA®,

which governs the onset of scalar irruption.

Thus the instability is dynamically finite-dimensional in the precise sense that only
a bounded subset of spectral modes lies within the unstable band determined by
the regulator and background parameters. The nonlinear evolution saturates at
finite amplitude because higher-order terms in the free-energy functional render the
homogeneous branch energetically unfavorable but prevent unbounded descent along
any direction in configuration space. Growth is therefore excluded at arbitrarily small
scales: the ultraviolet sector is controlled by the positive-definite higher-order operator,
which forces the dispersion relation to become strictly stabilizing as the wavenumber
increases. The ensuing nonlinear phase transition is structurally stable under small
perturbations of parameters and initial data, since the bifurcation arises from a change
in the sign of a finite number of eigenvalues rather than from any essential singularity

in the governing operator.

108



Spatial Pattern Formation

The leading-order solution in the broken-symmetry phase is

P(x) ~ ALty (v),

so the spatial structure of the irrupted domain is inherited from the critical Laplacian

eigenmode.

If the critical eigenspace is multi-dimensional (e.g., degeneracy on symmetric mani-

folds), the reduced dynamics generalize to a vector amplitude equation
A =0A — g|A’A,

yielding pattern-selection dynamics.

Interpretation

The scalar irruption transition may therefore be characterized in several mathematically
equivalent ways. It appears first as a spectral instability occurring at the critical
condition , where a discrete mode crosses from positive to negative effective frequency
squared. In parameter space, this transition constitutes a codimension-one bifurcation,
since it is triggered by the variation of a single effective control parameter—such as the
curvature or the regulator-weighted compressibility—through a critical value. Near
threshold, the dynamics reduce to a finite-dimensional amplitude system governed by
the unstable eigenspace, with higher modes remaining linearly stable and slaved to the
dominant growing sector. Under generic stabilizing nonlinearities in the free-energy
functional, the bifurcation is supercritical, leading to bounded pattern formation
rather than runaway divergence and thus defining a controlled phase transition in the
scalar sector.

No ultraviolet catastrophe arises because:

(i) only finitely many modes destabilize,
(ii) higher modes remain strictly damped,

(iii) nonlinear saturation bounds amplitude.
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Corollary: Entropic Criticality

If 1 is identified with the coarse-grained entropy curvature parameter,
X _f//<ﬁ)7
then the transition g = p. corresponds precisely to crossing the spinodal boundary.

Scalar irruption is thus the dynamical realization of entropic criticality.

The regulated scalar system undergoes a mathematically standard supercritical bifur-
cation with:

finite-dimensional instability, bounded amplitude, structurally stable phase selection.

The instability is therefore not merely spectral but dynamically organized by a universal
amplitude equation near threshold.

K Derived Critical Locus and Homotopy-Type Tran-

sition
Variational Setup

Let M be a compact Riemannian manifold without boundary and consider the classical
action functional

Sald] = fu (SIVOP + S8 + V(6i)) day,
V7 (O;) = p.

The EulerLagrange equation is

B(6) = —2 Ay + ke D20 + V(65 1) = 0.

Define the critical locus

Crit(Sa) = {6 € HY (M) : £(¢) = 0}.
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Hessian and Morse Index

The second variation at ¢ = 0 is

5250(0) = [y (VP + kel A0l + ) dy

In spectral coordinates relative to Laplacian eigenfunctions v satisfying
-Aghy = Nty

Qi(p) = AN + Kot A + 1.

The Morse index of the trivial critical point is

Ind(0;0) = #{k : Qp(n) < 0}.

For p sufficiently positive, all (), > 0 and the index vanishes. At critical parameter
values satisfying

Qk* (MC) = 07

Change in Critical Topology

Let i < pe so that Qy, (1) < 0 for a finite set of modes. Then the trivial solution ¢ = 0
is no longer a local minimum but a saddle with Morse index equal to the number of

unstable eigenvalues.

By the Morse lemma, near nondegenerate critical points the action is locally equivalent

to
Sa=—x%—---—22 +y?+ -+ y2 + higher-order terms.
When a single eigenvalue crosses zero, the topology of the sublevel sets

{ (b : Scl[(b] S C}

Thus the lamphronlamphrodyne transition corresponds to a change in the Morse index
of the trivial configuration and therefore to a change in the homotopy type of the
configuration space sublevel sets.

Derived Critical Locus

In the BV formalism, the classical equations define the critical locus as a derived

scheme
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RCrit(Sa) = Spec (Sym(Ty[~1]))
D = DE(¢).

At ¢ = 0, this operator is

Dy = —PAy + keg A2 + 1.

For u # p., the complex

H4(M) 2% L2(M)

At = p., the kernel acquires a nontrivial finite-dimensional component spanned by

the critical eigenmodes.

Thus the derived critical locus acquires higher homology in degree —1, corresponding

to new ghost-number-one directions in the BV complex.

Homotopy-Type Transition

Let X, = Crit(Sa; i) denote the classical solution space. Then as p crosses p:
The trivial solution loses nondegeneracy.
New nontrivial branches of solutions emerge, parameterized by the center manifold.

The homotopy type of X, changes by attachment of cells corresponding to unstable
modes.

In derived language, the cotangent complex

Lx

o

Geometric Interpretation of Lamphron and Lamphrodyne States
Lamphron states correspond to regions in parameter space where the Hessian of the
action is positive definite and the critical locus is discrete and nondegenerate.

Lamphrodyne states correspond to regions where the Hessian becomes indefinite, the
Morse index increases, and new branches of solutions appear.

Thus the lamphronlamphrodyne distinction is equivalent to the statement that the
classical moduli space undergoes a bifurcation with a change in derived structure.
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Spectral Flow Interpretation

Let D(u) denote the linearized operator. The spectral flow of D(u) through zero
counts the net number of eigenvalues changing sign as p varies.

The spectral flow equals the change in Morse index:

SF(D;u.) = Alnd.

This spectral flow measures precisely the number of new unstable directions and
therefore the dimension of the emerging center manifold.

The lamphronlamphrodyne transition is not merely analytic instability but a genuine
change in the topology of the critical locus of the action functional.

In classical terms, it is a Morse bifurcation.

In derived terms, it is a modification of the cotangent complex and of the homotopy
type of the moduli space of solutions.

In dynamical terms, it coincides with the emergence of finite-dimensional amplitude
dynamics.

The entropic sign reversal therefore manifests simultaneously as spectral flow, Morse
index jump, center-manifold bifurcation, and derived geometric transition.

L Renormalization of the Gradient Regulator and
Effective Field Theory Scaling

Consider the regulated action on a compact Riemannian manifold (M, g)

S[6] = Ju (5(00)° + 5(840)° + V(9)) dpsg,

In flat space with Euclidean signature and metric J;;, the quadratic part reads
So = £ [ d'x (8,000 + k(A¢)* + m?¢?),

Passing to momentum space,

S,=17f (gj';d (k) (K 4 kk* + m?) o(—Fk).
The propagator is therefore

G(k) = 1

k24+-kki4m?2.

113



For k — oo, one has
G(k) ~ N—}&,

Let A denote a momentum cutoff. Integrating out modes in the shell A/b < |k| < A
with b > 1 generates renormalized couplings. Under the Wilsonian rescaling

k — k' = bk, x— x' =z/b,

$(x) = b2 (2'),

[ dix (00)* — bi=228 [ ' (9'¢')>.

The regulator term scales as

[ diz k(A)? — K bTH286 [ ddz!(A'¢)2.

Using A, = (d — 2)/2, the scaling exponent of « is
d-4+d-2=2d-6,

k] = —1.

Thus k has dimensions of length squared and is irrelevant in the renormalization-group
sense at low momenta but dominates in the ultraviolet. This establishes that the
gradient regulator is naturally interpreted as a higher-derivative correction in an
effective field theory valid below a coarse-graining scale £ ~ /k.

In curved spacetime, one replaces k* by eigenvalues of —A,. The same asymptotic
argument applies because Weyls law implies that large eigenvalues scale as Ay ~ k?/?

in counting measure, and the quartic term dominates asymptotically.

Therefore the regulator defines an effective theory with controlled ultraviolet behavior

and a natural coarse-graining scale. Its renormalization produces subleading corrections

2

to m* and to the quartic coupling in V' (¢) but does not destabilize the ultraviolet

completeness of the linearized operator so long as k > 0.

M Measure-Theoretic Entropy Functional and Coarse-

Graining Limits

Let (M, B, i) be a finite measure space with (M) = 1 for normalization. Let
p € LY M,p) with p >0 and [ p,du=1.

Define the Shannon entropy functional
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Slp] = — [y plog pdp.

For p absolutely continuous with respect to u, S is well-defined and concave on the

convex set of probability densities.

Let P¢ denote a coarse-graining operator defined by convolution with a mollifier K¢,
pe(x) = (Pep)(x) = [1 Ko, y)p(y) duly),

Then p, defines a smoothed density. By Jensens inequality,

Slpd = Slol,

Consider now a free-energy functional

Flo] = [ (f(p) + 5IVpl*) dpg,

In the limit £ — 0, one has p, — p in L', and the gradient term converges in the sense
of distributions provided p € H*(M).

Under successive coarse-graining scales ¢, — (., the functional F flows to an effective

functional

Fei[p] = [ (fer(p) + "2V p[?) dpsg,

In measure-theoretic terms, the lamphronlamphrodyne transition corresponds to the

change in sign of the second variation

82 F ool (,) = [ (F"(po)? + KIVU[2) dp.

When f”(pg) > 0, the quadratic form is positive definite in H'(M). When f”(py) < 0,
the form becomes indefinite but remains bounded below due to the gradient term.

Thus in the weak topology of H*', the entropy functional admits a well-defined second
variation and a controlled instability band characterized by the competition between
the concavity of f and the Sobolev norm induced by k.

From the standpoint of probability measures, the instability does not violate conserva-
tion of total mass

Sy pdp=1,

This measure-theoretic formulation makes explicit that the instability is not a violation
of normalization or of conservation but a redistribution in the space of densities
governed by a concaveconvex competition in the free-energy functional.
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N Well-Posedness, Semigroup Generation, and Spec-

tral Band Structure of the Regulated Operator

Let (M, g) be a smooth compact Riemannian manifold without boundary. Consider
the linearized regulated scalar operator acting on H?(M),

L:-/ﬁA§+aAg+m2,

Self-adjointness and ellipticity

Since —A, is a positive self-adjoint operator on L*(M) with discrete spectrum \gpo,
and since A} is also self-adjoint with domain H*(M), it follows that £ is essentially
self-adjoint on C*°(M) and extends to a self-adjoint operator on L*(M) with domain
HY(M).

The principal symbol of L is

prin (L) (7, §) = K€,

Spectral decomposition

Let —Ayt, = A\ be an orthonormal eigenbasis of L*(M), with 0 = Mg < A\; < Xy <
. and A\, — oo.

Then

L ¢y = (KA; — aXg + m?) Y.

Denote the eigenvalues of £ by

W = KA: — a)\, + m?.

The spectrum is discrete and unbounded above because iy ~ kA7 as k — o0o.

Semigroup generation

Define the operator

A=-L.
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Since L is self-adjoint and bounded below, A is self-adjoint and bounded above. The
HilleYosida theorem implies that A generates a strongly continuous semigroup e4 on

L*(M).
Explicitly, for initial data ¢g € L*(M),

Pt) = e o = D0ty e (do, Vi) V-

Hence the Cauchy problem is well posed in L?(M), and in fact in H*(M) for all s > 0
by elliptic regularity.

Band-limited instability

Instability corresponds to modes with uy < 0. Since py is a quadratic polynomial in
)\kv

w(A) = A% — a\ +m?.

If a > 0, the quadratic has a minimum at

A = o

2K

a?

Hmin = m2 ~ 4n-

Instability occurs if and only if
2 2

m= < -

In that case the inequality p(A) < 0 holds for A in the interval

Al <A< Ay,
__ a*Va?—4km?
)\:l: —_— T.

Since A\ — o0, only finitely many eigenvalues lie in this interval. Therefore the
unstable spectrum is finite-dimensional.

In particular, the number of unstable modes equals the number of Laplacian eigenvalues
Ak contained in (A_, Ay).

Ultraviolet control

Because p; ~ kA2 as A\, — 00, one has
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W — +oo as k — oo.

Thus high-frequency modes are strictly stable. The instability, when present, is

necessarily band-limited and cannot extend to arbitrarily large wavenumber.

Energy estimate

Define the quadratic energy functional
El¢] = 5 [ (5(2g0)* — al Vo[ +m?¢?) d,.
Then for smooth solutions of 0, = —L¢,

d

datl|gl17 o =—2(¢,LE) =23y, | (b,0n) -

Therefore, growth occurs only along the finite set of eigenfunctions with p; < 0, and
the growth rate is exactly |ug| in each such eigendirection.

The regulated fourth-order operator is uniformly elliptic, generates a strongly con-
tinuous semigroup, possesses a discrete spectrum with finite unstable band when
parameters satisfy the instability condition, and enforces strict ultraviolet stabilization
through the kA2 term. The instability is therefore spectrally confined, mathematically
well posed, and structurally compatible with conservative evolution in a compact
spatial domain.
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