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Preface

This book will introduce you to the fundamentals of machine learning through Ten‐
sorFlow. TensorFlow is Google’s new software library for deep learning that makes it
straightforward for engineers to design and deploy sophisticated deep learning archi‐
tectures. You will learn how to use TensorFlow to build systems capable of detecting
objects in images, understanding human text, and predicting the properties of poten‐
tial medicines. Furthermore, you will gain an intuitive understanding of TensorFlow’s
potential as a system for performing tensor calculus and will learn how to use Tensor‐
Flow for tasks outside the traditional purview of machine learning.

Importantly, TensorFlow for Deep Learning is one of the first deep learning books
written for practitioners. It teaches fundamental concepts through practical examples
and builds understanding of machine learning foundations from the ground up. The
target audience for this book is practicing developers, who are comfortable with
designing software systems, but not necessarily with creating learning systems. At
times we use some basic linear algebra and calculus, but we will review all necessary
fundamentals. We also anticipate that our book will prove useful for scientists and
other professionals who are comfortable with scripting, but not necessarily with
designing learning algorithms.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.
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Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/matroid/dlwithtf.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “TensorFlow for Deep Learning by
Bharath Ramsundar and Reza Bosagh Zadeh (O’Reilly). Copyright 2018 Reza Zadeh,
Bharath Ramsundar, 978-1-491-98045-3.”
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If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Safari
Safari (formerly Safari Books Online) is a membership-based
training and reference platform for enterprise, government,
educators, and individuals.

Members have access to thousands of books, training videos, Learning Paths, interac‐
tive tutorials, and curated playlists from over 250 publishers, including O’Reilly
Media, Harvard Business Review, Prentice Hall Professional, Addison-Wesley Profes‐
sional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco Press,
John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe
Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, and
Course Technology, among others.

For more information, please visit http://oreilly.com/safari.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/tensorflowForDeepLearning.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia
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CHAPTER 1

Introduction to Deep Learning

Deep learning has revolutionized the technology industry. Modern machine transla‐
tion, search engines, and computer assistants are all powered by deep learning. This
trend will only continue as deep learning expands its reach into robotics, pharma‐
ceuticals, energy, and all other fields of contemporary technology. It is rapidly becom‐
ing essential for the modern software professional to develop a working knowledge of
the principles of deep learning.

In this chapter, we will introduce you to the history of deep learning, and to the
broader impact deep learning has had on the research and commercial communities.
We will next cover some of the most famous applications of deep learning. This will
include both prominent machine learning architectures and fundamental deep learn‐
ing primitives. We will end by giving a brief perspective of where deep learning is
heading over the next few years before we dive into TensorFlow in the next few
chapters.

Machine Learning Eats Computer Science
Until recently, software engineers went to school to learn a number of basic algo‐
rithms (graph search, sorting, database queries, and so on). After school, these engi‐
neers would go out into the real world to apply these algorithms to systems. Most of
today’s digital economy is built on intricate chains of basic algorithms laboriously
glued together by generations of engineers. Most of these systems are not capable of
adapting. All configurations and reconfigurations have to be performed by highly
trained engineers, rendering systems brittle.

Machine learning promises to change the field of software development by enabling
systems to adapt dynamically. Deployed machine learning systems are capable of
learning desired behaviors from databases of examples. Furthermore, such systems

1



can be regularly retrained as new data comes in. Very sophisticated software systems,
powered by machine learning, are capable of dramatically changing their behavior
without major changes to their code (just to their training data). This trend is only
likely to accelerate as machine learning tools and deployment become easier and
easier.

As the behavior of software-engineered systems changes, the roles of software engi‐
neers will change as well. In some ways, this transformation will be analogous to the
transformation following the development of programming languages. The first com‐
puters were painstakingly programmed. Networks of wires were connected and inter‐
connected. Then punchcards were set up to enable the creation of new programs
without hardware changes to computers. Following the punchcard era, the first
assembly languages were created. Then higher-level languages like Fortran or Lisp.
Succeeding layers of development have created very high-level languages like Python,
with intricate ecosystems of precoded algorithms. Much modern computer science
even relies on autogenerated code. Modern app developers use tools like Android
Studio to autogenerate much of the code they’d like to make. Each successive wave of
simplification has broadened the scope of computer science by lowering barriers to
entry.

Machine learning promises to lower barriers even further; programmers will soon be
able to change the behavior of systems by altering training data, possibly without
writing a single line of code. On the user side, systems built on spoken language and
natural language understanding such as Alexa and Siri will allow nonprogrammers to
perform complex computations. Furthermore, ML powered systems are likely to
become more robust against errors. The capacity to retrain models will mean that
codebases can shrink and that maintainability will increase. In short, machine learn‐
ing is likely to completely upend the role of software engineers. Today’s programmers
will need to understand how machine learning systems learn, and will need to under‐
stand the classes of errors that arise in common machine learning systems. Further‐
more, they will need to understand the design patterns that underlie machine
learning systems (very different in style and form from classical software design pat‐
terns). And, they will need to know enough tensor calculus to understand why a
sophisticated deep architecture may be misbehaving during learning. It’s not an
understatement to say that understanding machine learning (theory and practice)
will become a fundamental skill that every computer scientist and software engineer
will need to understand for the coming decade.

In the remainder of this chapter, we will provide a whirlwind tour of the basics of
modern deep learning. The remainder of this book will go into much greater depth
on all the topics we touch on here.
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Deep Learning Primitives
Most deep architectures are built by combining and recombining a limited set of
architectural primitives. Such primitives, typically called neural network layers, are
the foundational building blocks of deep networks. In the rest of this book, we will
provide in-depth introductions to such layers. However, in this section, we will pro‐
vide a brief overview of the common modules that are found in many deep networks.
This section is not meant to provide a thorough introduction to these modules.
Rather, we aim to provide a rapid overview of the building blocks of sophisticated
deep architectures to whet your appetite. The art of deep learning consists of combin‐
ing and recombining such modules and we want to show you the alphabet of the lan‐
guage to start you on the path to deep learning expertise.

Fully Connected Layer
A fully connected network transforms a list of inputs into a list of outputs. The trans‐
formation is called fully connected since any input value can affect any output value.
These layers will have many learnable parameters, even for relatively small inputs, but
they have the large advantage of assuming no structure in the inputs. This concept is
illustrated in Figure 1-1.

Figure 1-1. A fully connected layer. Inbound arrows represent inputs, while outbound
arrows represent outputs. The thickness of interconnecting lines represents the magnitude
of learned weights. The fully connected layer transforms inputs into outputs via the
learned rule.

Deep Learning Primitives | 3



Convolutional Layer
A convolutional network assumes special spatial structure in its input. In particular, it
assumes that inputs that are close to each other spatially are semantically related. This
assumption makes most sense for images, since pixels close to one another are likely
semantically linked. As a result, convolutional layers have found wide use in deep
architectures for image processing. This concept is illustrated in Figure 1-2.

Just like fully connected layers transform lists to lists, convolutional layers transform
images into images. As a result, convolutional layers can be used to perform complex
image transformations, such as applying artistic filters to images in photo apps.

Figure 1-2. A convolutional layer. The red shape on the left represents the input data,
while the blue shape on the right represents the output. In this particular case, the input
is of shape (32, 32, 3). That is, the input is a 32-pixel-by-32-pixel image with three RGB
color channels. The highlighted region in the red input is a “local receptive field,” a group
of inputs that are processed together to create the highlighted region in the blue output.

Recurrent Neural Network Layers
Recurrent neural network (RNN) layers are primitives that allow neural networks to
learn from sequences of inputs. This layer assumes that the input evolves from step to
step following a defined update rule that can be learned from data. This update rule
presents a prediction of the next state in the sequence given all the states that have
come previously. An RNN is illustrated in Figure 1-3.

An RNN layer can learn this update rule from data. As a result, RNNs are very useful
for tasks such as language modeling, where engineers seek to build systems that can
predict the next word users will type from history.
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Figure 1-3. A recurrent neural network (RNN). Inputs are fed into the network at the
bottom, and outputs extracted at the top. W represents the learned transformation
(shared at all timesteps). The network is represented conceptually on the left and is
unrolled on the right to demonstrate how inputs from different timesteps are processed.

Long Short-Term Memory Cells
The RNN layers presented in the previous section are capable of learning arbitrary
sequence-update rules in theory. In practice, however, such layers are incapable of
learning influences from the distant past. Such distant influences are crucial for per‐
forming solid language modeling since the meaning of a complex sentence can
depend on the relationship between far-away words. The long short-term memory
(LSTM) cell is a modification to the RNN layer that allows for signals from deeper in
the past to make their way to the present. An LSTM cell is illustrated in Figure 1-4.

Figure 1-4. A long short-term memory (LSTM) cell. Internally, the LSTM cell has a set of
specially designed operations that attain much of the learning power of the vanilla RNN
while preserving influences from the past. Note that the illustration depicts one LSTM
variant of many.
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Deep Learning Architectures
There have been hundreds of different deep learning models that combine the deep
learning primitives presented in the previous section. Some of these architectures
have been historically important. Others were the first presentations of novel designs
that influenced perceptions of what deep learning could do.

In this section, we present a selection of different deep learning architectures that
have proven influential for the research community. We want to emphasize that this
is an episodic history that makes no attempt to be exhaustive. There are certainly
important models in the literature that have not been presented here.

LeNet
The LeNet architecture is arguably the first prominent “deep” convolutional architec‐
ture. Introduced in 1988, it was used to perform optical character recoginition (OCR)
for documents. Although it performed its task admirably, the computational cost of
the LeNet was extreme for the computer hardware available at the time, so the design
languished in (relative) obscurity for a few decades after its creation. This architec‐
ture is illustrated in Figure 1-5.

Figure 1-5. The LeNet architecture for image processing. Introduced in 1988, it was argu‐
ably the first deep convolutional model for image processing.

AlexNet
The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) was first organ‐
ized in 2010 as a test of the progress made in visual recognition systems. The organiz‐
ers made use of Amazon Mechanical Turk, an online platform to connect workers to
requesters, to catalog a large collection of images with associated lists of objects
present in the image. The use of Mechanical Turk permitted the curation of a collec‐
tion of data significantly larger than those gathered previously.

The first two years the challenge ran, more traditional machine-learned systems that
relied on systems like HOG and SIFT features (hand-tuned visual feature extraction
methods) triumphed. In 2012, the AlexNet architecture, based on a modification of
LeNet run on powerful graphics processing units (GPUs), entered and dominated the
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challenge with error rates half that of the nearest competitors. This victory dramati‐
cally galvanized the (already nascent) trend toward deep learning architectures in
computer vision. The AlexNet architecture is illustrated in Figure 1-6.

Figure 1-6. The AlexNet architecture for image processing. This architecture was the win‐
ning entry in the ILSVRC 2012 challenge and galvanized a resurgence of interest in con‐
volutional architectures.

ResNet
Since 2012, convolutional architectures consistently won the ILSVRC challenge
(along with many other computer vision challenges). Each year the contest was held,
the winning architecture increased in depth and complexity. The ResNet architecture,
winner of the ILSVRC 2015 challenge, was particularly notable; ResNet architectures
extended up to 130 layers deep, in contrast to the 8-layer AlexNet architecture.

Very deep networks historically were challenging to learn; when networks grow this
deep, they run into the vanishing gradients problem. Signals are attenuated as they
progress through the network, leading to diminished learning. This attenuation can
be explained mathematically, but the effect is that each additional layer multiplica‐
tively reduces the strength of the signal, leading to caps on the effective depth of
networks.

The ResNet introduced an innovation that controlled this attenuation: the bypass
connection. These connections allow part of the signal from deeper layers to pass
through undiminished, enabling significantly deeper networks to be trained effec‐
tively. The ResNet bypass connection is illustrated in Figure 1-7.
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Figure 1-7. The ResNet cell. The identity connection on the righthand side permits an
unmodified version of the input to pass through the cell. This modification allows for the
effective training of very deep convolutional architectures.

Neural Captioning Model
As practitioners became more comfortable with the use of deep learning primitives,
they experimented with mixing and matching primitive modules to create higher-
order systems that could perform more complex tasks than basic object detection.
Neural captioning systems automatically generate captions for the contents of images.
They do so by combining a convolutional network, which extracts information from
images, with an LSTM layer that generates a descriptive sentence for the image. The
entire system is trained end-to-end. That is, the convolutional network and the LSTM
network are trained together to achieve the desired goal of generating descriptive sen‐
tences for provided images.

This end-to-end training is one of the key innovations powering modern deep learn‐
ing systems since it lessens the need for complicated preprocessing of inputs. Image
captioning models that don’t use deep learning would have to use complicated image
featurization methods such as SIFT, which can’t be trained alongside the caption gen‐
erator.

A neural captioning model is illustrated in Figure 1-8.
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Figure 1-8. A neural captioning architecture. Relevant input features are extracted from
the input image using a convolutional network. Then a recurrent network is used to gen‐
erate a descriptive sentence.

Google Neural Machine Translation
Google’s neural machine translation (Google-NMT) system uses the paradigm of
end-to-end training to build a production translation system, which takes sentences
from the source language directly to the target language. The Google-NMT system
depends on the fundamental building block of the LSTM, which it stacks over a
dozen times and trains on an extremely large dataset of translated sentences. The
final architecture provided for a breakthrough advance in machine-translation by
cutting the gap between human and machine translations by up to 60%. The Google-
NMT architecture is illustrated in Figure 1-9.
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Figure 1-9. The Google neural machine translation system uses a deep recurrent archi‐
tecture to process the input sentence and a second deep recurrent architecture to generate
the translated output sentence.

One-Shot Models
One-shot learning is perhaps the most interesting new idea in machine/deep learn‐
ing. Most deep learning techniques typically require very large amounts of data to
learn meaningful behavior. The AlexNet architecture, for example, made use of the
large ILSVRC dataset to learn a visual object detector. However, much work in cogni‐
tive science has indicated that humans can learn complex concepts from just a few
examples. Take the example of baby learning about giraffes for the first time. A baby
shown a single giraffe at the zoo might be capable of learning to recognize all giraffes
she sees from then on.

Recent progress in deep learning has started to invent architectures capable of similar
learning feats. Given only a few examples of a concept (but given ample sources of
side information), such systems can learn to make meaningful predictions with very
few datapoints. One recent paper (by an author of this book) used this idea to demon‐
strate that one-shot architectures can learn even in contexts babies can’t, such as in
medical drug discovery. A one-shot architecture for drug discovery is illustrated in
Figure 1-10.
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Figure 1-10. The one-shot architecture uses a type of convolutional network to transform
each molecule into a vector. The vector for styrene oxide is compared with vectors from
the experimental dataset. The label for the most similar datapoint (tosylic acid) is impu‐
ted for the query.
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AlphaGo
Go is an ancient board game, widely influential in Asia. Computer Go has been a
major challenge for computer science since the late 1960s. Techniques that enabled
the computer chess system Deep Blue to beat chess grandmaster Garry Kasparov in
1997 don’t scale to Go. Part of the issue is that Go has a much bigger board than
chess; Go boards are of size 19 × 19 as opposed to 8 × 8 for chess. Since far more
moves are possible per step, the game tree of possible Go moves expands much more
quickly, rendering brute force search with contemporary computer hardware insuffi‐
cient for adequate Go gameplay. Figure 1-11 illustrates a Go board.

Figure 1-11. An illustration of a Go board. Players alternately place white and black
pieces on a 19 × 19 grid.

Master level computer Go was finally achieved by AlphaGo from Google DeepMind.
AlphaGo proved capable of defeating one of the world’s strongest Go champions, Lee
Sedol, in a five-game match. Some of the key ideas from AlphaGo include the use of a
deep value network and deep policy network. The value network provides an esti‐
mate of the value of a board position. Unlike chess, it’s very difficult to guess whether
white or black is winning in Go from the board state. The value network solves this
problem by learning to make this prediction from game outcomes. The policy net‐
work, on the other hand, helps estimate the best move to take given a current board
state. The combination of these two techniques with Monte Carlo Tree search (a clas‐
sical search method) helped overcome the large branching factor in Go games. The
basic AlphaGo architecture is illustrated in Figure 1-12.
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Figure 1-12. A) Depiction of AlphaGo’s architecture. Initially a policy network to select
moves is trained on a dataset of expert games. This policy is then refined by self-play.
“RL” indicates reinforcement learning and “SL” indicates supervised learning. B) Both the
policy and value networks operate on representations of the game board.

Generative Adversarial Networks
Generative adversarial networks (GANs) are a new type of deep network that uses
two competing neural networks, the generator and the adversary (also called the dis‐
criminator), which duel against each other. The generator tries to draw samples from
a training distribution (for example, tries to generate realistic images of birds). The
discriminator works on differentiating samples drawn from the generator from true
data samples. (Is a particular bird a real image or generator-created?) This “adversa‐
rial” training for GANs seems capable of generating image samples of considerably
higher fidelity than other techniques and may be useful for training effective discrim‐
inators with limited data. A GAN architecture is illustrated in Figure 1-13.
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Figure 1-13. A conceptual depiction of a generative adversarial network (GAN).

GANs have proven capable of generating very realistic images, and will likely power
the next generation of computer graphics tools. Samples from such systems are now
approaching photorealism. However, many theoretical and practical caveats still
remain to be worked out with these systems and much research is still needed.

Neural Turing Machines
Most of the deep learning systems presented so far have learned complex functions
with limited domains of applicability; for example, object detection, image caption‐
ing, machine translation, or Go game-play. But, could we perhaps have deep architec‐
tures that learn general algorithmic concepts such as sorting, addition, or
multiplication?

The Neural Turing machine (NTM) is a first attempt at making a deep learning archi‐
tecture capable of learning arbitrary algorithms. This architecture adds an external
memory bank to an LSTM-like system, to allow the deep architecture to make use of
scratch space to compute more sophisticated functions. At the moment, NTM-like
architectures are still quite limited, and only capable of learning simple algorithms.
Nevertheless, NTM methods remain an active area of research and future advances
may transform these early demonstrations into practical learning tools. The NTM
architecture is conceptually illustrated in Figure 1-14.
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Figure 1-14. A conceptual depiction of a Neural Turing machine. It adds an external
memory bank to which the deep architecture reads and writes.

Deep Learning Frameworks
Researchers have been implementing software packages to facilitate the construction
of neural network (deep learning) architectures for decades. Until the last few years,
these systems were mostly special purpose and only used within an academic group.
This lack of standardized, industrial-strength software made it difficult for non-
experts to use neural networks extensively.

This situation has changed dramatically over the last few years. Google implemented
the DistBelief system in 2012 and made use of it to construct and deploy many sim‐
pler deep learning architectures. The advent of DistBelief, and similar packages such
as Caffe, Theano, Torch, Keras, MxNet, and so on have widely spurred industry
adoption.

TensorFlow draws upon this rich intellectual history, and builds upon some of these
packages (Theano in particular) for design principles. TensorFlow (and Theano) in
particular use the concept of tensors as the fundamental underlying primitive power‐
ing deep learning systems. This focus on tensors distinguishes these packages from
systems such as DistBelief or Caffe, which don’t allow the same flexibility for building
sophisticated models.

While the rest of this book will focus on TensorFlow, understanding the underlying
principles should enable you to take the lessons learned and apply them with little
difficulty to alternative deep learning frameworks.
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Limitations of TensorFlow
One of the major current weaknesses of TensorFlow is that constructing a new deep
learning architecture is relatively slow (on the order of multiple seconds to initialize
an architecture). As a result, it’s not convenient in TensorFlow to construct some
sophisticated deep architectures that change their structure dynamically. One such
architecture is the TreeLSTM, which uses syntactic parse trees of English sentences to
perform tasks that require understanding of natural language. Since each sentence
has a different parse tree, each sentence requires a slightly different architecture.
Figure 1-15 illustrates the TreeLSTM architecture.

Figure 1-15. A conceptual depiction of a TreeLSTM architecture. The shape of the tree is
different for each input datapoint, so a different computational graph must be construc‐
ted for each example.

While such models can be implemented in TensorFlow, doing so requires significant
ingenuity due to the limitations of the current TensorFlow API. New frameworks
such as Chainer, DyNet, and PyTorch promise to remove these barriers by making
the construction of new architectures lightweight enough so that models like the
TreeLSTM can be constructed easily. Luckily, TensorFlow developers are already
working on extensions to the base TensorFlow API (such as TensorFlow Eager) that
will enable easier construction of dynamic architectures.

One takeaway is that progress in deep learning frameworks is rapid, and today’s novel
system can be tomorrow’s old news. However, the fundamental principles of the
underlying tensor calculus date back centuries, and will stand readers in good stead
regardless of future changes in programming models. This book will emphasize using
TensorFlow as a vehicle for developing an intuitive knowledge of the underlying ten‐
sor calculus.
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Review
In this chapter, we’ve explained why deep learning is a subject of critical importance
for the modern software engineer and taken a whirlwind tour of a number of deep
architectures. In the next chapter, we will start exploring TensorFlow, Google’s frame‐
work for constructing and training deep architectures. In the chapters after that, we
will dive deep into a number of practical examples of deep architectures.

Machine learning (and deep learning in particular), like much of computer science, is
a very empirical discipline. It’s only really possible to understand deep learning
through significant practical experience. For that reason, we’ve included a number of
in-depth case studies throughout the remainder of this book. We encourage you to
delve into these examples and to get your hands dirty experimenting with your own
ideas using TensorFlow. It’s never enough to understand algorithms only theoreti‐
cally!
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CHAPTER 2

Introduction to TensorFlow Primitives

This chapter will introduce you to fundamental aspects of TensorFlow. In particular,
you will learn how to perform basic computation using TensorFlow. A large part of
this chapter will be spent introducing the concept of tensors, and discussing how ten‐
sors are represented and manipulated within TensorFlow. This discussion will neces‐
sitate a brief overview of some of the mathematical concepts that underlie tensorial
mathematics. In particular, we’ll briefly review basic linear algebra and demonstrate
how to perform basic linear algebraic operations with TensorFlow.

We’ll follow this discussion of basic mathematics with a discussion of the differences
between declarative and imperative programming styles. Unlike many programming
languages, TensorFlow is largely declarative. Calling a TensorFlow operation adds a
description of a computation to TensorFlow’s “computation graph.” In particular,
TensorFlow code “describes” computations and doesn’t actually perform them. In
order to run TensorFlow code, users need to create tf.Session objects. We introduce
the concept of sessions and describe how users perform computations with them in
TensorFlow.

We end the chapter by discussing the notion of variables. Variables in TensorFlow
hold tensors and allow for stateful computation that modifies variables to occur. We
demonstrate how to create variables and update their values via TensorFlow.

Introducing Tensors
Tensors are fundamental mathematical constructs in fields such as physics and engi‐
neering. Historically, however, tensors have made fewer inroads in computer science,
which has traditionally been more associated with discrete mathematics and logic.
This state of affairs has started to change significantly with the advent of machine
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learning and its foundation on continuous, vectorial mathematics. Modern machine
learning is founded upon the manipulation and calculus of tensors.

Scalars, Vectors, and Matrices
To start, we will give some simple examples of tensors that you might be familiar
with. The simplest example of a tensor is a scalar, a single constant value drawn from
the real numbers (recall that the real numbers are decimal numbers of arbitrary pre‐
cision, with both positive and negative numbers permitted). Mathematically, we
denote the real numbers by ℝ. More formally, we call a scalar a rank-0 tensor.

Aside on Fields

Mathematically sophisticated readers will protest that it’s entirely
meaningful to define tensors based on the complex numbers, or
with binary numbers. More generally, it’s sufficient that the num‐
bers come from a field: a mathematical collection of numbers
where 0, 1, addition, multiplication, subtraction, and division are
defined. Common fields include the real numbers ℝ, the rational
numbers ℚ, the complex numbers ℂ, and finite fields such as ℤ2.
For simplicity, in much of the discussion, we will assume real val‐
ued tensors, but substituting in values from other fields is entirely
reasonable.

If scalars are rank-0 tensors, what constitutes a rank-1 tensor? Formally, speaking, a
rank-1 tensor is a vector; a list of real numbers. Traditionally, vectors are written as
either column vectors

a
b

or as row vectors

a b

Notationally, the collection of all column vectors of length 2 is denoted ℝ2 × 1 while
the set of all row vectors of length 2 is ℝ1 × 2. More computationally, we might say
that the shape of a column vector is (2, 1), while the shape of a row vector is (1, 2). If
we don’t wish to specify whether a vector is a row vector or column vector, we can say
it comes from the set ℝ2 and has shape (2). This notion of tensor shape is quite
important for understanding TensorFlow computations, and we will return to it later
on in this chapter.
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One of the simplest uses of vectors is to represent coordinates in the real world. Sup‐
pose that we decide on an origin point (say the position where you’re currently stand‐
ing). Then any position in the world can be represented by three displacement values
from your current position (left-right displacement, front-back displacement, up-
down displacement). Thus, the set of vectors (vector space) ℝ3 can represent any
position in the world.

For a different example, let’s suppose that a cat is described by its height, weight, and
color. Then a video game cat can be represented as a vector

height
weight
color

in the space ℝ3. This type of representation is often called a featurization. That is, a
featurization is a representation of a real-world entity as a vector (or more generally
as a tensor). Nearly all machine learning algorithms operate on vectors or tensors.
Thus the process of featurization is a critical part of any machine learning pipeline.
Often, the featurization system can be the most sophisticated part of a machine learn‐
ing system. Suppose we have a benzene molecule as illustrated in Figure 2-1.

Figure 2-1. A representation of a benzene molecule.

How can we transform this molecule into a vector suitable for a query to a machine
learning system? There are a number of potential solutions to this problem, most of
which exploit the idea of marking the presence of subfragments of the molecule. The
presence or absence of specific subfragments is marked by setting indices in a binary
vector (in 0, 1 n) to 1/0, respectively. This process is illustrated in Figure 2-2.
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Figure 2-2. Subfragments of the molecule to be featurized are selected (those containing
OH). These fragments are hashed into indices in a fixed-length vector. These positions
are set to 1 and all other positions are set to 0.

Note that this process sounds (and is) fairly complex. In fact, one of the most chal‐
lenging aspects of building a machine learning system is deciding how to transform
the data in question into a tensorial format. For some types of data, this transforma‐
tion is obvious. For others (such as molecules), the transformation required can be
quite subtle. For the practitioner of machine learning, it isn’t usually necessary to
invent a new featurization method since the scholarly literature is extensive, but it will
often be necessary to read research papers to understand best practices for transform‐
ing a new data stream.

Now that we have established that rank-0 tensors are scalars (ℝ) and that rank-1 ten‐
sors are vectors (ℝn), what is a rank-2 tensor? Traditionally, a rank-2 tensor is
referred to as a matrix:

a b
c d

This matrix has two rows and two columns. The set of all such matrices is referred to
as ℝ2 × 2. Returning to our notion of tensor shape earlier, the shape of this matrix is
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(2, 2). Matrices are traditionally used to represent transformations of vectors. For
example, the action of rotating a vector in the plane by angle α can be performed by
the matrix

Rα =
cos α –sin α
sin α cos α

To see this, note that the x unit vector (1, 0) is transformed by matrix multiplication
into the vector (cos (α), sin (α)). (We will cover the detailed definition of matrix mul‐
tiplication later in the chapter, but will simply display the result for the moment).

cos α –sin α
sin α cos α

·
1
0

=
cos α
sin α

This transformation can be visualized graphically as well. Figure 2-3 demonstrates
how the final vector corresponds to a rotation of the original unit vector.

Figure 2-3. Positions on the unit circle are parameterized by cosine and sine.
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Matrix Mathematics
There are a number of standard mathematical operations on matrices that machine
learning programs use repeatedly. We will briefly review some of the most fundamen‐
tal of these operations.

The matrix transpose is a convenient operation that flips a matrix around its diago‐
nal. Mathematically, suppose A is a matrix; then the transpose matrix AT is defined by
equation Ai j

T = A ji. For example, the transpose of the rotation matrix Rα is

Rα
T =

cos α sin α
–sin α cos α

Addition of matrices is only defined for matrices of the same shape and is simply per‐
formed elementwise. For example:

1 2
3 4

+
1 1
1 1

=
2 3
4 5

Similarly, matrices can be multiplied by scalars. In this case, each element of the
matrix is simply multiplied elementwise by the scalar in question:

2 ·
1 2
3 4

=
2 4
6 8

Furthermore, it is sometimes possible to multiply two matrices directly. This notion
of matrix multiplication is probably the most important mathematical concept associ‐
ated with matrices. Note specifically that matrix multiplication is not the same notion
as elementwise multiplication of matrices! Rather, suppose we have a matrix A of
shape (m, n) with m rows and n columns. Then, A can be multiplied on the right by
any matrix B of shape (n, k) (where k is any positive integer) to form matrix AB of
shape (m, k). For the actual mathematical description, suppose A is a matrix of shape
(m, n) and B is a matrix of shape (n, k). Then AB is defined by

AB i j = ∑
k

AikBkj

We displayed a matrix multiplication equation earlier in brief. Let’s expand that
example now that we have the formal definition:

cos α –sin α
sin α cos α

·
1
0

=
cos α · 1 – sin α · 0
sin α · 1 – cos α · 0

=
cos α
sin α
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The fundamental takeaway is that rows of one matrix are multiplied against columns
of the other matrix.

This definition hides a number of subtleties. Note first that matrix multiplication is
not commutative. That is, AB ≠ BA in general. In fact, AB can exist when BA is not
meaningful. Suppose, for example, A is a matrix of shape (2, 3) and B is a matrix of
shape (3, 4). Then AB is a matrix of shape (2, 4). However, BA is not defined since the
respective dimensions (4 and 2) don’t match. As another subtlety, note that, as in the
rotation example, a matrix of shape (m, n) can be multiplied on the right by a matrix
of shape (n, 1). However, a matrix of shape (n, 1) is simply a column vector. So, it is
meaningful to multiply matrices by vectors. Matrix-vector multiplication is one of the
fundamental building blocks of common machine learning systems.

One of the nicest properties of standard multiplication is that it is a linear operation.
More precisely, a function f is called linear if f x + y = f x + f y  and f cx = c f x
where c is a scalar. To demonstrate that scalar multiplication is linear, suppose that a,
b, c, d are all real numbers. Then we have

a · b · c = b · ac

a · c + d = ac + ad

We make use of the commutative and distributive properties of scalar multiplication
here. Now suppose that instead, A, C, D are now matrices where C, D are of the same
size and it is meaningful to multiply A on the right with either C or D (b remains a
real number). Then matrix multiplication is a linear operator:

A b · C = b · AC

A C + D = AC + AD

Put another way, matrix multiplication is distributive and commutes with scalar mul‐
tiplication. In fact, it can be shown that any linear transformation on vectors corre‐
sponds to a matrix multiplication. For a computer science analogy, think of linearity
as a property demanded by an abstract method in a superclass. Then standard multi‐
plication and matrix multiplication are concrete implementations of that abstract
method for different subclasses (respectively real numbers and matrices).

Tensors
In the previous sections, we introduced the notion of scalars as rank-0 tensors, vec‐
tors as rank-1 tensors, and matrices as rank-2 tensors. What then is a rank-3 tensor?
Before passing to a general definition, it can help to think about the commonalities
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between scalars, vectors, and matrices. Scalars are single numbers. Vectors are lists of
numbers. To pick out any particular element of a vector requires knowing its index.
Hence, we need one index element into the vector (thus a rank-1 tensor). Matrices are
tables of numbers. To pick out any particular element of a matrix requires knowing
its row and column. Hence, we need two index elements (thus a rank-2 tensor). It fol‐
lows naturally that a rank-3 tensor is a set of numbers where there are three required
indices. It can help to think of a rank-3 tensor as a rectangular prism of numbers, as
illustrated in Figure 2-4.

Figure 2-4. A rank-3 tensor can be visualized as a rectangular prism of numbers.

The rank-3 tensor T displayed in the figure is of shape (N, N, N). An arbitrary ele‐
ment of the tensor would then be selected by specifying (i, j, k) as indices.

There is a linkage between tensors and shapes. A rank-1 tensor has a shape of dimen‐
sion 1, a rank-2 tensor a shape of dimension 2, and a rank-3 tensor of dimension 3.
You might protest that this contradicts our earlier discussion of row and column vec‐
tors. By our definition, a column vector has shape (n, 1). Wouldn’t that make a col‐
umn vector a rank-2 tensor (or a matrix)? This is exactly what has happened. Recall
that a vector which is not specified to be a row vector or column vector has shape (n).
When we specify that a vector is a row vector or a column vector, we in fact specify a
method of transforming the underlying vector into a matrix. This type of dimension
expansion is a common trick in tensor manipulation.

Note that another way of thinking about a rank-3 tensor is as a list of matrices all with
the same shape. Suppose that W is a matrix with shape (n, n). Then the tensor
Ti jk = W1,⋯, Wn  consists of n copies of the matrix W.

Note that a black-and-white image can be represented as a rank-2 tensor. Suppose we
have a 224 × 224-pixel black and white image. Then, pixel (i, j) is 1/0 to encode a
black/white pixel, respectively. It follows that a black and white image can be repre‐
sented as a matrix of shape (224, 224). Now, consider a 224 × 224 color image. The
color at a particular pixel is typically represented by three separate RGB channels.
That is, pixel (i, j) is represented as a tuple of numbers (r, g, b) that encode the
amount of red, green, and blue at the pixel, respectively. r, g, b are typically integers
from 0 to 255. It follows now that the color image can be encoded as a rank-3 tensor
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of shape (224, 224, 3). Continuing the analogy, consider a color video. Suppose that
each frame of the video is a 224 × 224 color image. Then a minute of video (at 60 fps)
would be a rank-4 tensor of shape (224, 224, 3, 3600). Continuing even further, a col‐
lection of 10 such videos would then form a rank-5 tensor of shape (10, 224, 224, 3,
3600). In general, tensors provide for a convenient representation of numeric data. In
practice, it’s not common to see tensors of higher order than rank-5 tensors, but it’s
smart to design any tensor software to allow for arbitrary tensors since intelligent
users will always come up with use cases designers don’t consider.

Tensors in Physics
Tensors are used widely in physics to encode fundamental physical quantities. For
example, the stress tensor is commonly used in material science to define the stress at
a point within a material. Mathematically, the stress tensor is a rank-2 tensor of shape
(3, 3):

σ =

σ11 τ12 τ13

τ21 σ22 τ23

τ31 τ32 σ33

Then, suppose that n is a vector of shape (3) that encodes a direction. The stress Tn in
direction n is specified by the vector Tn = T · n (note the matrix-vector multiplica‐
tion). This relationship is depicted pictorially in Figure 2-5.

Figure 2-5. A 3D pictorial depiction of the components of stress.
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As another physical example, Einstein’s field equations of general relativity are com‐
monly expressed in tensorial format:

Rμν − 1
2Rgμν + Λgμν = 8πG

c4 Tμν

Here Rμν is the Ricci curvature tensor, gμν is the metric tensor, Tμν is the stress-energy
tensor, and the remaining quantities are scalars. Note, however, that there’s an impor‐
tant subtlety distinguishing these tensors and the other tensors we’ve discussed previ‐
ously. Quantities like the metric tensor provide a separate tensor (in the sense of an
array of numbers) for each point in space-time (mathematically, the metric tensor is a
tensor field). The same holds for the stress tensor previously discussed, and for the
other tensors in these equations. At a given point in space-time, each of these quanti‐
ties becomes a symmetric rank-2 tensor of shape (4, 4) using our notation.

Part of the power of modern tensor calculus systems such as TensorFlow is that some
of the mathematical machinery long used for classical physics can now be adapted to
solve applied problems in image processing and language understanding. At the same
time, today’s tensor calculus systems are still limited compared with the mathematical
machinery of physicists. For example, there’s no simple way to talk about a quantity
such as the metric tensor using TensorFlow yet. We hope that as tensor calculus
becomes more fundamental to computer science, the situation will change and that
systems like TensorFlow will serve as a bridge between the physical world and the
computational world.

Mathematical Asides
The discussion so far in this chapter has introduced tensors informally via example
and illustration. In our definition, a tensor is simply an array of numbers. It’s often
convenient to view a tensor as a function instead. The most common definition intro‐
duces a tensor as a multilinear function from a product of vector spaces to the real
numbers:

T :V1 × V2 ×⋯Vn ℝ

This definition uses a number of terms you haven’t seen. A vector space is simply a
collection of vectors. You’ve seen a few examples of vector spaces such as ℝ3 or gener‐

ally ℝn. We won’t lose any generality by holding that V i = ℝ
di. As we defined previ‐

ously, a function f is linear if f x + y = f x + f y  and f cx = c f x . A multilinear
function is simply a function that is linear in each argument. This function can be
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viewed as assigning individual entries of a multidimensional array, when provided
indices into the array as arguments.

We won’t use this more mathematical definition much in this book, but it serves as a
useful bridge to connect the deep learning concepts you will learn about with the cen‐
turies of mathematical research that have been undertaken on tensors by the physics
and mathematics communities.

Covariance and Contravariance

Our definition here has swept many details under the rug that
would need to be carefully attended to for a formal treatment. For
example, we don’t touch upon the notion of covariant and contra‐
variant indices here. What we call a rank-n tensor is better
described as a (p, q)-tensor where n = p + q and p is the number of
contravariant indices, and q the number of covariant indices.
Matrices are (1,1)-tensors, for example. As a subtlety, there are
rank-2 tensors that are not matrices! We won’t dig into these topics
carefully here since they don’t crop up much in machine learning,
but we encourage you to understand how covariance and contra‐
variance affect the machine learning systems you construct.

Basic Computations in TensorFlow
We’ve spent the last sections covering the mathematical definitions of various tensors.
It’s now time to cover how to create and manipulate tensors using TensorFlow. For
this section, we recommend you follow along using an interactive Python session
(with IPython). Many of the basic TensorFlow concepts are easiest to understand
after experimenting with them directly.

Installing TensorFlow and Getting Started
Before continuing this section, you will need to install TensorFlow on your machine.
The details of installation will vary depending on your particular hardware, so we
refer you to the official TensorFlow documentation for more details.

Although there are frontends to TensorFlow in multiple programming languages, we
will exclusively use the TensorFlow Python API in the remainder of this book. We
recommend that you install Anaconda Python, which packages many useful numeri‐
cal libraries along with the base Python executable.

Once you’ve installed TensorFlow, we recommend that you invoke it interactively
while you’re learning the basic API (see Example 2-1). When experimenting with
TensorFlow interactively, it’s convenient to use tf.InteractiveSession(). Invoking
this statement within IPython (an interactive Python shell) will make TensorFlow
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behave almost imperatively, allowing beginners to play with tensors much more
easily. You will learn about imperative versus declarative style in greater depth later in
this chapter.

Example 2-1. Initialize an interactive TensorFlow session

>>> import tensorflow as tf
>>> tf.InteractiveSession()
<tensorflow.python.client.session.InteractiveSession>

The rest of the code in this section will assume that an interactive session has been
loaded.

Initializing Constant Tensors
Until now, we’ve discussed tensors as abstract mathematical entities. However, a sys‐
tem like TensorFlow must run on a real computer, so any tensors must live on com‐
puter memory in order to be useful to computer programmers. TensorFlow provides
a number of functions that instantiate basic tensors in memory. The simplest of these
are tf.zeros() and tf.ones(). tf.zeros() takes a tensor shape (represented as a
Python tuple) and returns a tensor of that shape filled with zeros. Let’s try invoking
this command in the shell (Example 2-2).

Example 2-2. Create a zeros tensor

>>> tf.zeros(2)
<tf.Tensor 'zeros:0' shape=(2,) dtype=float32>

TensorFlow returns a reference to the desired tensor rather than the value of the ten‐
sor itself. To force the value of the tensor to be returned, we will use the method
tf.Tensor.eval() of tensor objects (Example 2-3). Since we have initialized
tf.InteractiveSession(), this method will return the value of the zeros tensor to
us.

Example 2-3. Evaluate the value of a tensor

>>> a = tf.zeros(2)
>>> a.eval()
array([ 0.,  0.], dtype=float32)

Note that the evaluated value of the TensorFlow tensor is itself a Python object. In
particular, a.eval() is a numpy.ndarray object. NumPy is a sophisticated numerical
system for Python. We won’t attempt an in-depth discussion of NumPy here beyond
noting that TensorFlow is designed to be compatible with NumPy conventions to a
large degree.
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We can call tf.zeros() and tf.ones() to create and display tensors of various sizes
(Example 2-4).

Example 2-4. Evaluate and display tensors

>>> a = tf.zeros((2, 3))
>>> a.eval()
array([[ 0.,  0.,  0.],
       [ 0.,  0.,  0.]], dtype=float32)
>>> b = tf.ones((2,2,2))
>>> b.eval()
array([[[ 1.,  1.],
        [ 1.,  1.]],

       [[ 1.,  1.],
        [ 1.,  1.]]], dtype=float32)

What if we’d like a tensor filled with some quantity besides 0/1? The tf.fill()
method provides a nice shortcut for doing so (Example 2-5).

Example 2-5. Filling tensors with arbitrary values

>>> b = tf.fill((2, 2), value=5.)
>>> b.eval()
array([[ 5.,  5.],
       [ 5.,  5.]], dtype=float32)

tf.constant is another function, similar to tf.fill, which allows for construction
of tensors that shouldn’t change during the program execution (Example 2-6).

Example 2-6. Creating constant tensors

>>> a = tf.constant(3)
>>> a.eval()
3

Sampling Random Tensors
Although working with constant tensors is convenient for testing ideas, it’s much
more common to initialize tensors with random values. The most common way to do
this is to sample each entry in the tensor from a random distribution. tf.random_nor
mal allows for each entry in a tensor of specified shape to be sampled from a Normal
distribution of specified mean and standard deviation (Example 2-7).
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Symmetry Breaking

Many machine learning algorithms learn by performing updates to
a set of tensors that hold weights. These update equations usually
satisfy the property that weights initialized at the same value will
continue to evolve together. Thus, if the initial set of tensors is ini‐
tialized to a constant value, the model won’t be capable of learning
much. Fixing this situation requires symmetry breaking. The easiest
way of breaking symmetry is to sample each entry in a tensor
randomly.

Example 2-7. Sampling a tensor with random Normal entries

>>> a = tf.random_normal((2, 2), mean=0, stddev=1)
>>> a.eval()
array([[-0.73437649, -0.77678096],
       [ 0.51697761,  1.15063596]], dtype=float32)

One thing to note is that machine learning systems often make use of very large ten‐
sors that often have tens of millions of parameters. When we sample tens of millions
of random values from the Normal distribution, it becomes almost certain that some
sampled values will be far from the mean. Such large samples can lead to numerical
instability, so it’s common to sample using tf.truncated_normal() instead of tf.ran
dom_normal(). This function behaves the same as tf.random_normal() in terms of
API, but drops and resamples all values more than two standard deviations from the
mean.

tf.random_uniform() behaves like tf.random_normal() except for the fact that ran‐
dom values are sampled from the Uniform distribution over a specified range
(Example 2-8).

Example 2-8. Sampling a tensor with uniformly random entries

>>> a = tf.random_uniform((2, 2), minval=-2, maxval=2)
>>> a.eval()
array([[-1.90391684,  1.4179163 ],
       [ 0.67762709,  1.07282352]], dtype=float32)

Tensor Addition and Scaling
TensorFlow makes use of Python’s operator overloading to make basic tensor arith‐
metic straightforward with standard Python operators (Example 2-9).
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Example 2-9. Adding tensors together

>>> c = tf.ones((2, 2))
>>> d = tf.ones((2, 2))
>>> e = c + d
>>> e.eval()
array([[ 2.,  2.],
       [ 2.,  2.]], dtype=float32)
>>> f = 2 * e
>>> f.eval()
array([[ 4.,  4.],
       [ 4.,  4.]], dtype=float32)

Tensors can also be multiplied this way. Note, however, when multiplying two tensors
we get elementwise multiplication and not matrix multiplication, which can be seen
in Example 2-10.

Example 2-10. Elementwise tensor multiplication

>>> c = tf.fill((2,2), 2.)
>>> d = tf.fill((2,2), 7.)
>>> e = c * d
>>> e.eval()
array([[ 14.,  14.],
       [ 14.,  14.]], dtype=float32)

Matrix Operations
TensorFlow provides a variety of amenities for working with matrices. (Matrices by
far are the most common type of tensor used in practice.) In particular, TensorFlow
provides shortcuts to make certain types of commonly used matrices. The most
widely used of these is likely the identity matrix. Identity matrices are square matrices
that are 0 everywhere except on the diagonal, where they are 1. tf.eye() allows for
fast construction of identity matrices of desired size (Example 2-11).

Example 2-11. Creating an identity matrix

>>> a = tf.eye(4)
>>> a.eval()
array([[ 1.,  0.,  0.,  0.],
       [ 0.,  1.,  0.,  0.],
       [ 0.,  0.,  1.,  0.],
       [ 0.,  0.,  0.,  1.]], dtype=float32)

Diagonal matrices are another common type of matrix. Like identity matrices, diago‐
nal matrices are only nonzero along the diagonal. Unlike identity matrices, they may
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take arbitrary values along the diagonal. Let’s construct a diagonal matrix with
ascending values along the diagonal (Example 2-12). To start, we’ll need a method to
construct a vector of ascending values in TensorFlow. The easiest way for doing this is
invoking tf.range(start, limit, delta). Note that limit is excluded from the
range and delta is the step size for the traversal. The resulting vector can then be fed
to tf.diag(diagonal), which will construct a matrix with the specified diagonal.

Example 2-12. Creating diagonal matrices

>>> r = tf.range(1, 5, 1)
>>> r.eval()
array([1, 2, 3, 4], dtype=int32)
>>> d = tf.diag(r)
>>> d.eval()
array([[1, 0, 0, 0],
       [0, 2, 0, 0],
       [0, 0, 3, 0],
       [0, 0, 0, 4]], dtype=int32)

Now suppose that we have a specified matrix in TensorFlow. How do we compute the
matrix transpose? tf.matrix_transpose() will do the trick nicely (Example 2-13).

Example 2-13. Taking a matrix transpose

>>> a = tf.ones((2, 3))
>>> a.eval()
array([[ 1.,  1.,  1.],
       [ 1.,  1.,  1.]], dtype=float32)
>>> at = tf.matrix_transpose(a)
>>> at.eval()
array([[ 1.,  1.],
       [ 1.,  1.],
       [ 1.,  1.]], dtype=float32)

Now, let’s suppose we have a pair of matrices we’d like to multiply using matrix multi‐
plication. The easiest way to do so is by invoking tf.matmul() (Example 2-14).

Example 2-14. Performing matrix multiplication

>>> a = tf.ones((2, 3))
>>> a.eval()
array([[ 1.,  1.,  1.],
       [ 1.,  1.,  1.]], dtype=float32)
>>> b = tf.ones((3, 4))
>>> b.eval()
array([[ 1.,  1.,  1.,  1.],
       [ 1.,  1.,  1.,  1.],
       [ 1.,  1.,  1.,  1.]], dtype=float32)
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>>> c = tf.matmul(a, b)
>>> c.eval()
array([[ 3.,  3.,  3.,  3.],
       [ 3.,  3.,  3.,  3.]], dtype=float32)

You can check that this answer matches the mathematical definition of matrix multi‐
plication we provided earlier.

Tensor Types
You may have noticed the dtype notation in the preceding examples. Tensors in Ten‐
sorFlow come in a variety of types such as tf.float32, tf.float64, tf.int32,
tf.int64. It’s possible to to create tensors of specified types by setting dtype in tensor
construction functions. Furthermore, given a tensor, it’s possible to change its type
using casting functions such as tf.to_double(), tf.to_float(), tf.to_int32(),
tf.to_int64(), and others (Example 2-15).

Example 2-15. Creating tensors of different types

>>> a = tf.ones((2,2), dtype=tf.int32)
>>> a.eval()
array([[0, 0],
       [0, 0]], dtype=int32)
>>> b = tf.to_float(a)
>>> b.eval()
array([[ 0.,  0.],
       [ 0.,  0.]], dtype=float32)

Tensor Shape Manipulations
Within TensorFlow, tensors are just collections of numbers written in memory. The
different shapes are views into the underlying set of numbers that provide different
ways of interacting with the set of numbers. At different times, it can be useful to view
the same set of numbers as forming tensors with different shapes. tf.reshape()
allows tensors to be converted into tensors with different shapes (Example 2-16).

Example 2-16. Manipulating tensor shapes

>>> a = tf.ones(8)
>>> a.eval()
array([ 1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.], dtype=float32)
>>> b = tf.reshape(a, (4, 2))
>>> b.eval()
array([[ 1.,  1.],
       [ 1.,  1.],
       [ 1.,  1.],
       [ 1.,  1.]], dtype=float32)
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>>> c = tf.reshape(a, (2, 2, 2))
>>> c.eval()
array([[[ 1.,  1.],
        [ 1.,  1.]],

       [[ 1.,  1.],
        [ 1.,  1.]]], dtype=float32)

Notice how we can turn the original rank-1 tensor into a rank-2 tensor and then into
a rank-3 tensor with tf.reshape. While all necessary shape manipulations can be
performed with tf.reshape(), sometimes it can be convenient to perform simpler
shape manipulations using functions such as tf.expand_dims or tf.squeeze.
tf.expand_dims adds an extra dimension to a tensor of size 1. It’s useful for increas‐
ing the rank of a tensor by one (for example, when converting a rank-1 vector into a
rank-2 row vector or column vector). tf.squeeze, on the other hand, removes all
dimensions of size 1 from a tensor. It’s a useful way to convert a row or column vector
into a flat vector.

This is also a convenient opportunity to introduce the tf.Tensor.get_shape()
method (Example 2-17). This method lets users query the shape of a tensor.

Example 2-17. Getting the shape of a tensor

>>> a = tf.ones(2)
>>> a.get_shape()
TensorShape([Dimension(2)])
>>> a.eval()
array([ 1.,  1.], dtype=float32)
>>> b = tf.expand_dims(a, 0)
>>> b.get_shape()
TensorShape([Dimension(1), Dimension(2)])
>>> b.eval()
array([[ 1.,  1.]], dtype=float32)
>>> c = tf.expand_dims(a, 1)
>>> c.get_shape()
TensorShape([Dimension(2), Dimension(1)])
>>> c.eval()
array([[ 1.],
       [ 1.]], dtype=float32)
>>> d = tf.squeeze(b)
>>> d.get_shape()
TensorShape([Dimension(2)])
>>> d.eval()
array([ 1.,  1.], dtype=float32)
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Introduction to Broadcasting
Broadcasting is a term (introduced by NumPy) for when a tensor system’s matrices
and vectors of different sizes can be added together. These rules allow for convenien‐
ces like adding a vector to every row of a matrix. Broadcasting rules can be quite
complex, so we will not dive into a formal discussion of the rules. It’s often easier to
experiment and see how the broadcasting works (Example 2-18).

Example 2-18. Examples of broadcasting

>>> a = tf.ones((2, 2))
>>> a.eval()
array([[ 1.,  1.],
       [ 1.,  1.]], dtype=float32)
>>> b = tf.range(0, 2, 1, dtype=tf.float32)
>>> b.eval()
array([ 0.,  1.], dtype=float32)
>>> c = a + b
>>> c.eval()
array([[ 1.,  2.],
       [ 1.,  2.]], dtype=float32)

Notice that the vector b is added to every row of matrix a. Notice another subtlety; we
explicitly set the dtype for b. If the dtype isn’t set, TensorFlow will report a type error.
Let’s see what would have happened if we hadn’t set the dtype (Example 2-19).

Example 2-19. TensorFlow doesn’t perform implicit type casting

>>> b = tf.range(0, 2, 1)
>>> b.eval()
array([0, 1], dtype=int32)
>>> c = a + b
ValueError: Tensor conversion requested dtype float32 for Tensor with dtype int32:
'Tensor("range_2:0", shape=(2,), dtype=int32)

Unlike languages like C, TensorFlow doesn’t perform implicit type casting under the
hood. It’s often necessary to perform explicit type casts when doing arithmetic opera‐
tions.

Imperative and Declarative Programming
Most situations in computer science involve imperative programming. Consider a
simple Python program (Example 2-20).
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Example 2-20. Python program imperatively performing an addition

>>> a = 3
>>> b = 4
>>> c = a + b
>>> c
7

This program, when translated into machine code, instructs the machine to perform
a primitive addition operation on two registers, one containing 3, and the other con‐
taining 4. The result is then 7. This style of programming is called imperative since
the program tells the computer explicitly which actions to perform.

An alternative style of programming is declarative. In a declarative system, a com‐
puter program is a high-level description of the computation that is to be performed.
It does not instruct the computer exactly how to perform the computation.
Example 2-21 is the TensorFlow equivalent of Example 2-20.

Example 2-21. TensorFlow program declaratively performing an addition

>>> a = tf.constant(3)
>>> b = tf.constant(4)
>>> c = a + b
>>> c
<tf.Tensor 'add_1:0' shape=() dtype=int32>
>>> c.eval()
7

Note that the value of c isn’t 7! Rather, it’s a symbolic tensor. This code specifies the
computation of adding two values together to create a new tensor. The actual compu‐
tation isn’t executed until we call c.eval(). In the sections before, we have been using
the eval() method to simulate imperative style in TensorFlow since it can be chal‐
lenging to understand declarative programming at first.

However, declarative programming is by no means an unknown concept to software
engineering. Relational databases and SQL provide an example of a widely used
declarative programming system. Commands like SELECT and JOIN may be imple‐
mented in an arbitrary fashion under the hood so long as their basic semantics are
preserved. TensorFlow code is best thought of as analogous to a SQL program; the
TensorFlow code specifies a computation to be performed, with details left up to Ten‐
sorFlow. The TensorFlow developers exploit this lack of detail under the hood to tai‐
lor the execution style to the underlying hardware, be it CPU, GPU, or mobile device.

It’s important to note that the grand weakness of declarative programming is that the
abstraction is quite leaky. For example, without detailed understanding of the under‐
lying implementation of the relational database, long SQL programs can become
unbearably inefficient. Similarly, large TensorFlow programs implemented without
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understanding of the underlying learning algorithms are unlikely to work well. In the
rest of this section, we will start paring back the abstraction, a process we will con‐
tinue throughout the rest of the book.

TensorFlow Eager

The TensorFlow team recently added a new experimental module,
TensorFlow Eager, that enables users to run TensorFlow calcula‐
tions imperatively. In time, this module will likely become the pre‐
ferred entry mode for new programmers learning TensorFlow.
However, at the timing of writing, this module is still very new with
many rough edges. As a result, we won’t teach you about Eager
mode, but encourage you to check it out for yourself.
It’s important to emphasize that much of TensorFlow will remain
declarative even after Eager matures, so it’s worth learning declara‐
tive TensorFlow regardless.

TensorFlow Graphs
Any computation in TensorFlow is represented as an instance of a tf.Graph object.
Such a graph consists of a set of instances of tf.Tensor objects and tf.Operation
objects. We have covered tf.Tensor in some detail, but what are tf.Operation
objects? You have already seen them over the course of this chapter. A call to an oper‐
ation like tf.matmul creates a tf.Operation instance to mark the need to perform
the matrix multiplication operation.

When a tf.Graph is not explicitly specified, TensorFlow adds tensors and operations
to a hidden global tf.Graph instance. This instance can be fetched by
tf.get_default_graph() (Example 2-22).

Example 2-22. Getting the default TensorFlow graph

>>> tf.get_default_graph()
<tensorflow.python.framework.ops.Graph>

It is possible to specify that TensorFlow operations should be performed in graphs
other than the default. We will demonstrate examples of this in future chapters.

TensorFlow Sessions
In TensorFlow, a tf.Session() object stores the context under which a computation
is performed. At the beginning of this chapter, we used tf.InteractiveSession() to
set up an environment for all TensorFlow computations. This call created a hidden
global context for all computations performed. We then used tf.Tensor.eval() to
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execute our declaratively specified computations. Underneath the hood, this call is
evaluated in context of this hidden global tf.Session. It can be convenient (and
often necessary) to use an explicit context for a computation instead of a hidden con‐
text (Example 2-23).

Example 2-23. Explicitly manipulating TensorFlow sessions

>>> sess = tf.Session()
>>> a = tf.ones((2, 2))
>>> b = tf.matmul(a, a)
>>> b.eval(session=sess)
array([[ 2.,  2.],
       [ 2.,  2.]], dtype=float32)

This code evaluates b in the context of sess instead of the hidden global session. In
fact, we can make this more explicit with an alternate notation (Example 2-24).

Example 2-24. Running a computation within a session

>>> sess.run(b)
array([[ 2.,  2.],
       [ 2.,  2.]], dtype=float32)

In fact, calling b.eval(session=sess) is just syntactic sugar for calling sess.run(b).

This entire discussion may smack a bit of sophistry. What does it matter which ses‐
sion is in play given that all the different methods seem to return the same answer?
Explicit sessions don’t really show their value until you start to perform computations
that have state, a topic you will learn about in the following section.

TensorFlow Variables
All the example code in this section has used constant tensors. While we could com‐
bine and recombine these tensors in any way we chose, we could never change the
value of tensors themselves (only create new tensors with new values). The style of
programming so far has been functional and not stateful. While functional computa‐
tions are very useful, machine learning often depends heavily on stateful computa‐
tions. Learning algorithms are essentially rules for updating stored tensors to explain
provided data. If it’s not possible to update these stored tensors, it would be hard to
learn.

The tf.Variable() class provides a wrapper around tensors that allows for stateful
computations. The variable objects serve as holders for tensors. Creating a variable is
easy enough (Example 2-25).
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Example 2-25. Creating a TensorFlow variable

>>> a = tf.Variable(tf.ones((2, 2)))
>>> a
<tf.Variable 'Variable:0' shape=(2, 2) dtype=float32_ref>

What happens when we try to evaluate the variable a as though it were a tensor, as in
Example 2-26?

Example 2-26. Evaluating an uninitialized variable fails

>>> a.eval()
FailedPreconditionError: Attempting to use uninitialized value Variable

The evaluation fails since variables have to be explicitly initialized. The easiest way to
initialize all variables is to invoke tf.global_variables_initializer. Running this
operation within a session will initialize all variables in the program (Example 2-27).

Example 2-27. Evaluating initialized variables

>>> sess = tf.Session()
>>> sess.run(tf.global_variables_initializer())
>>> a.eval(session=sess)
array([[ 1.,  1.],
       [ 1.,  1.]], dtype=float32)

After initialization, we are able to fetch the value stored within the variable as though
it were a plain tensor. So far, there’s not much more to variables than plain tensors.
Variables only become interesting once we can assign to them. tf.assign() lets us
do this. Using tf.assign() we can update the value of an existing variable
(Example 2-28).

Example 2-28. Assigning values to variables

>>> sess.run(a.assign(tf.zeros((2,2))))
array([[ 0.,  0.],
       [ 0.,  0.]], dtype=float32)
>>> sess.run(a)
array([[ 0.,  0.],
       [ 0.,  0.]], dtype=float32)

What would happen if we tried to assign a value to variable a not of shape (2,2)?
Let’s find out in Example 2-29.
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Example 2-29. Assignment fails when shapes aren’t equal

>>> sess.run(a.assign(tf.zeros((3,3))))
ValueError: Dimension 0 in both shapes must be equal, but are 2 and 3 for 'Assign_3'
(op: 'Assign') with input shapes: [2,2], [3,3].

You can see that TensorFlow complains. The shape of the variable is fixed upon initi‐
alization and must be preserved with updates. As another interesting note, tf.assign
is itself a part of the underlying global tf.Graph instance. This allows TensorFlow
programs to update their internal state every time they are run. We will make heavy
use of this feature in the chapters to come.

Review
In this chapter, we’ve introduced the mathematical concept of tensors, and briefly
reviewed a number of mathematical concepts associated with tensors. We then
demonstrated how to create tensors in TensorFlow and perform these same mathe‐
matical operations within TensorFlow. We also briefly introduced some underlying
TensorFlow structures like the computational graph, sessions, and variables. If you
haven’t completely grasped the concepts discussed in this chapter, don’t worry much
about it. We will repeatedly use these same concepts over the remainder of the book,
so there will be plenty of chances to let the ideas sink in.

In the next chapter, we will teach you how to build simple learning models for linear
and logistic regression using TensorFlow. Subsequent chapters will build on these
foundations to teach you how to train more sophisticated models.
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CHAPTER 3

Linear and Logistic Regression
with TensorFlow

This chapter will show you how to build simple, but nontrivial, examples of learning
systems in TensorFlow. The first part of this chapter reviews the mathematical foun‐
dations for building learning systems and in particular will cover functions, continu‐
ity, and differentiability. We introduce the idea of loss functions, then discuss how
machine learning boils down to the ability to find the minimal points of complicated
loss functions. We then cover the notion of gradient descent, and explain how it can
be used to minimize loss functions. We end the first section by briefly discussing the
algorithmic idea of automatic differentiation. The second section focuses on intro‐
ducing the TensorFlow concepts underpinned by these mathematical ideas. These
concepts include placeholders, scopes, optimizers, and TensorBoard, and enable the
practical construction and analysis of learning systems. The final section provides
case studies of how to train linear and logistic regression models in TensorFlow.

This chapter is long and introduces many new ideas. It’s OK if you don’t grasp all the
subtleties of these ideas in a first reading. We recommend moving forward and com‐
ing back to refer to the concepts here as needed later. We will repeatedly use these
fundamentals in the remainder of the book in order to let these ideas sink in
gradually.

Mathematical Review
This first section reviews the mathematical tools needed to conceptually understand
machine learning. We attempt to minimize the number of Greek symbols required,
and focus instead on building conceptual understanding rather than technical
manipulations.
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Functions and Differentiability
This section will provide you with a brief overview of the concepts of functions and
differentiability. A function f is a rule that takes an input to an output. There are func‐
tions in all computer programming languages, and the mathematical definition of a
function isn’t really much different. However, mathematical functions commonly
used in physics and engineering have other important properties such as continuity
and differentiability. A continuous function, loosely speaking, is one that can be
drawn without lifting your pencil from the paper, as shown in Figure 3-1. (This is of
course not the technical definition, but it captures the spirit of the continuity
condition.)

Figure 3-1. Some continuous functions.

Differentiability is a type of smoothness condition on functions. It says no sharp cor‐
ners or turns are allowed in the function (Figure 3-2).

Figure 3-2. A differentiable function.

44 | Chapter 3: Linear and Logistic Regression with TensorFlow



The key advantage of differentiable functions is that we can use the slope of the func‐
tion at a particular point as a guide to find places where the function is higher or
lower than our current position. This allows us to find the minima of the function.
The derivative of differentiable function f, denoted f ′, is another function that pro‐
vides the slope of the original function at all points. The conceptual idea is that the
derivative of a function at a given point gives a signpost pointing to directions where
the function is higher or lower than its current value. An optimization algorithm can
follow this signpost to move closer to a minima of f. At the minima itself, the function
will have derivative zero.

The power of derivative-driven optimization isn’t apparent at first. Generations of
calculus students have suffered through stultifying exercises minimizing tiny func‐
tions on paper. These exercises aren’t useful since finding the minima of a function
with only a small number of input parameters is a trivial exercise best done graphi‐
cally. The power of derivative-driven optimization only becomes evident when there
are hundreds, thousands, millions, or billions of variables. At these scales, under‐
standing the function analytically is nigh impossible, and all visualizations are fraught
exercises that may well miss the key attributes of the function. At these scales, the
gradient of the function ∇ f , a generalization of f ′ to multivariate functions, is likely
the most powerful mathematical tool to understand the function and its behavior. We
will dig into gradients in more depth later in this chapter. (Conceptually that is; we
won’t cover the technical details of gradients in this work.)

At a very high level, machine learning is simply the act of function minimization:
learning algorithms are nothing more than minima finders for suitably defined func‐
tions. This definition has the advantage of mathematical simplicity. But, what are
these special differentiable functions that encode useful solutions in their minima and
how can we find them?

Loss Functions
In order to solve a given machine learning problem, a data scientist must find a way
of constructing a function whose minima encode solutions to the real-world problem
at hand. Luckily for our hapless data scientist, the machine learning literature has
built up a rich history of loss functions that perform such encodings. Practical
machine learning boils down to understanding the different types of loss functions
available and knowing which loss function should be applied to which problems. Put
another way, the loss function is the mechanism by which a data science project is
transmuted into mathematics. All of machine learning, and much of artificial intelli‐
gence, boils down to the creation of the right loss function to solve the problem at
hand. We will give you a whirlwind tour of some common families of loss functions.

We start by noting that a loss function ℒ  must satisfy some mathematical properties
to be meaningful. First ℒ  must use both datapoints x and labels y. We denote this by
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writing the loss function as ℒ x, y . Using our language from the previous chapter,
both x and y are tensors, and ℒ  is a function from pairs of tensors to scalars. What
should the functional form of the loss function be? A common assumption that peo‐
ple use is to make loss functions additive. Suppose that xi, yi  are the data available
for example i and that there are N total examples. Then the loss function can be
decomposed as

ℒ x, y = ∑
i = 1

N
ℒ i xi, yi

(In practice ℒ i is the same for every datapoint.) This additive decomposition allows
for many useful advantages. The first is that derivatives factor through addition, so
computing the gradient of the total loss simplifies as follows:

∇ℒ x, y = ∑
i = 1

N
∇ℒ i xi, yi

This mathematical trick means that so long as the smaller functions ℒ i are differen‐
tiable, so too will the total loss function be. It follows that the problem of designing
loss functions resolves into the problem of designing smaller functions ℒ i xi, yi .
Before we dive into designing the ℒ i, it will be convenient to take a small detour that
explains the difference between classification and regression problems.

Classification and regression
Machine learning algorithms can be broadly categorized as supervised or unsuper‐
vised problems. Supervised problems are those for which both datapoints x and labels
y are available, while unsupervised problems have only datapoints x without labels y.
In general, unsupervised machine learning is much harder and less well-defined
(what does it mean to “understand” datapoints x?). We won’t delve into unsupervised
loss functions at this point since, in practice, most unsupervised losses are cleverly
repurposed supervised losses.

Supervised machine learning can be broken up into the two subproblems of classifi‐
cation and regression. A classification problem is one in which you seek to design a
machine learning system that assigns a discrete label, say 0/1 (or more generally
0,⋯, n) to a given datapoint. Regression is the problem of designing a machine learn‐
ing system that attaches a real valued label (in ℝ) to a given datapoint.

At a high level, these problems may appear rather different. Discrete objects and con‐
tinuous objects are typically treated differently by mathematics and common sense.
However, part of the trickery used in machine learning is to use continuous, differen‐
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tiable loss functions to encode both classification and regression problems. As we’ve
mentioned previously, much of machine learning is simply the art of turning compli‐
cated real-world systems into suitably simple differentiable functions.

In the following sections, we will introduce you to a pair of mathematical functions
that will prove very useful for transforming classification and regression tasks into
suitable loss functions.

L2 Loss
The L2 loss (pronounced ell-two loss) is commonly used for regression problems. The
L2 loss (or L2-norm as it’s commonly called elsewhere) provides for a measure of the
magnitude of a vector:

∥ a ∥2 = ∑i = 1
N ai

2

Here, a is assumed to be a vector of length N. The L2 norm is commonly used to
define the distance between two vectors:

∥ a − b ∥2 = ∑i = 1
N ai − bi

2

This idea of L2 as a distance measurement is very useful for solving regression prob‐
lems in supervised machine learning. Suppose that x is a collection of data and y the
associated labels. Let f be some differentiable function that encodes our machine
learning model. Then to encourage f to predict y, we create the L2 loss function

ℒ x, y = ∥ f x − y ∥2

As a quick note, it’s common in practice to not use the L2 loss directly, but rather its
square

∥ a − b ∥2
2 = ∑

i = 1

N
ai − bi

2

in order to avoid dealing with terms of the form 1/ x  in the gradient. We will use
the squared L2 loss repeatedly in the remainder of this chapter and book.
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Failure Modes of L2 Loss
The L2 sharply penalizes large-scale deviances from true labels, but doesn’t do a great
job of rewarding exact matches for real-valued labels. We can understand this dis‐
crepancy mathematically, by studying the behavior of the functions x2 and x near the
origin (Figure 3-3).

Figure 3-3. A comparison of the square and identity functions near the origin.

Notice how x2 dwindles rapidly to 0 for small values of x. As a result, small deviations
aren’t penalized heavily by the L2 loss. In low-dimensional regression, this isn’t a
major issue, but in high-dimensional regression, the L2 becomes a poor loss function
since there may be many small deviations that together make the regression output
poor. For example, in image prediction, L2 loss creates blurry images that are not vis‐
ually appealing. Recent progress in machine learning has devised ways to learn loss
functions. These learned loss functions, commonly styled Generative Adversarial
Networks or GANs, are much more suitable for high-dimensional regression and are
capable of generating nonblurry images.

Probability distributions
Before introducing loss functions for classification problems, it will be useful to take a
quick aside to introduce probability distributions. To start, what is a probability dis‐
tribution and why should we care about it for the purposes of machine learning?
Probability is a deep subject, so we will only delve far enough into it for you to gain
the required minimal understanding. At a high level, probability distributions pro‐
vide a mathematical trick that allows you to relax a discrete set of choices into a con‐
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tinuum. Suppose, for example, you need to design a machine learning system that
predicts whether a coin will fall heads up or heads down. It doesn’t seem like heads
up/down can be encoded as a continuous function, much less a differentiable one.
How can you then use the machinery of calculus or TensorFlow to solve problems
involving discrete choices?

Enter the probability distribution. Instead of hard choices, make the classifier predict
the chance of getting heads up or heads down. For example, the classifier may learn
to predict that heads has probability 0.75 and tails has probability 0.25. Note that
probabilities vary continuously! Consequently by working with the probabilities of
discrete events rather than with the events themselves, you can neatly sidestep the
issue that calculus doesn’t really work with discrete events.

A probability distribution p is simply a listing of the probabilities for the possible dis‐
crete events at hand. In this case, p = (0.75, 0.25). Note, alternatively, you can view
p: 0, 1 ℝ as a function from the set of two elements to the real numbers. This
viewpoint will be useful notationally at times.

We briefly note that the technical definition of a probability distribution is more
involved. It is feasible to assign probability distributions to real-valued events. We will
discuss such distributions later in the chapter.

Cross-entropy loss
Cross-entropy is a mathematical method for gauging the distance between two prob‐
ability distributions:

H p, q = − ∑
x

p x log q x

Here p and q are two probability distributions. The notation p(x) denotes the proba‐
bility p accords to event x. This definition is worth discussing carefully. Like the L2

norm, H provides a notion of distance. Note that in the case where p = q,

H p, p = − ∑
x

p x log p x

This quantity is the entropy of p and is usually written simply H(p). It’s a measure of
how disordered the distribution is; the entropy is maximized when all events are
equally likely. H(p) is always less than or equal to H(p, q). In fact, the “further away”
distribution q is from p, the larger the cross-entropy gets. We won’t dig deeply into
the precise meanings of these statements, but the intuition of cross-entropy as a dis‐
tance mechanism is worth remembering.
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As an aside, note that unlike L2 norm, H is asymmetric! That is, H p, q ≠ H q, p .
For this reason, reasoning with cross-entropy can be a little tricky and is best done
with some caution.

Returning to concrete matters, now suppose that p = y, 1 − y  is the true data distri‐
bution for a discrete system with two outcomes, and q = ypred, 1 − ypred  is that pre‐
dicted by a machine learning system. Then the cross-entropy loss is

H p, q = y log ypred + 1 − y log 1 − ypred

This form of the loss is used widely in machine learning systems to train classifiers.
Empirically, minimizing H(p, q) seems to construct classifiers that reproduce pro‐
vided training labels well.

Gradient Descent
So far in this chapter, you have learned about the notion of function minimization as
a proxy for machine learning. As a short recap, minimizing a suitable function is
often sufficient to learn to solve a desired task. In order to use this framework, you
need to use suitable loss functions, such as the L2 or H(p, q) cross-entropy in order to
transform classification and regression problems into suitable loss functions.

Learnable Weights

So far in this chapter, we’ve explained that machine learning is the
act of minimizing suitably defined loss function ℒ x, y . That is, we
attempt to find arguments to the loss function ℒ  that minimize it.
However, careful readers will recall that (x,y) are fixed quantities
that cannot be changed. What arguments to ℒ  are we changing
during learning then?
Enter learnable weights W. Suppose f(x) is a differentiable function
we wish to fit with our machine learning model. We will dictate
that f be parameterized by choice of W. That is, our function
actually has two arguments f(W, x). Fixing the value of W results in
a function that depends solely on datapoints x. These learnable
weights are the quantities actually selected by minimization of the
loss function. We will see later in the chapter how TensorFlow can
be used to encode learnable weights using tf.Variable.
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But now, suppose that we have encoded our learning problem with a suitable loss
function? How can we actually find minima of this loss function in practice? The key
trick we will use is minimization by gradient descent. Suppose that f is a function that
depends on some weights W. Then ∇W denotes the direction change in W that
would maximally increase f. It follows that taking a step in the opposite direction
would get us closer to the minima of f.

Notation for Gradients

We have written the gradient for learnable weight W as ∇W. At
times, it will be convenient to use the following alternative notation
for the gradient:

∇W = ∂ℒ
∂W

Read this equation as saying that gradient ∇W encodes the direc‐
tion that maximally changes the loss ℒ .

TheI idea of gradient descent is to find the minima of functions by repeatedly follow‐
ing the negative gradient. Algorithmically, this update rule can be expressed as

W = W − α∇W

where α is the step-size and dictates how much weight is given to new gradient ∇W.
The idea is to take many little steps each in the direction of ∇W. Note that ∇W is
itself a function of W, so the actual step changes at each iteration. Each step performs
a little update to the weight matrix W. The iterative process of performing updates is
typically called learning the weight matrix W.
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Computing Gradients Efficiently with Minibatches

One issue is that computing ∇W can be very slow. Implicitly, ∇W
depends on the loss function ℒ . Since ℒ  depends on the entire
dataset, computing ∇W can become very slow for large datasets. In
practice, people usually estimate ∇W on a fraction of the dataset
called a minibatch. Each minibatch is of size typically 50–100. The
size of the minibatch is a hyperparameter in a deep learning algo‐
rithm. The step-size for each step α is another hyperparameter.
Deep learning algorithms typically have clusters of hyperparame‐
ters, which are not themselves learned via the stochastic gradient
descent.
This tension between learnable parameters and hyperparameters is
one of the weaknesses and strengths of deep architectures. The
presence of hyperparameters provides much room for utilizing the
expert’s strong intuition, while the learnable parameters allow the
data to speak for itself. However, this flexibility itself quickly
becomes a weakness, with understanding of the behavior of hyper‐
parameters something of a black art that blocks beginners from
widely deploying deep learning. We will spend significant effort
discussing hyperparameter optimization later in this book.

We end this section by introducing the notion of an epoch. An epoch is a full pass of
the gradient descent algorithm over the data x. More particularly, an epoch consists of
however many gradient descent steps are required to view all the data at a given mini‐
batch size. For example, suppose that a dataset has 1,000 datapoints and training uses
a minibatch of size 50. Then an epoch will consist of 20 gradient descent updates.
Each epoch of training increases the amount of useful knowledge the model has
gained. Mathematically, this will correspond to reductions in the value of the loss
function on the training set.

Early epochs will cause dramatic drops in the loss function. This process is often
referred to as learning the prior on that dataset. While it appears that the model is
learning rapidly, it is in fact only adjusting itself to reside in the portion of parameter
space that is pertinent to the problem at hand. Later epochs will correspond to much
smaller drops in the loss function, but it is often in these later epochs that meaningful
learning will happen. A few epochs is usually too little time for a nontrivial model to
learn anything useful; models are usually trained from 10–1,000 epochs or until con‐
vergence. While this appears large, it’s important to note that the number of epochs
required usually doesn’t scale with the size of the dataset at hand. Consequently, gra‐
dient descent scales linearly with the size of data and not quadratically! This is one of
the greatest strengths of the stochastic gradient descent method versus other learning
algorithms. More complicated learning algorithms may only require a single pass
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over a dataset, but may use total compute that scales quadratically with the number of
datapoints. In this era of big datasets, quadratic runtimes are a fatal weakness.

Tracking the drop in the loss function as a function of the number of epochs can be
an extremely useful visual shorthand for understanding the learning process. These
plots are often referred to as loss curves (see Figure 3-4). With time, an experienced
practitioner can diagnose common failures in learning with just a quick glance at the
loss curve. We will pay significant attention to the loss curves for various deep learn‐
ing models over the course of this book. In particular, later in this chapter, we will
introduce TensorBoard, a powerful visualization suite that TensorFlow provides for
tracking quantities such as loss functions.

Figure 3-4. An example of a loss curve for a model. Note that this loss curve is from a
model trained with the true gradient (that is, not a minibatch estimate) and is conse‐
quently smoother than other loss curves you will encounter later in this book.

Automatic Differentiation Systems
Machine learning is the art of defining loss functions suited to datasets and then min‐
imizing them. In order to minimize loss functions, we need to compute their gradi‐
ents and use the gradient descent algorithm to iteratively reduce the loss. However,
we still need to discuss how gradients are actually computed. Until recently, the
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answer was “by hand.” Machine learning experts would break out pen and paper and
compute matrix derivatives by hand to compute the analytical formulas for all gradi‐
ents in a learning system. These formulas would then be manually coded to imple‐
ment the learning algorithm. This process was notoriously buggy, and more than one
machine learning expert has stories of accidental gradient errors in published papers
and production systems going undiscovered for years.

This state of affairs has changed significantly with the widespread availability of auto‐
matic differentiation engines. Systems like TensorFlow are capable of automatically
computing gradients for almost all loss functions. This automatic differentiation is
one of the greatest advantages of TensorFlow and similar systems, since machine
learning practitioners no longer need to be experts at matrix calculus. However, it’s
still worth understanding at a high level how TensorFlow can automatically take
derivatives of complex functions. For those readers who suffered through an intro‐
ductory class in calculus, you might remember that taking derivatives of functions is
surprisingly mechanical. There are a series of simple rules that can be applied to take
derivatives of most functions. For example:

d
dxxn = nxn − 1

d
dxex = ex

These rules can be combined through the power of the chain rule:

d
dx f g x = f ′ g x g′ x

where f ′ is used to denote the derivative of f and g′ that of g. With these rules, it’s
straightforward to envision how one might program an automatic differentiation
engine for one-dimensional calculus. Indeed, the creation of such a differentiation
engine is often a first-year programming exercise in Lisp-based classes. (It turns out
that correctly parsing functions is a much trickier problem than taking derivatives.
Lisp makes it trivial to parse formulas using its syntax, while in other languages, wait‐
ing to do this exercise until you take a course on compilers is often easier).

How might these rules be extended to calculus of higher dimensions? Getting the
math right is trickier, since there are many more numbers to consider. For example,
given X = AB where X, A, B are all matrices, the formula comes out to be

∇A = ∂L
∂A = ∂L

∂X BT = ∇X BT
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Formulas like this can be combined to provide a symbolic differentiation system for
vectorial and tensorial calculus.

Learning with TensorFlow
In the rest of this chapter, we will cover the concepts that you need to learn basic
machine learning models with TensorFlow. We will start by introducing the concept
of toy datasets, and will explain how to create meaningful toy datasets using common
Python libraries. Next, we will discuss new TensorFlow ideas such as placeholders,
feed dictionaries, name scopes, optimizers, and gradients. The next section will show
you how to use these concepts to train simple regression and classification models.

Creating Toy Datasets
In this section, we will discuss how to create simple but meaningful synthetic data‐
sets, or toy datasets, that we will use to train simple supervised classification and
regression models.

An (extremely) brief introduction to NumPy
We will make heavy use of NumPy in order to define useful toy datasets. NumPy is a
Python package that allows for manipulation of tensors (called ndarrays in NumPy).
Example 3-1 shows some basics.

Example 3-1. Some examples of basic NumPy usage

>>> import numpy as np
>>> np.zeros((2,2))
array([[ 0.,  0.],
       [ 0.,  0.]])
>>> np.eye(3)
array([[ 1.,  0.,  0.],
       [ 0.,  1.,  0.],
       [ 0.,  0.,  1.]])

You may notice that NumPy ndarray manipulation looks remarkably similar to Ten‐
sorFlow tensor manipulation. This similarity was purposefully designed by Tensor‐
Flow’s architects. Many key TensorFlow utility functions have similar arguments and
forms to analogous functions in NumPy. For this purpose, we will not attempt to
introduce NumPy in great depth, and will trust readers to use experimentation to
work out NumPy usage. There are numerous online resources that provide tutorial
introductions to NumPy.
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Why are toy datasets important?
In machine learning, it is often critical to learn to properly use toy datasets. Learning
is challenging, and one of the most common mistakes beginners make is trying to
learn nontrivial models on complex data too soon. These attempts often end in abject
failure, and the would-be machine learner walks away dejected and convinced
machine learning isn’t for them.

The real culprit here of course isn’t the student, but rather the fact that real-world
datasets have many idiosyncrasies. Seasoned data scientists have learned that real-
world datasets often require many clean-up and preprocessing transformations
before becoming amenable to learning. Deep learning exacerbates this problem, since
most deep learning models are notoriously sensitive to infelicities in data. Issues like
a wide range of regression labels, or underlying strong noise patterns can throw off
gradient-descent–based methods, even when other machine learning algorithms
(such as random forests) would have no issues.

Luckily, it’s almost always possible to deal with these issues, but doing so can require
considerable sophistication on the part of the data scientist. These sensitivity issues
are perhaps the biggest roadblock to the commoditization of machine learning as a
technology. We will go into depth on data clean-up strategies, but for the time being,
we recommend a much simpler alternative: use toy datasets!

Toy datasets are critical for understanding learning algorithms. Given very simple
synthetic datasets, it is trivial to gauge whether the algorithm has learned the correct
rule. On more complex datasets, this judgment can be highly challenging. Conse‐
quently, for the remainder of this chapter, we will only use toy datasets as we cover
the fundamentals of gradient-descent–based learning with TensorFlow. We will dive
deep into case studies with real-world data in the following chapters.

Adding noise with Gaussians
Earlier, we discussed discrete probability distributions as a tool for turning discrete
choices into continuous values. We also alluded to the idea of a continuous probabil‐
ity distribution but didn’t dive into it.

Continuous probability distributions (more accurately known as probability density
functions) are a useful mathematical tool for modeling random events that may have
a range of outcomes. For our purposes, it is enough to think of probability density
functions as a useful tool for modeling some measurement error in gathering data.
The Gaussian distribution is widely used for noise modeling.

As Figure 3-5 shows, note that Gaussians can have different means μ and standard
deviations σ. The mean of a Gaussian is the average value it takes, while the standard
deviation is a measure of the spread around this average value. In general, adding a
Gaussian random variable onto some quantity provides a structured way to fuzz the
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quantity by making it vary slighty. This is a very useful trick for coming up with non‐
trivial synthetic datasets.

Figure 3-5. Illustrations of various Gaussian probability distributions with different
means and standard deviations.

We quickly note that the Gaussian distribution is also called the Normal distribution.
A Gaussian with mean μ and standard deviation σ is written N μ, σ . This shorthand
notation is convenient, and we will use it many times in the coming chapters.

Toy regression datasets
The simplest form of linear regression is learning the parameters for a one-
dimensional line. Suppose that our datapoints x are one-dimensional. Then suppose
that real-valued labels y are generated by a linear rule

y = wx + b

Here, w, b are the learnable parameters that must be estimated from data by gradient
descent. In order to test that we can learn these parameters with TensorFlow, we will
generate an artificial dataset consisting of points upon a straight line. To make the
learning challenge a little more difficult, we will add a small amount of Gaussian
noise to the dataset.

Let’s write down the equation for our line perturbed by a small amount of Gaussian
noise:

y = wx + b + N 0, �
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Here � is the standard deviation of the noise term. We can then use NumPy to gener‐
ate an artificial dataset drawn from this distribution, as shown in Example 3-2.

Example 3-2. Using NumPy to sample an artificial dataset

# Generate synthetic data
N = 100
w_true = 5
b_true = 2
noise_scale = .1
x_np = np.random.rand(N, 1)
noise = np.random.normal(scale=noise_scale, size=(N, 1))
# Convert shape of y_np to (N,)
y_np = np.reshape(w_true * x_np + b_true + noise, (-1))

We plot this dataset using Matplotlib in Figure 3-6. (you can find the code in the Git‐
Hub repo associated with this book to see the exact plotting code) to verify that syn‐
thetic data looks reasonable. As expected, the data distribution is a straight line, with
a small amount of measurement error.

Figure 3-6. Plot of the toy regression data distribution.

Toy classification datasets
It’s a little trickier to create a synthetic classification dataset. Logically, we want two
distinct classes of points, which are easily separated. Suppose that the dataset consists
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of only two types of points, (–1, –1) and (1, 1). Then a learning algorithm would have
to learn a rule that separates these two data values.

y0 = (–1, –1)
y1 = (1, 1)

As before, let’s make the challenge a little more difficult by adding some Gaussian
noise to both types of points:

y0 = (–1, –1) + N(0, ϵ)
y1 = (1, 1) + N(0, ϵ)

However, there’s a slight bit of trickiness here. Our points are two-dimensional, while
the Gaussian noise we introduced previously is one-dimensional. Luckily, there exists
a multivariate extension of the Gaussian. We won’t discuss the intricacies of the mul‐
tivariate Gaussian here, but you do not need to understand the intricacies to follow
our discussion.

The NumPy code to generate the synthetic dataset in Example 3-3 is slightly trickier
than that for the linear regression problem since we have to use the stacking function
np.vstack to combine the two different types of datapoints and associate them with
different labels. (We use the related function np.concatenate to combine the one-
dimensional labels.)

Example 3-3. Sample a toy classification dataset with NumPy

# Generate synthetic data
N = 100
# Zeros form a Gaussian centered at (-1, -1)
# epsilon is .1
x_zeros = np.random.multivariate_normal(
    mean=np.array((-1, -1)), cov=.1*np.eye(2), size=(N/2,))
y_zeros = np.zeros((N/2,))
# Ones form a Gaussian centered at (1, 1)
# epsilon is .1
x_ones = np.random.multivariate_normal(
    mean=np.array((1, 1)), cov=.1*np.eye(2), size=(N/2,))
y_ones = np.ones((N/2,))

x_np = np.vstack([x_zeros, x_ones])
y_np = np.concatenate([y_zeros, y_ones])

Figure 3-7 plots the data generated by this code with Matplotlib to verify that the dis‐
tribution is as expected. We see that the data resides in two classes that are neatly sep‐
arated.
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Figure 3-7. Plot of the toy classification data distribution.

New TensorFlow Concepts
Creating simple machine learning systems in TensorFlow will require that you learn
some new TensorFlow concepts.

Placeholders
A placeholder is a way to input information into a TensorFlow computation graph.
Think of placeholders as the input nodes through which information enters Tensor‐
Flow. The key function used to create placeholders is tf.placeholder (Example 3-4).

Example 3-4. Create a TensorFlow placeholder

>>> tf.placeholder(tf.float32, shape=(2,2))
<tf.Tensor 'Placeholder:0' shape=(2, 2) dtype=float32>

We will use placeholders to feed datapoints x and labels y to our regression and classi‐
fication algorithms.

Feed dictionaries and Fetches

Recall that we can evaluate tensors in TensorFlow by using sess.run(var). How do
we feed in values for placeholders in our TensorFlow computations then? The answer
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is to construct feed dictionaries. Feed dictionaries are Python dictionaries that map
TensorFlow tensors to np.ndarray objects that contain the concrete values for these
placeholders. A feed dictionary is best viewed as an input to a TensorFlow computa‐
tion graph. What then is an output? TensorFlow calls these outputs fetches. You have
seen fetches already. We used them extensively in the previous chapter without call‐
ing them as such; the fetch is a tensor (or tensors) whose value is retrieved from the
computation graph after the computation (using placeholder values from the feed
dictionary) is run to completion (Example 3-5).

Example 3-5. Using fetches

>>> a = tf.placeholder(tf.float32, shape=(1,))
>>> b = tf.placeholder(tf.float32, shape=(1,))
>>> c = a + b
>>> with tf.Session() as sess:
        c_eval = sess.run(c, {a: [1.], b: [2.]})
        print(c_eval)
[ 3.]

Name scopes
In complicated TensorFlow programs, there will be many tensors, variables, and
placeholders defined throughout the program. tf.name_scope(name) provides a sim‐
ple scoping mechanism for managing these collections of variables (Example 3-6). All
computational graph elements created within the scope of a tf.name_scope(name)
call will have name prepended to their names.

This organizational tool is most useful when combined with TensorBoard, since it
aids the visualization system in automatically grouping graph elements within the
same name scope. You will learn more about TensorBoard further in the next section.

Example 3-6. Using namescopes to organize placeholders

>>> N = 5
>>> with tf.name_scope("placeholders"):
      x = tf.placeholder(tf.float32, (N, 1))
      y = tf.placeholder(tf.float32, (N,))
>>> x
<tf.Tensor 'placeholders/Placeholder:0' shape=(5, 1) dtype=float32>

Optimizers
The primitives introduced in the last two sections already hint at how machine learn‐
ing is done in TensorFlow. You have learned how to add placeholders for datapoints
and labels and how to use tensorial operations to define the loss function. The

Learning with TensorFlow | 61



missing piece is that you still don’t know how to perform gradient descent using
TensorFlow.

While it is in fact possible to define optimization algorithms such as gradient descent
directly in Python using TensorFlow primitives, TensorFlow provides a collection of
optimization algorithms in the tf.train module. These algorithms can be added as
nodes to the TensorFlow computation graph.

Which optimizer should I use?

There are many possible optimizers available in tf.train. For a
short preview, this list includes tf.train.GradientDescentOptim
izer, tf.train.MomentumOptimizer, tf.train.AdagradOptim

izer, tf.train.AdamOptimizer, and many more. What’s the
difference between these various optimizers?
Almost all of these optimizers are based on the idea of gradient
descent. Recall the simple gradient descent rule we previously
introduced:

W = W − α∇W

Mathematically, this update rule is primitive. There are a variety of
mathematical tricks that researchers have discovered that enable
faster optimization without using too much extra computation. In
general, tf.train.AdamOptimizer is a good default that is rela‐
tively robust. (Many optimizer methods are very sensitive to hyper‐
parameter choice. It’s better for beginners to avoid trickier methods
until they have a good grasp of the behavior of different optimiza‐
tion algorithms.)

Example 3-7 is a short bit of code that adds an optimizer to the computation graph
that minimizes a predefined loss l.

Example 3-7. Adding an Adam optimizer to TensorFlow computation graph

learning_rate = .001
with tf.name_scope("optim"):
  train_op = tf.train.AdamOptimizer(learning_rate).minimize(l)

Taking gradients with TensorFlow
We mentioned previously that it is possible to directly implement gradient descent
algorithms in TensorFlow. While most use cases don’t need to reimplement the con‐
tents of tf.train, it can be useful to look at gradient values directly for debugging
purposes. tf.gradients provides a useful tool for doing so (Example 3-8).
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Example 3-8. Taking gradients directly

>>> W = tf.Variable((3,))
>>> l = tf.reduce_sum(W)
>>> gradW = tf.gradients(l, W)
>>> gradW
[<tf.Tensor 'gradients/Sum_grad/Tile:0' shape=(1,) dtype=int32>]

This code snippet symbolically pulls down the gradients of loss l with respect to
learnable parameter (tf.Variable) W. tf.gradients returns a list of the desired gra‐
dients. Note that the gradients are themselves tensors! TensorFlow performs symbolic
differentiation, which means that gradients themselves are parts of the computational
graph. One neat side effect of TensorFlow’s symbolic gradients is that it’s possible to
stack derivatives in TensorFlow. This can sometimes be useful for more advanced
algorithms.

Summaries and file writers for TensorBoard
Gaining a visual understanding of the structure of a tensorial program can be very
useful. The TensorFlow team provides the TensorBoard package for this purpose.
TensorBoard starts a web server (on localhost by default) that displays various useful
visualizations of a TensorFlow program. However, in order for TensorFlow programs
to be inspected with TensorBoard, programmers must manually write logging state‐
ments. tf.train.FileWriter() specifies the logging directory for a TensorBoard
program and tf.summary writes summaries of various TensorFlow variables to the
specified logging directory. In this chapter, we will only use tf.summary.scalar,
which summarizes a scalar quantity, to track the value of the loss function. tf.sum
mary.merge_all() is a useful logging aid that merges multiple summaries into a sin‐
gle summary for convenience.

The code snippet in Example 3-9 adds a summary for the loss and specifies a logging
directory.

Example 3-9. Adding a summary for the loss

with tf.name_scope("summaries"):
  tf.summary.scalar("loss", l)
  merged = tf.summary.merge_all()

train_writer = tf.summary.FileWriter('/tmp/lr-train', tf.get_default_graph())

Training models with TensorFlow
Suppose now that we have specified placeholders for datapoints and labels, and have
defined a loss with tensorial operations. We have added an optimizer node train_op
to the computational graph, which we can use to perform gradient descent steps
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(while we may actually use a different optimizer, we will refer to updates as gradient
descent for convenience). How can we iteratively perform gradient descent to learn
on this dataset?

The simple answer is that we use a Python for-loop. In each iteration, we use
sess.run() to fetch the train_op along with the merged summary op merged and
the loss l from the graph. We feed all datapoints and labels into sess.run() using a
feed dictionary.

The code snippet in Example 3-10 demonstrates this simple learning method. Note
that we don’t make use of minibatches for pedagogical simplicity. Code in following
chapters will use minibatches when training on larger datasets.

Example 3-10. A simple example of training a model

n_steps = 1000
with tf.Session() as sess:
  sess.run(tf.global_variables_initializer())
  # Train model
  for i in range(n_steps):
    feed_dict = {x: x_np, y: y_np}
    _, summary, loss = sess.run([train_op, merged, l], feed_dict=feed_dict)
    print("step %d, loss: %f" % (i, loss))
    train_writer.add_summary(summary, i)

Training Linear and Logistic Models in TensorFlow
This section ties together all the TensorFlow concepts introduced in the previous sec‐
tion to train linear and logistic regression models upon the toy datasets we intro‐
duced previously in the chapter.

Linear Regression in TensorFlow
In this section, we will provide code to define a linear regression model in Tensor‐
Flow and learn its weights. This task is straightforward and you can do it without
TensorFlow easily. Nevertheless, it’s a good exercise to do in TensorFlow since it will
bring together the new concepts that we have introduced throughout the chapter.

Defining and training linear regression in TensorFlow
The model for a linear regression is straightforward:

y = wx + b

Here w and b are the weights we wish to learn. We transform these weights into
tf.Variable objects. We then use tensorial operations to construct the L2 loss:
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ℒ x, y = y − wx − b 2

The code in Example 3-11 implements these mathematical operations in TensorFlow.
It also uses tf.name_scope to group various operations, and adds a tf.train.AdamOp
timizer for learning and tf.summary operations for TensorBoard usage.

Example 3-11. Defining a linear regression model

# Generate tensorflow graph
with tf.name_scope("placeholders"):
  x = tf.placeholder(tf.float32, (N, 1))
  y = tf.placeholder(tf.float32, (N,))
with tf.name_scope("weights"):
  # Note that x is a scalar, so W is a single learnable weight.
  W = tf.Variable(tf.random_normal((1, 1)))
  b = tf.Variable(tf.random_normal((1,)))
with tf.name_scope("prediction"):
  y_pred = tf.matmul(x, W) + b
with tf.name_scope("loss"):
  l = tf.reduce_sum((y - y_pred)**2)
# Add training op
with tf.name_scope("optim"):
  # Set learning rate to .001 as recommended above.
  train_op = tf.train.AdamOptimizer(.001).minimize(l)
with tf.name_scope("summaries"):
  tf.summary.scalar("loss", l)
  merged = tf.summary.merge_all()

train_writer = tf.summary.FileWriter('/tmp/lr-train', tf.get_default_graph())

Example 3-12 then trains this model as discussed previously (without using mini‐
batches).

Example 3-12. Training the linear regression model

n_steps = 1000
with tf.Session() as sess:
  sess.run(tf.global_variables_initializer())
  # Train model
  for i in range(n_steps):
    feed_dict = {x: x_np, y: y_np}
    _, summary, loss = sess.run([train_op, merged, l], feed_dict=feed_dict)
    print("step %d, loss: %f" % (i, loss))
    train_writer.add_summary(summary, i)

All code for this example is provided in the GitHub repository associated with this
book. We encourage all readers to run the full script for the linear regression example
to gain a firsthand sense for how the learning algorithm functions. The example is
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small enough that readers will not need access to any special-purpose computing
hardware to run.

Taking Gradients for Linear Regression

The equation for the linear system we’re modeling is y = wx + b
where w, b are the learnable weights. As we mentioned previously,
the loss for this system is ℒ = y − wx − b 2. Some matrix calculus
can be used to compute the gradients of the learnable parameters
directly for w:

∇w = ∂ℒ
∂w = − 2 y − wx − b xT

and for b

∇b = ∂ℒ
∂b = − 2 y − wx − b

We place these equations here only for reference for curious read‐
ers. We will not attempt to systematically teach how to take the
derivatives of the loss functions we encounter in this book. How‐
ever, we will note that for complicated systems, taking the deriva‐
tive of the loss function by hand helps build up an intuition for
how the deep network learns. This intuition can serve as a power‐
ful guide for the designer, so we encourage advanced readers to
pursue this topic on their own.

Visualizing linear regression models with TensorBoard

The model defined in the previous section uses tf.summary.FileWriter to write logs
to a logging directory /tmp/lr-train. We can invoke TensorBoard on this logging
directory with the command in Example 3-13 (TensorBoard is installed by default
with TensorFlow).

Example 3-13. Invoking TensorBoard

tensorboard --logdir=/tmp/lr-train

This command will start TensorBoard on a port attached to localhost. Use your
browser to open this port. The TensorBoard screen will look something like
Figure 3-8. (The precise appearance may vary depending on your version of Tensor‐
Board.)
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Figure 3-8. Screenshot of TensorBoard panel.

Navigate to the Graphs tab, and you will see a visualization of the TensorFlow archi‐
tecture we have defined as illustrated in Figure 3-9.

Figure 3-9. Visualization of linear regression architecture in TensorBoard.
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Note that this visualization has grouped all computational graph elements belonging
to various tf.name_scopes. Different groups are connected according to their depen‐
dencies in the computational graph. You can expand all of the grouped elements to
view their contents. Figure 3-10 illustrates the expanded architecture.

As you can see, there are many hidden nodes that suddenly become visible! Tensor‐
Flow functions like tf.train.AdamOptimizer often hide many internal variables
under a tf.name_scope of their own. Expanding in TensorBoard provides an easy
way to peer underneath the hood to see what the system is actually creating. Although
the visualization looks quite complex, most of these details are under the hood and
not anything you need to worry about just yet.
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Figure 3-10. Expanded visualization of architecture.
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Navigate back to the Home tab and open the Summaries section. You should now see
a loss curve that looks something like Figure 3-11. Note the smooth falling shape. The
loss falls rapidly at the beginning as the prior is learned, then tapers off and settles.

Figure 3-11. Viewing the loss curve in TensorBoard.

Visual and Nonvisual Debugging Styles

Is using a tool like TensorBoard necessary to get good use out of a
system like TensorFlow? It depends. Is using a GUI or an interac‐
tive debugger necessary to be a professional programmer?
Different programmers have different styles. Some will find that
the visualization capabilities of TensorBoard come to form a criti‐
cal part of their tensorial programming workflows. Others will find
that TensorBoard isn’t terribly useful and will make greater use of
print-statement debugging. Both styles of tensorial programming
and debugging are valid, just as there are great programmers who
swear by debuggers and others who loathe them.
In general, TensorBoard is quite useful for debugging and for
building basic intuition about the dataset at hand. We recommend
that you follow the style that works best for you.

Metrics for evaluating regression models
So far, we haven’t discussed how to evaluate whether a trained model has actually
learned anything. The first tool for evaluating whether a model has trained is by look‐
ing at the loss curve to ensure it has a reasonable shape. You learned how to do this in
the previous section. What’s the next thing to try?
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We now want you to look at metrics associated with the model. A metric is a tool for
comparing predicted labels to true labels. For regression problems, there are two
common metrics: R2 and RMSE (root-mean-squared error). The R2 is a measure of
the correlation between two variables that takes values between +1 and 0. +1 indicates
perfect correlation, while 0 indicates no correlation. Mathematically, the R2 for two
datasets X and Y is defined as

R2 = cov X, Y 2

σX
2 σY

2

Where cov(X, Y) is the covariance of X and Y, a measure of how the two datasets
jointly vary, while σX and σY are standard deviations, measures of how much each set
individually varies. Intuitively, the R2 measures how much of the independent varia‐
tion in each set can be explained by their joint variation.

Multiple Types of R2!

Note that there are two common definitions of R2 used in practice.
A common beginner (and expert) mistake is to confuse the two
definitions. In this book, we will always use the squared Pearson
correlation coefficient (Figure 3-12). The other definition is called
the coefficient of determination. This other R2 is often much more
confusing to deal with since it doesn’t have a lower bound of 0 like
the squared Pearson correlation does.

In Figure 3-12, predicted and true values are highly correlated with an R2 of nearly 1.
It looks like learning has done a wonderful job on this system and succeeded in learn‐
ing the true rule. Not so fast. You will note that the scale on the two axes in the figure
isn’t the same! It turns out that R2 doesn’t penalize for differences in scale. In order to
understand what’s happened on this system, we need to consider an alternate metric
in Figure 3-13.
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Figure 3-12. Plotting the Pearson correlation coefficient.

Figure 3-13. Plotting the root-mean-squared error (RMSE).
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The RMSE is a measure of the average difference between predicted values and true
values. In Figure 3-13 we plot predicted values and true labels as two separate func‐
tions using datapoints x as our x-axis. Note that the line learned isn’t the true func‐
tion! The RMSE is relatively high and diagnoses the error, unlike the R2, which didn’t
pick up on this error.

What happened on this system? Why didn’t TensorFlow learn the correct function
despite being trained to convergence? This example provides a good illustration of
one of the weaknesses of gradient descent algorithms. There is no guarantee of find‐
ing the true solution! The gradient descent algorithm can get trapped in local minima.
That is, it can find solutions that look good, but are not in fact the lowest minima of
the loss function ℒ .

Why use gradient descent at all then? For simple systems, it is indeed often better to
avoid gradient descent and use other algorithms that have stronger performance
guarantees. However, on complicated systems, such as those we will show you in later
chapters, there do not yet exist alternative algorithms that perform better than gradi‐
ent descent. We encourage you to remember this fact as we proceed further into deep
learning.

Logistic Regression in TensorFlow
In this section, we will define a simple classifier using TensorFlow. It’s worth first con‐
sidering what the equation is for a classifier. The mathematical trick that is commonly
used is exploiting the sigmoid function. The sigmoid, plotted in Figure 3-14, com‐
monly denoted by σ, is a function from the real numbers ℝ to (0, 1). This property is
convenient since we can interpret the output of a sigmoid as probability of an event
happening. (The trick of converting discrete events into continuous values is a recur‐
ring theme in machine learning.)

Figure 3-14. Plotting the sigmoid function.

The equations for predicting the probabilities of a discrete 0/1 variable follow. These
equations define a simple logistic regression model:
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y0 = σ wx + b

y1 = 1 − σ wx + b

TensorFlow provides utility functions to compute the cross-entropy loss for sigmoi‐
dal values. The simplest of these functions is tf.nn.sigmoid_cross_

entropy_with_logits. (A logit is the inverse of the sigmoid. In practice, this simply
means passing the argument to the sigmoid, wx + b, directly to TensorFlow instead of
the sigmoidal value σ wx + b  itself). We recommend using TensorFlow’s implemen‐
tation instead of manually defining the cross-entropy, since there are tricky numerical
issues that arise when computing the cross-entropy loss.

Example 3-14 defines a simple logistic regression model in TensorFlow.

Example 3-14. Defining a simple logistic regression model

# Generate tensorflow graph
with tf.name_scope("placeholders"):
  # Note that our datapoints x are 2-dimensional.
  x = tf.placeholder(tf.float32, (N, 2))
  y = tf.placeholder(tf.float32, (N,))
with tf.name_scope("weights"):
  W = tf.Variable(tf.random_normal((2, 1)))
  b = tf.Variable(tf.random_normal((1,)))
with tf.name_scope("prediction"):
  y_logit = tf.squeeze(tf.matmul(x, W) + b)
  # the sigmoid gives the class probability of 1
  y_one_prob = tf.sigmoid(y_logit)
  # Rounding P(y=1) will give the correct prediction.
  y_pred = tf.round(y_one_prob)

with tf.name_scope("loss"):
  # Compute the cross-entropy term for each datapoint
  entropy = tf.nn.sigmoid_cross_entropy_with_logits(logits=y_logit, labels=y)
  # Sum all contributions
  l = tf.reduce_sum(entropy)
with tf.name_scope("optim"):
  train_op = tf.train.AdamOptimizer(.01).minimize(l)

  train_writer = tf.summary.FileWriter('/tmp/logistic-train', tf.get_default_graph())

The training code for this model in Example 3-15 is identical to that for the linear
regression model.
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Example 3-15. Training a logistic regression model

n_steps = 1000
with tf.Session() as sess:
  sess.run(tf.global_variables_initializer())
  # Train model
  for i in range(n_steps):
    feed_dict = {x: x_np, y: y_np}
    _, summary, loss = sess.run([train_op, merged, l], feed_dict=feed_dict)
    print("loss: %f" % loss)
    train_writer.add_summary(summary, i)

Visualizing logistic regression models with TensorBoard
As before, you can use TensorBoard to visualize the model. Start by visualizing the
loss function as shown in Figure 3-15. Note that as before, the loss function follows a
neat pattern. There is a steep drop in the loss followed by a gradual smoothening.

Figure 3-15. Visualizing the logistic regression loss function.

You can also view the TensorFlow graph in TensorBoard. Since the scoping structure
was similar to that used for linear regression, the simplified graph doesn’t display
much differently, as shown in Figure 3-16.
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Figure 3-16. Visualizing the computation graph for logistic regression.

However, if you expand the nodes in this grouped graph, as in Figure 3-17, you will
find that the underlying computational graph is different. In particular, the loss func‐
tion is quite different from that used for linear regression (as it should be).
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Figure 3-17. The expanded computation graph for logistic regression.
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Metrics for evaluating classification models
Now that you have trained a classification model for logistic regression, you need to
learn about metrics suitable for evaluating classification models. Although the equa‐
tions for logistic regression are more complicated than they are for linear regression,
the basic evaluation metrics are simpler. The classification accuracy simply checks for
the fraction of datapoints that are classified correctly by the learned model. In fact,
with a little more effort, it is possible to back out the separating line learned by the
logistic regression model. This line displays the cutoff boundary the model has
learned to separate positive and negative examples. (We leave the derivation of this
line from the logistic regression equations as an exercise for the interested reader. The
solution is in the code for this section.)

We display the learned classes and the separating line in Figure 3-18. Note that the
line neatly separates the positive and negative examples and has perfect accuracy
(1.0). This result raises an interesting point. Regression is often a harder problem to
solve than classification. There are many possible lines that would neatly separate the
datapoints in Figure 3-18, but only one that would have perfectly matched the data
for the linear regression.

Figure 3-18. Viewing the learned classes and separating line for logistic regression.
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Review
In this chapter, we’ve shown you how to build and train some simple learning systems
in TensorFlow. We started by reviewing some foundational mathematical concepts
including loss functions and gradient descent. We then introduced you to some new
TensorFlow concepts such as placeholders, scopes, and TensorBoard. We ended the
chapter with case studies that trained linear and logistic regression systems on toy
datasets. We covered a lot of material in this chapter, and it’s OK if you haven’t yet
internalized everything. The foundational material introduced here will be used
throughout the remainder of this book.

In Chapter 4, we will introduce you to your first deep learning model and to fully
connected networks, and will show you how to define and train fully connected net‐
works in TensorFlow. In following chapters, we will explore more complicated deep
networks, but all of these architectures will use the same fundamental learning princi‐
ples introduced in this chapter.
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CHAPTER 4

Fully Connected Deep Networks

This chapter will introduce you to fully connected deep networks. Fully connected
networks are the workhorses of deep learning, used for thousands of applications.
The major advantage of fully connected networks is that they are “structure agnostic.”
That is, no special assumptions need to be made about the input (for example, that
the input consists of images or videos). We will make use of this generality to use fully
connected deep networks to address a problem in chemical modeling later in this
chapter.

We delve briefly into the mathematical theory underpinning fully connected net‐
works. In particular, we explore the concept that fully connected architectures are
“universal approximators” capable of learning any function. This concept provides an
explanation of the generality of fully connected architectures, but comes with many
caveats that we discuss at some depth.

While being structure agnostic makes fully connected networks very broadly applica‐
ble, such networks do tend to have weaker performance than special-purpose net‐
works tuned to the structure of a problem space. We will discuss some of the
limitations of fully connected architectures later in this chapter.

What Is a Fully Connected Deep Network?
A fully connected neural network consists of a series of fully connected layers. A fully
connected layer is a function from ℝm to ℝn. Each output dimension depends on
each input dimension. Pictorially, a fully connected layer is represented as follows in
Figure 4-1.
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Figure 4-1. A fully connected layer in a deep network.

Let’s dig a little deeper into what the mathematical form of a fully connected network
is. Let x ∈ ℝm represent the input to a fully connected layer. Let yi ∈ ℝ be the i-th
output from the fully connected layer. Then yi ∈ ℝ is computed as follows:

yi = σ w1x1 +⋯ + wmxm

Here, σ is a nonlinear function (for now, think of σ as the sigmoid function intro‐
duced in the previous chapter), and the wi are learnable parameters in the network.
The full output y is then

y =

σ w1, 1x1 +⋯ + w1, mxm

⋮

σ wn, 1x1 +⋯ + wn, mxm

Note that it’s directly possible to stack fully connected networks. A network with mul‐
tiple fully connected networks is often called a “deep” network as depicted in
Figure 4-2.
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Figure 4-2. A multilayer deep fully connected network.

As a quick implementation note, note that the equation for a single neuron looks very
similar to a dot-product of two vectors (recall the discussion of tensor basics). For a
layer of neurons, it is often convenient for efficiency purposes to compute y as a
matrix multiply:

y = σ wx

where sigma is a matrix in ℝn × m and the nonlinearity σ is applied componentwise.

“Neurons” in Fully Connected Networks
The nodes in fully connected networks are commonly referred to as “neurons.” Con‐
sequently, elsewhere in the literature, fully connected networks will commonly be
referred to as “neural networks.” This nomenclature is largely a historical accident.

In the 1940s, Warren S. McCulloch and Walter Pitts published a first mathematical
model of the brain that argued that neurons were capable of computing arbitrary
functions on Boolean quantities. Successors to this work slightly refined this logical
model by making mathematical “neurons” continuous functions that varied between
zero and one. If the inputs of these functions grew large enough, the neuron “fired”
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(took on the value one), else was quiescent. With the addition of adjustable weights,
this description matches the previous equations.

Is this how a real neuron behaves? Of course not! A real neuron (Figure 4-3) is an
exceedingly complex engine, with over 100 trillion atoms, and tens of thousands of
different signaling proteins capable of responding to varying signals. A microproces‐
sor is a better analogy for a neuron than a one-line equation.

Figure 4-3. A more biologically accurate representation of a neuron.

In many ways, this disconnect between biological neurons and artificial neurons is
quite unfortunate. Uninitiated experts read breathless press releases claiming artificial
neural networks with billions of “neurons” have been created (while the brain has
only 100 billion biological neurons) and reasonably come away believing scientists
are close to creating human-level intelligences. Needless to say, state of the art in deep
learning is decades (or centuries) away from such an achievement.

As you read further about deep learning, you may come across overhyped claims
about artificial intelligence. Don’t be afraid to call out these statements. Deep learning
in its current form is a set of techniques for solving calculus problems on fast hard‐
ware. It is not a precursor to Terminator (Figure 4-4).
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Figure 4-4. Unfortunately (or perhaps fortunately), this book won’t teach you to build a
Terminator!

AI Winters

Artificial intelligence has gone through multiple rounds of boom-
and-bust development. This cyclical development is characteristic
of the field. Each new advance in learning spawns a wave of opti‐
mism in which prophets claim that human-level (or superhuman)
intelligences are incipient. After a few years, no such intelligences
manifest, and disappointed funders pull out. The resulting period
is called an AI winter.
There have been multiple AI winters so far. As a thought exercise,
we encourage you to consider when the next AI winter will happen.
The current wave of deep learning progress has solved many more
practical problems than any previous wave of advances. Is it possi‐
ble AI has finally taken off and exited the boom-and-bust cycle or
do you think we’re in for the “Great Depression” of AI soon?

Learning Fully Connected Networks with Backpropagation
The first version of a fully connected neural network was the Perceptron,
(Figure 4-5), created by Frank Rosenblatt in the 1950s. These perceptrons are identi‐
cal to the “neurons” we introduced in the previous equations.
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Figure 4-5. A diagrammatic representation of the perceptron.

Perceptrons were trained by a custom “perceptron” rule. While they were moderately
useful solving simple problems, perceptrons were fundamentally limited. The book
Perceptrons by Marvin Minsky and Seymour Papert from the end of the 1960s proved
that simple perceptrons were incapable of learning the XOR function. Figure 4-6
illustrates the proof of this statement.

Figure 4-6. The perceptron’s linear rule can’t learn the perceptron.

This problem was overcome with the invention of the multilayer perceptron (another
name for a deep fully connected network). This invention was a formidable achieve‐
ment, since earlier simple learning algorithms couldn’t learn deep networks effec‐
tively. The “credit assignment” problem stumped them; how does an algorithm decide
which neuron learns what?

The full solution to this problem requires backpropagation. Backpropagation is a
generalized rule for learning the weights of neural networks. Unfortunately, compli‐
cated explanations of backpropagation are epidemic in the literature. This situation is
unfortunate since backpropagation is simply another word for automatic differentia‐
tion.
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Let’s suppose that f θ, x  is a function that represents a deep fully connected network.
Here x is the inputs to the fully connected network and θ is the learnable weights.
Then the backpropagation algorithm simply computes ∂ f

∂θ . The practical complexities
arise in implementing backpropagation for all possible functions f that arise in prac‐
tice. Luckily for us, TensorFlow takes care of this already!

Universal Convergence Theorem
The preceding discussion has touched on the ideas that deep fully connected net‐
works are powerful approximations. McCulloch and Pitts showed that logical net‐
works can code (almost) any Boolean function. Rosenblatt’s Perceptron was the
continuous analog of McCulloch and Pitt’s logical functions, but was shown to be
fundamentally limited by Minsky and Papert. Multilayer perceptrons looked to solve
the limitations of simple perceptrons and empirically seemed capable of learning
complex functions. However, it wasn’t theoretically clear whether this empirical abil‐
ity had undiscovered limitations. In 1989, George Cybenko demonstrated that
multilayer perceptrons were capable of representing arbitrary functions. This demon‐
stration provided a considerable boost to the claims of generality for fully connected
networks as a learning architecture, partially explaining their continued popularity.

However, if both backpropagation and fully connected network theory were under‐
stood in the late 1980s, why didn’t “deep” learning become more popular earlier? A
large part of this failure was due to computational limitations; learning fully connec‐
ted networks took an exorbitant amount of computing power. In addition, deep net‐
works were very difficult to train due to lack of understanding about good
hyperparameters. As a result, alternative learning algorithms such as SVMs that had
lower computational requirements became more popular. The recent surge in popu‐
larity in deep learning is partly due to the increased availability of better computing
hardware that enables faster computing, and partly due to increased understanding of
good training regimens that enable stable learning.

Is Universal Approximation That Surprising?

Universal approximation properties are more common in mathe‐
matics than one might expect. For example, the Stone-Weierstrass
theorem proves that any continuous function on a closed interval
can be a suitable polynomial function. Loosening our criteria fur‐
ther, Taylor series and Fourier series themselves offer some
universal approximation capabilities (within their domains of con‐
vergence). The fact that universal convergence is fairly common in
mathematics provides partial justification for the empirical obser‐
vation that there are many slight variants of fully connected net‐
works that seem to share a universal approximation property.
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Universal Approximation Doesn’t Mean Universal Learning!

A critical subtlety exists in the universal approximation theorem.
The fact that a fully connected network can represent any function
doesn’t mean that backpropagation can learn any function! One of
the major limitations of backpropagation is that there is no guaran‐
tee the fully connected network “converges”; that is, finds the best
available solution of a learning problem. This critical theoretical
gap has left generations of computer scientists queasy with neural
networks. Even today, many academics will prefer to work with
alternative algorithms that have stronger theoretical guarantees.
Empirical research has yielded many practical tricks that allow
backpropagation to find good solutions for problems. We will go
into many of these tricks in significant depth in the remainder of
this chapter. For the practicing data scientist, the universal approxi‐
mation theorem isn’t something to take too seriously. It’s reassur‐
ing, but the art of deep learning lies in mastering the practical
hacks that make learning work.

Why Deep Networks?
A subtlety in the universal approximation theorem is that it in fact holds true for fully
connected networks with only one fully connected layer. What then is the use of
“deep” learning with multiple fully connected layers? It turns out that this question is
still quite controversial in academic and practical circles.

In practice, it seems that deeper networks can sometimes learn richer models on large
datasets. (This is only a rule of thumb, however; every practitioner has a bevy of
examples where deep fully connected networks don’t do well.) This observation has
led researchers to hypothesize that deeper networks can represent complex functions
“more efficiently.” That is, a deeper network may be able to learn more complex func‐
tions than shallower networks with the same number of neurons. For example, the
ResNet architecture mentioned briefly in the first chapter, with 130 layers, seems to
outperform its shallower competitors such as AlexNet. In general, for a fixed neuron
budget, stacking deeper leads to better results.

A number of erroneous “proofs” for this “fact” have been given in the literature, but
all of them have holes. It seems the question of depth versus width touches on pro‐
found concepts in complexity theory (which studies the minimal amount of resour‐
ces required to solve given computational problems). At present day, it looks like
theoretically demonstrating (or disproving) the superiority of deep networks is far
outside the ability of our mathematicians.
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Training Fully Connected Neural Networks
As we mentioned previously, the theory of fully connected networks falls short of
practice. In this section, we will introduce you to a number of empirical observations
about fully connected networks that aid practitioners. We strongly encourage you to
use our code (introduced later in the chapter) to check our claims for yourself.

Learnable Representations
One way of thinking about fully connected networks is that each fully connected layer
effects a transformation of the feature space in which the problem resides. The idea of
transforming the representation of a problem to render it more malleable is a very
old one in engineering and physics. It follows that deep learning methods are some‐
times called “representation learning.” (An interesting factoid is that one of the major
conferences for deep learning is called the “International Conference on Learning
Representations.”)

Generations of analysts have used Fourier transforms, Legendre transforms, Laplace
transforms, and so on in order to simplify complicated equations and functions to
forms more suitable for handwritten analysis. One way of thinking about deep learn‐
ing networks is that they effect a data-driven transform suited to the problem at
hand.

The ability to perform problem-specific transformations can be immensely powerful.
Standard transformation techniques couldn’t solve problems of image or speech anal‐
ysis, while deep networks are capable of solving these problems with relative ease due
to the inherent flexibility of the learned representations. This flexibility comes with a
price: the transformations learned by deep architectures tend to be much less general
than mathematical transforms such as the Fourier transform. Nonetheless, having
deep transforms in an analytic toolkit can be a powerful problem-solving tool.

There’s a reasonable argument that deep learning is simply the first representation
learning method that works. In the future, there may well be alternative representa‐
tion learning methods that supplant deep learning methods.

Activations
We previously introduced the nonlinear function σ as the sigmoidal function. While
the sigmoidal is the classical nonlinearity in fully connected networks, in recent years
researchers have found that other activations, notably the rectified linear activation
(commonly abbreviated ReLU or relu) σ x = max x, 0  work better than the sigmoi‐
dal unit. This empirical observation may be due to the vanishing gradient problem in
deep networks. For the sigmoidal function, the slope is zero for almost all values of its
input. As a result, for deeper networks, the gradient would tend to zero. For the ReLU
function, the slope is nonzero for a much greater part of input space, allowing non‐
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zero gradients to propagate. Figure 4-7 illustrates sigmoidal and ReLU activations
side by side.

Figure 4-7. Sigmoidal and ReLU activation functions.

Fully Connected Networks Memorize
One of the striking aspects about fully connected networks is that they tend to mem‐
orize training data entirely given enough time. As a result, training a fully connected
network to “convergence” isn’t really a meaningful metric. The network will keep
training and learning as long as the user is willing to wait.

For large enough networks, it is quite common for training loss to trend all the way to
zero. This empirical observation is one the most practical demonstrations of the uni‐
versal approximation capabilities of fully connected networks. Note however, that
training loss trending to zero does not mean that the network has learned a more
powerful model. It’s rather likely that the model has started to memorize peculiarities
of the training set that aren’t applicable to any other datapoints.

It’s worth digging into what we mean by peculiarities here. One of the interesting
properties of high-dimensional statistics is that given a large enough dataset, there
will be plenty of spurious correlations and patterns available for the picking. In prac‐
tice, fully connected networks are entirely capable of finding and utilizing these spu‐
rious correlations. Controlling networks and preventing them from misbehaving in
this fashion is critical for modeling success.

Regularization
Regularization is the general statistical term for a mathematical operation that limits
memorization while promoting generalizable learning. There are many different
types of regularization available, which we will cover in the next few sections.
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Not Your Statistician’s Regularization

Regularization has a long history in the statistical literature, with
entire sheaves of papers written on the topic. Unfortunately, only
some of this classical analysis carries over to deep networks. The
linear models used widely in statistics can behave very differently
from deep networks, and many of the intuitions built in that setting
can be downright wrong for deep networks.
The first rule for working with deep networks, especially for read‐
ers with prior statistical modeling experience, is to trust empirical
results over past intuition. Don’t assume that past knowledge about
techniques such as LASSO has much meaning for modeling deep
architectures. Rather, set up an experiment to methodically test
your proposed idea. We will return at greater depth to this method‐
ical experimentation process in the next chapter.

Dropout
Dropout is a form of regularization that randomly drops some proportion of the
nodes that feed into a fully connected layer (Figure 4-8). Here, dropping a node
means that its contribution to the corresponding activation function is set to 0. Since
there is no activation contribution, the gradients for dropped nodes drop to zero as
well.

Figure 4-8. Dropout randomly drops neurons from a network while training. Empiri‐
cally, this technique often provides powerful regularization for network training.

The nodes to be dropped are chosen at random during each step of gradient descent.
The underlying design principle is that the network will be forced to avoid “co-
adaptation.” Briefly, we will explain what co-adaptation is and how it arises in non-
regularized deep architectures. Suppose that one neuron in a deep network has
learned a useful representation. Then other neurons deeper in the network will
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rapidly learn to depend on that particular neuron for information. This process will
render the network brittle since the network will depend excessively on the features
learned by that neuron, which might represent a quirk of the dataset, instead of learn‐
ing a general rule.

Dropout prevents this type of co-adaptation because it will no longer be possible to
depend on the presence of single powerful neurons (since that neuron might drop
randomly during training). As a result, other neurons will be forced to “pick up the
slack” and learn useful representations as well. The theoretical argument follows that
this process should result in stronger learned models.

In practice, dropout has a pair of empirical effects. First, it prevents the network from
memorizing the training data; with dropout, training loss will no longer tend rapidly
toward 0, even for very large deep networks. Next, dropout tends to slightly boost the
predictive power of the model on new data. This effect often holds for a wide range of
datasets, part of the reason that dropout is recognized as a powerful invention, and
not just a simple statistical hack.

You should note that dropout should be turned off when making predictions. Forget‐
ting to turn off dropout can cause predictions to be much noisier and less useful than
they would be otherwise. We discuss how to handle dropout for training and predic‐
tions correctly later in the chapter.

How Can Big Networks Not Overfit?

One of the most jarring points for classically trained statisticians is
that deep networks may routinely have more internal degrees of
freedom than are present in the training data. In classical statistics,
the presence of these extra degrees of freedom would render the
model useless, since there will no longer exist a guarantee that the
model learned is “real” in the classical sense.
How then can a deep network with millions of parameters learn
meaningful results on datasets with only thousands of exemplars?
Dropout can make a big difference here and prevent brute memo‐
rization. But, there’s also a deeper unexplained mystery in that deep
networks will tend to learn useful facts even in the absence of drop‐
out. This tendency might be due to some quirk of backpropagation
or fully connected network structure that we don’t yet understand.

Early stopping
As mentioned, fully connected networks tend to memorize whatever is put before
them. As a result, it’s often useful in practice to track the performance of the network
on a held-out “validation” set and stop the network when performance on this valida‐
tion set starts to go down. This simple technique is known as early stopping.
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In practice, early stopping can be quite tricky to implement. As you will see, loss
curves for deep networks can vary quite a bit in the course of normal training. Devis‐
ing a rule that separates healthy variation from a marked downward trend can take
significant effort. In practice, many practitioners just train models with differing
(fixed) numbers of epochs, and choose the model that does best on the validation set.
Figure 4-9 illustrates how training and test set accuracy typically change as training
proceeds.

Figure 4-9. Model accuracy on training and test sets as training proceeds.

We will dig more into proper methods for working with validation sets in the follow‐
ing chapter.

Weight regularization
A classical regularization technique drawn from the statistical literature penalizes
learned weights that grow large. Following notation from the previous chapter, let
ℒ x, y  denote the loss function for a particular model and let θ denote the learnable
parameters of this model. Then the regularized loss function is defined by

ℒ′ x, y = ℒ x, y + α ∥ θ ∥

where ∥ θ ∥ is the weight penalty and α is a tunable parameter. The two common
choices for penalty are the L1 and L2 penalties

∥ θ ∥2 = ∑i = 1
N θi

2

∥ θ ∥1 = ∑
i = 1

N
θi
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where ∥ θ ∥2 and ∥ θ ∥1 denote the L1 and L2 penalties, respectively. From personal
experience, these penalties tend to be less useful for deep models than dropout and
early stopping. Some practitioners still make use of weight regularization, so it’s
worth understanding how to apply these penalties when tuning deep networks.

Training Fully Connected Networks
Training fully connected networks requires a few tricks beyond those you have seen
so far in this book. First, unlike in the previous chapters, we will train models on
larger datasets. For these datasets, we will show you how to use minibatches to speed
up gradient descent. Second, we will return to the topic of tuning learning rates.

Minibatching
For large datasets (which may not even fit in memory), it isn’t feasible to compute
gradients on the full dataset at each step. Rather, practitioners often select a small
chunk of data (typically 50–500 datapoints) and compute the gradient on these data‐
points. This small chunk of data is traditionally called a minibatch.

In practice, minibatching seems to help convergence since more gradient descent
steps can be taken with the same amount of compute. The correct size for a mini‐
batch is an empirical question often set with hyperparameter tuning.

Learning rates
The learning rate dictates the amount of importance to give to each gradient descent
step. Setting a correct learning rate can be tricky. Many beginning deep-learners set
learning rates incorrectly and are surprised to find that their models don’t learn or
start returning NaNs. This situation has improved significantly with the development
of methods such as ADAM that simplify choice of learning rate significantly, but it’s
worth tweaking the learning rate if models aren’t learning anything.

Implementation in TensorFlow
In this section, we will show you how to implement a fully connected network in Ten‐
sorFlow. We won’t need to introduce many new TensorFlow primitives in this section
since we have already covered most of the required basics.

Installing DeepChem
In this section, you will use the DeepChem machine learning toolchain for your
experiments (full disclosure: one of the authors was the creator of DeepChem).
Detailed installation directions for DeepChem can be found online, but briefly the
Anaconda installation via the conda tool will likely be most convenient.
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Tox21 Dataset
For our modeling case study, we will use a chemical dataset. Toxicologists are very
interested in the task of using machine learning to predict whether a given compound
will be toxic or not. This task is extremely complicated, since today’s science has only
a limited understanding of the metabolic processes that happen in a human body.
However, biologists and chemists have worked out a limited set of experiments that
provide indications of toxicity. If a compound is a “hit” in one of these experiments, it
will likely be toxic for a human to ingest. However, these experiments are often costly
to run, so data scientists aim to build machine learning models that can predict the
outcomes of these experiments on new molecules.

One of the most important toxicological dataset collections is called Tox21. It was
released by the NIH and EPA as part of a data science initiative and was used as the
dataset in a model building challenge. The winner of this challenge used multitask
fully connected networks (a variant of fully connected networks where each network
predicts multiple quantities for each datapoint). We will analyze one of the datasets
from the Tox21 collection. This dataset consists of a set of 10,000 molecules tested for
interaction with the androgen receptor. The data science challenge is to predict
whether new molecules will interact with the androgen receptor.

Processing this dataset can be tricky, so we will make use of the MoleculeNet dataset
collection curated as part of DeepChem. Each molecule in Tox21 is processed into a
bit-vector of length 1024 by DeepChem. Loading the dataset is then a few simple calls
into DeepChem (Example 4-1).

Example 4-1. Load the Tox21 dataset

import deepchem as dc

_, (train, valid, test), _ = dc.molnet.load_tox21()
train_X, train_y, train_w = train.X, train.y, train.w
valid_X, valid_y, valid_w = valid.X, valid.y, valid.w
test_X, test_y, test_w = test.X, test.y, test.w

Here the X variables hold processed feature vectors, y holds labels, and w holds exam‐
ple weights. The labels are binary 1/0 for compounds that interact or don’t interact
with the androgen receptor. Tox21 holds imbalanced datasets, where there are far
fewer positive examples than negative examples. w holds recommended per-example
weights that give more emphasis to positive examples (increasing the importance of
rare examples is a common technique for handling imbalanced datasets). We won’t
use these weights during training for simplicity. All of these variables are NumPy
arrays.
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Tox21 has more datasets than we will analyze here, so we need to remove the labels
associated with these extra datasets (Example 4-2).

Example 4-2. Remove extra datasets from Tox21

# Remove extra tasks
train_y = train_y[:, 0]
valid_y = valid_y[:, 0]
test_y = test_y[:, 0]
train_w = train_w[:, 0]
valid_w = valid_w[:, 0]
test_w = test_w[:, 0]

Accepting Minibatches of Placeholders
In the previous chapters, we created placeholders that accepted arguments of fixed
size. When dealing with minibatched data, it is often convenient to be able to feed
batches of variable size. Suppose that a dataset has 947 elements. Then with a mini‐
batch size of 50, the last batch will have 47 elements. This would cause the code in
Chapter 3 to crash. Luckily, TensorFlow has a simple fix to the situation: using None
as a dimensional argument to a placeholder allows the placeholder to accept tensors
with arbitrary size in that dimension (Example 4-3).

Example 4-3. Defining placeholders that accept minibatches of different sizes

d = 1024
with tf.name_scope("placeholders"):
  x = tf.placeholder(tf.float32, (None, d))
  y = tf.placeholder(tf.float32, (None,))

Note d is 1024, the dimensionality of our feature vectors.

Implementing a Hidden Layer
The code to implement a hidden layer is very similar to code we’ve seen in the last
chapter for implementing logistic regression, as shown in Example 4-4.

Example 4-4. Defining a hidden layer

with tf.name_scope("hidden-layer"):
  W = tf.Variable(tf.random_normal((d, n_hidden)))
  b = tf.Variable(tf.random_normal((n_hidden,)))
  x_hidden = tf.nn.relu(tf.matmul(x, W) + b)

We use a tf.name_scope to group together introduced variables. Note that we use the
matricial form of the fully connected layer. We use the form xW instead of Wx in
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order to deal more conveniently with a minibatch of input at a time. (As an exercise,
try working out the dimensions involved to see why this is so.) Finally, we apply the
ReLU nonlinearity with the built-in tf.nn.relu activation function.

The remainder of the code for the fully connected layer is quite similar to that used
for the logistic regression in the previous chapter. For completeness, we display the
full code used to specify the network in Example 4-5. As a quick reminder, the full
code for all models covered is available in the GitHub repo associated with this book.
We strongly encourage you to try running the code for yourself.

Example 4-5. Defining the fully connected architecture

with tf.name_scope("placeholders"):
  x = tf.placeholder(tf.float32, (None, d))
  y = tf.placeholder(tf.float32, (None,))
with tf.name_scope("hidden-layer"):
  W = tf.Variable(tf.random_normal((d, n_hidden)))
  b = tf.Variable(tf.random_normal((n_hidden,)))
  x_hidden = tf.nn.relu(tf.matmul(x, W) + b)
with tf.name_scope("output"):
  W = tf.Variable(tf.random_normal((n_hidden, 1)))
  b = tf.Variable(tf.random_normal((1,)))
  y_logit = tf.matmul(x_hidden, W) + b
  # the sigmoid gives the class probability of 1
  y_one_prob = tf.sigmoid(y_logit)
  # Rounding P(y=1) will give the correct prediction.
  y_pred = tf.round(y_one_prob)
with tf.name_scope("loss"):
  # Compute the cross-entropy term for each datapoint
  y_expand = tf.expand_dims(y, 1)
  entropy = tf.nn.sigmoid_cross_entropy_with_logits(logits=y_logit, labels=y_expand)
  # Sum all contributions
  l = tf.reduce_sum(entropy)

with tf.name_scope("optim"):
  train_op = tf.train.AdamOptimizer(learning_rate).minimize(l)

with tf.name_scope("summaries"):
  tf.summary.scalar("loss", l)
  merged = tf.summary.merge_all()

Adding Dropout to a Hidden Layer
TensorFlow takes care of implementing dropout for us in the built-in primitive
tf.nn.dropout(x, keep_prob), where keep_prob is the probability that any given
node is kept. Recall from our earlier discussion that we want to turn on dropout
when training and turn off dropout when making predictions. To handle this cor‐
rectly, we will introduce a new placeholder for keep_prob, as shown in Example 4-6.
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Example 4-6. Add a placeholder for dropout probability

keep_prob = tf.placeholder(tf.float32)

During training, we pass in the desired value, often 0.5, but at test time we set
keep_prob to 1.0 since we want predictions made with all learned nodes. With this
setup, adding dropout to the fully connected network specified in the previous sec‐
tion is simply a single extra line of code (Example 4-7).

Example 4-7. Defining a hidden layer with dropout

with tf.name_scope("hidden-layer"):
  W = tf.Variable(tf.random_normal((d, n_hidden)))
  b = tf.Variable(tf.random_normal((n_hidden,)))
  x_hidden = tf.nn.relu(tf.matmul(x, W) + b)
  # Apply dropout
  x_hidden = tf.nn.dropout(x_hidden, keep_prob)

Implementing Minibatching
To implement minibatching, we need to pull out a minibatch’s worth of data each
time we call sess.run. Luckily for us, our features and labels are already in NumPy
arrays, and we can make use of NumPy’s convenient syntax for slicing portions of
arrays (Example 4-8).

Example 4-8. Training on minibatches

step = 0
for epoch in range(n_epochs):
  pos = 0
  while pos < N:
    batch_X = train_X[pos:pos+batch_size]
    batch_y = train_y[pos:pos+batch_size]
    feed_dict = {x: batch_X, y: batch_y, keep_prob: dropout_prob}
    _, summary, loss = sess.run([train_op, merged, l], feed_dict=feed_dict)
    print("epoch %d, step %d, loss: %f" % (epoch, step, loss))
    train_writer.add_summary(summary, step)

    step += 1
    pos += batch_size

Evaluating Model Accuracy
To evaluate model accuracy, standard practice requires measuring the accuracy of the
model on data not used for training (namely the validation set). However, the fact
that the data is imbalanced makes this tricky. The classification accuracy metric we
used in the previous chapter simply measures the fraction of datapoints that were
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labeled correctly. However, 95% of data in our dataset is labeled 0 and only 5% are
labeled 1. As a result the all-0 model (which labels everything negative) would ach‐
ieve 95% accuracy! This isn’t what we want.

A better choice would be to increase the weights of positive examples so that they
count for more. For this purpose, we use the recommended per-example weights
from MoleculeNet to compute a weighted classification accuracy where positive sam‐
ples are weighted 19 times the weight of negative samples. Under this weighted accu‐
racy, the all-0 model would have 50% accuracy, which seems much more reasonable.

ForI computing the weighted accuracy, we use the function accuracy_score(true,
pred, sample_weight=given_sample_weight) from sklearn.metrics. This func‐
tion has a keyword argument sample_weight, which lets us specify the desired weight
for each datapoint. We use this function to compute the weighted metric on both the
training and validation sets (Example 4-9).

Example 4-9. Computing a weighted accuracy

train_weighted_score = accuracy_score(train_y, train_y_pred, sample_weight=train_w)
print("Train Weighted Classification Accuracy: %f" % train_weighted_score)
valid_weighted_score = accuracy_score(valid_y, valid_y_pred, sample_weight=valid_w)
print("Valid Weighted Classification Accuracy: %f" % valid_weighted_score)

While we could reimplement this function ourselves, sometimes it’s easier (and less
error prone) to use standard functions from the Python data science infrastructure.
Learning about this infrastructure and available functions is part of being a practicing
data scientist. Now, we can train the model (for 10 epochs in the default setting) and
gauge its accuracy:

Train Weighted Classification Accuracy: 0.742045
Valid Weighted Classification Accuracy: 0.648828

In Chapter 5, we will show you methods to systematically improve this accuracy and
tune our fully connected model more carefully.

Using TensorBoard to Track Model Convergence
Now that we have specified our model, let’s use TensorBoard to inspect the model.
Let’s first check the graph structure in TensorBoard (Figure 4-10).

The graph looks similar to that for logistic regression, with the addition of a new hid‐
den layer. Let’s expand the hidden layer to see what’s inside (Figure 4-11).
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Figure 4-10. Visualizing the computation graph for a fully connected network.

Figure 4-11. Visualizing the expanded computation graph for a fully connected network.
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You can see how the new trainable variables and the dropout operation are repre‐
sented here. Everything looks to be in the right place. Let’s end now by looking at the
loss curve over time (Figure 4-12).

Figure 4-12. Visualizing the loss curve for a fully connected network.

The loss curve trends down as we saw in the previous section. But, let’s zoom in to see
what this loss looks like up close (Figure 4-13).

Figure 4-13. Zooming in on a section of the loss curve.

Note that loss looks much bumpier! This is one of the prices of using minibatch train‐
ing. We no longer have the beautiful, smooth loss curves that we saw in the previous
sections.

Review
In this chapter, we’ve introduced you to fully connected deep networks. We delved
into the mathematical theory of these networks, and explored the concept of “univer‐
sal approximation,” which partially explains the learning power of fully connected
networks. We ended with a case study, where you trained a deep fully connected
architecture on the Tox21 dataset.
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In this chapter, we haven’t yet shown you how to tune the fully connected network to
achieve good predictive performance. In Chapter 5, we will discuss “hyperparameter
optimization,” the process of tuning network parameters, and have you tune the
parameters of the Tox21 network introduced in this chapter.
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CHAPTER 5

Hyperparameter Optimization

Training a deep model and training a good deep model are very different things.
While it’s easy enough to copy-paste some TensorFlow code from the internet to get a
first prototype running, it’s much harder to transform that prototype into a high-
quality model. The process of taking a prototype to a high-quality model involves
many steps. We’ll explore one of these steps, hyperparameter optimization, in the rest
of this chapter.

To first approximation, hyperparameter optimization is the process of tweaking all
parameters of a model not learned by gradient descent. These quantities are called
“hyperparameters.” Consider fully connected networks from the previous chapter.
While the weights of fully connected networks can be learned from data, the other
settings of the network can’t. These hyperparameters include the number of hidden
layers, the number of neurons per hidden layer, the learning rate, and more. How can
you systematically find good values for these quantities? Hyperparameter optimiza‐
tion methods provide our answer to this question.

Recall that we mentioned previously that model performance is tracked on a held-out
“validation” set. Hyperparameter optimization methods systematically try multiple
choices for hyperparameters on the validation set. The best-performing set of hyper‐
parameter values is then evaluated on a second held-out “test” set to gauge the true
model performance. Different hyperparameter optimization methods differ in the
algorithm they use to propose new hyperparameter settings. These algorithms range
from the obvious to quite sophisticated. We will only cover some of the simpler meth‐
ods in these chapters, since the more sophisticated hyperparameter optimization
techniques tend to require very large amounts of computational power.

As a case study, we will tune the Tox21 toxicity fully connected network introduced in
Chapter 4 to achieve good performance. We strongly encourage you (as always) to
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run the hyperparameter optimization methods yourself using the code in the GitHub
repo associated with this book.

Hyperparameter Optimization Isn’t Just for Deep Networks!

It’s worth emphasizing that hyperparameter optimization isn’t only
for deep networks. Most forms of machine learning algorithms
have parameters that can’t be learned with the default learning
methods. These parameters are also called hyperparameters. You
will see some examples of hyperparameters for random forests
(another common machine learning method) later in this chapter.
It’s worth noting, however, that deep networks tend to be more sen‐
sitive to hyperparameter choice than other algorithms. While a
random forest might underperform slightly with default choices for
hyperparameters, deep networks might fail to learn entirely. For
this reason, mastering hyperparameter optimization is a critical
skill for a would-be deep learner.

Model Evaluation and Hyperparameter Optimization
In the previous chapters, we have only entered briefly into the question of how to tell
whether a machine learning model is good or not. Any measurement of model per‐
formance must gauge the model’s ability to generalize. That is, can the model make
predictions on datapoints it has never seen before? The best test of model perfor‐
mance is to create a model, then evaluate prospectively on data that becomes available
after the model was constructed. However, this sort of test is unwieldy to do regularly.
During a design phase, a practicing data scientist may want to evaluate many different
types of models or learning algorithms to find which is best.

The solution to this dilemma is to “hold-out” part of the available dataset as a valida‐
tion set. This validation set will be used to measure the performance of different
models (with differing hyperparameter choices). It’s also good practice to have a sec‐
ond held-out set, the test set, for gauging the performance of the final model chosen
by hyperparameter selection methods.

Let’s assume you have a hundred datapoints. A simple procedure would be to use 80
of these datapoints to train prospective models with 20 held-out datapoints used to
validate the model choice. The “goodness” of a proposed model can then be tracked
by its “score” on the held-out 20 datapoints. Models can be iteratively improved by
proposing new designs, and accepting only those that improve performance on the
held-out set.

In practice, though, this procedure leads to overfitting. Practitioners quickly learn
peculiarities of the held-out set and tweak model structure to artificially boost scores
on the held-out set. To combat this, practitioners commonly break the held-out set
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into two parts: one part for validation of hyperparameters and the other for final
model validation. In this case, let’s say you reserve 10 datapoints for validation and 10
for final testing. This would be called an 80/10/10 data split.

Why Is the Test Set Necessary?

An important point worth noting is that hyperparameter optimiza‐
tion methods are themselves a form of learning algorithm. In par‐
ticular, they are a learning algorithm for setting nondifferentiable
quantities that aren’t easily amenable to calculus-based analysis.
The “training set” for the hyperparameter learning algorithm is
simply the held-out validation set.
In general, it isn’t very meaningful to gauge model performance on
their training sets. As always, learned quantities must generalize
and it is consequently necessary to test performance on a different
set. Since the training set is used for gradient-based learning, and
the validation set is used for hyperparameter learning, the test set is
necessary to gauge how well learned hyperparameters generalize to
new data.

Black-Box Learning Algorithms

Black-box learning algorithms assume no structural information
about the systems they are trying to optimize. Most hyperparame‐
ter methods are black-box; they work for any type of deep learning
or machine learning algorithm.
Black-box methods in general don’t scale as well as white-box
methods (such as gradient descent) since they tend to get lost in
high-dimensional spaces. Due to the lack of directional informa‐
tion from a gradient, black-box methods can get lost in even 50
dimensional spaces (optimizing 50 hyperparameters is quite chal‐
lenging in practice).
To understand why, suppose there are 50 hyperparameters, each
with 3 potential values. Then the black-box algorithm must blindly
search a space of size 350. This can be done, but performing the
search will require lots of computational power in general.

Metrics, Metrics, Metrics
When choosing hyperparameters, you want to select those that make the models you
design more accurate. In machine learning, a metric is a function that gauges the
accuracy of predictions from a trained model. Hyperparameter optimization is done
to optimize for hyperparameters that maximize (or minimize) this metric on the vali‐
dation set. While this sounds simple up front, the notion of accuracy can in fact be
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quite subtle. Suppose you have a binary classifier. Is it more important to never misla‐
bel false samples as true or to never mislabel true samples as false? How can you
choose for model hyperparameters that satisfy the needs of your applications?

The answer turns out to be to choose the correct metric. In this section, we will dis‐
cuss many different metrics for classification and regression problems. We will com‐
ment on the qualities each metric emphasizes. There is no best metric, but there are
more suitable and less suitable metrics for different applications.

Metrics Aren’t a Replacement for Common Sense!

Metrics are terribly blind. They only optimize for a single quantity.
Consequently, blind optimization of metrics can lead to entirely
unsuitable outcomes. On the web, media sites often choose to opti‐
mize the metric of “user clicks.” Some enterprising young journalist
or advertiser then realized that titles like “You’ll never believe what
happened when X” induced users to click at higher fractions. Lo
and behold, clickbait was born. While clickbait headlines do indeed
induce readers to click, they also turn off readers and lead them to
avoid spending time on clickbait-filled sites. Optimizing for user
clicks resulted in drops in user engagement and trust.
The lesson here is general. Optimizing for one metric often comes
at the cost of a separate quantity. Make sure that the quantity you
wish to optimize for is indeed the “right” quantity. Isn’t it interest‐
ing how machine learning still seems to require human judgment
at its core?

Binary Classification Metrics
Before introducing metrics for binary classification models, we think you will find it
useful to learn about some auxiliary quantities. When a binary classifier makes pre‐
dictions on a set of datapoints, you can split all these predictions into one of four cat‐
egories (Table 5-1).

Table 5-1. Prediction categories

Category Meaning
True Positive (TP) Predicted true, Label true

False Positive (FP) Predicted true, Label false

True Negative (TN) Predicted false, Label false

False Negative (FN) Predicted false, Label true

We will also find it useful to introduce the notation shown in Table 5-2.
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Table 5-2. Positives and negatives

Category Meaning
P Number of positive labels

N Number of negative labels

In general, minimizing the number of false positives and false negatives is highly
desirable. However, for any given dataset, it is often not possible to minimize both
false positives and false negatives due to limitations in the signal present. Conse‐
quently, there are a variety of metrics that provide various trade-offs between false
positives and false negatives. These trade-offs can be quite important for applications.
Suppose you are designing a medical diagnostic for breast cancer. Then a false posi‐
tive would be to mark a healthy patient as having breast cancer. A false negative
would be to mark a breast cancer sufferer as not having the disease. Neither of these
outcomes is desirable, and designing the correct balance is a tricky question in bio‐
ethics.

We will now show you a number of different metrics that balance false positives and
false negatives in different ratios (Table 5-3). Each of these ratios optimizes for a dif‐
ferent balance, and we will dig into some of these in more detail.

Table 5-3. Binary metrics table

Metric Definition
Accuracy (TP + TN)/(P + N)

Precision TP/(TP + FP)

Recall TP/(TP + FN) = TP/P

Specificity TN/(FP + TN) = TN/N

False Positive Rate (FPR) FP/(FP + TN) = FP/N

False Negative Rate (FNR) FN/(TP + FN) = FN/P

Accuracy is the simplest metric. It simply counts the fraction of predictions that were
made correctly by the classifier. In straightforward applications, accuracy should be
the first go-to metric for a practitioner. After accuracy, precision and recall are the
most commonly measured metrics. Precision simply measures what fraction of the
datapoints predicted positive were actually positive. Recall in its turn measures
the fraction of positive labeled datapoints that the classifier labeled positive. Specific‐
ity measures the fraction of datapoints labeled negative that were correctly classified.
The false positive rate measures the fraction of datapoints labeled negative that were
misclassified as positive. False negative rate is the fraction of datapoints labeled posi‐
tive that were falsely labeled as negatives.

These metrics all emphasize different aspects of a classifier’s performance. They can
also be useful in constructing some more sophisticated measurements of a binary
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classifier’s performance. For example, suppose that your binary classifier outputs class
probabilities, and not just raw predictions. Then, there rises the question of choosing
a cutoff. That is, at what probability of positive do you label the output as actually
positive? The most common answer is 0.5, but by choosing higher or lower cutoffs, it
is often possible to manually vary the balance between precision, recall, FPR, and
TPR. These trade-offs are often represented graphically.

The receiver operator curve (ROC) plots the trade-off between the true positive rate
and the false positive rate as the cutoff probability is varied (see Figure 5-1).

Figure 5-1. The receiver operator curve (ROC).

The area under curve (AUC) for the receiver operator curve (ROC-AUC) is a com‐
monly measured metric. The ROC-AUC metric is useful since it provides a global
picture of the binary classifier for all choices of cutoff. A perfect metric would have
ROC-AUC 1.0 since the TPR would always be maximized. For comparison, a random
classifier would have ROC-AUC 0.5. The ROC-AUC is often useful for imbalanced
datasets, since the global view partially accounts for the imbalance in the dataset.

Multiclass Classification Metrics
Many common machine learning tasks require models to output classification labels
that aren’t just binary. The ImageNet challenge (ILSVRC) required entrants to build
models that would recognize which of a thousand potential object classes were in
provided images, for example. Or in a simpler example, perhaps you want to predict
tomorrow’s weather, where provided classes are “sunny,” “rainy,” and “cloudy.” How
do you measure the performance of such a model?

The simplest method is to use a straightforward generalization of accuracy that meas‐
ures the fraction of datapoints correctly labeled (Table 5-4).
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Table 5-4. Multiclass classification metrics

Metric Definition
Accuracy Num Correctly Labeled/Num Datapoints

We note that there do exist multiclass generalizations of quantities like precision,
recall, and ROC-AUC, and we encourage you to look into these definitions if interes‐
ted. In practice, there’s a simpler visualization, the confusion matrix, which works
well. For a multiclass problem with k classes, the confusion matrix is a k × k matrix.
The (i, j)-th cell represents the number of datapoints labeled as class i with true label
class j. Figure 5-2 illustrates a confusion matrix.

Figure 5-2. The confusion matrix for a 10-way classifier.

Don’t underestimate the power of the human eye to catch systematic failure patterns
from simple visualizations! Looking at the confusion matrix can provide quick
understanding that dozens of more complex multiclass metrics might miss.
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Regression Metrics
You learned about regression metrics a few chapters ago. As a quick recap, the Pear‐
son R2 and RMSE (root-mean-squared error) are good defaults.

We only briefly covered the mathematical definition of R2 previously, but will delve
into it more now. Let xi represent predictions and yi represent labels. Let x and y rep‐
resent the mean of the predicted values and the labels, respectively. Then the Pearson
R (note the lack of square) is

R =
∑i = 1

N xi − x yi − y

∑i = 1
N xi − x 2 ∑i = 1

N yi − y 2

This equation can be rewritten as

R = cov x, y
σ x σ y

where cov represents the covariance and σ represents the standard deviation. Intui‐
tively, the Pearson R measures the joint fluctuations of the predictions and labels
from their means normalized by their respective ranges of fluctuations. If predictions
and labels differ, these fluctuations will happen at different points and will tend to
cancel, making R2 smaller. If predictions and labels tend to agree, the fluctuations will
happen together and make R2 larger. We note that R2 is limited to a range between 0
and 1.

The RMSE measures the absolute quantity of the error between the predictions and
the true quantities. It stands for root-mean-squared error, which is roughly analogous
to the absolute value of the error between the true quantity and the predicted quan‐
tity. Mathematically, the RMSE is defined as follows (using the same notation as
before):

RMSE =
∑i = 1

N xi − yi
2

N

Hyperparameter Optimization Algorithms
As we mentioned earlier in the chapter, hyperparameter optimization methods are
learning algorithms for finding values of the hyperparameters that optimize the
chosen metric on the validation set. In general, this objective function cannot be dif‐
ferentiated, so any optimization method must by necessity be a black box. In this
section, we will show you some simple black-box learning algorithms for choosing
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hyperparameter values. We will use the Tox21 dataset from Chapter 4 as a case study
to demonstrate these black-box optimization methods. The Tox21 dataset is small
enough to make experimentation easy, but complex enough that hyperparameter
optimization isn’t trivial.

We note before setting off that none of these black-box algorithms works perfectly. As
you will soon see, in practice, much human input is required to optimize hyperpara‐
meters.

Can’t Hyperparameter Optimization Be Automated?

One of the long-running dreams of machine learning has been to
automate the process of selecting model hyperparameters. Projects
such as the “automated statistician” and others have sought to
remove some of the drudgery from the hyperparameter selection
process and make model construction more easily available to non-
experts. However, in practice, there has typically been a steep cost
in performance for the added convenience.
In recent years, there has been a surge of work focused on improv‐
ing the algorithmic foundations of model tuning. Gaussian pro‐
cesses, evolutionary algorithms, and reinforcement learning have
all been used to learn model hyperparameters and architectures
with very limited human input. Recent work has shown that with
large amounts of computing power, these algorithms can exceed
expert performance in model tuning! But the overhead is severe,
with dozens to hundreds of times greater computational power
required.
For now, automatic model tuning is still not practical. All algo‐
rithms we cover in this section require significant manual tuning
However, as hardware quality improves, we anticipate that hyper‐
parameter learning will become increasingly automated. In the
near term, we recommend strongly that all practitioners master the
intricacies of hyperparameter tuning. A strong ability to hyper‐
parameter tune is the skill that separates the expert from the
novice.

Setting Up a Baseline
The first step in hyperparameter tuning is finding a baseline. A baseline is perfor‐
mance achievable by a robust (non–deep learning usually) algorithm. In general, ran‐
dom forests are a superb choice for setting baselines. As shown in Figure 5-3, random
forests are an ensemble method that train many decision tree models on subsets of
the input data and input features. These individual trees then vote on the outcome.
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Figure 5-3. An illustration of a random forest. Here v is the input feature vector.

Random forests tend to be quite robust models. They are noise tolerant, and don’t
worry about the scale of their input features. (Although we don’t have to worry about
this for Tox21 since all our features are binary, in general deep networks are quite
sensitive to their input range. It’s healthy to normalize or otherwise scale the input
range for good performance. We will return to this point in later chapters.) They also
tend to have strong generalization and don’t require much hyperparameter tuning to
boot. For certain datasets, beating the performance of a random forest with a deep
network can require considerable sophistication.

How can we create and train a random forest? Luckily for us, in Python, the scikit-
learn library provides a high-quality implementation of a random forest. There are
many tutorials and introductions to scikit-learn available, so we’ll just display the
training and prediction code needed to build a Tox21 random forest model here
(Example 5-1).

Example 5-1. Defining and training a random forest on the Tox21 dataset

from sklearn.ensemble import RandomForestClassifier

# Generate tensorflow graph
sklearn_model = RandomForestClassifier(
    class_weight="balanced", n_estimators=50)
print("About to fit model on training set.")
sklearn_model.fit(train_X, train_y)

train_y_pred = sklearn_model.predict(train_X)
valid_y_pred = sklearn_model.predict(valid_X)
test_y_pred = sklearn_model.predict(test_X)
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weighted_score = accuracy_score(train_y, train_y_pred, sample_weight=train_w)
print("Weighted train Classification Accuracy: %f" % weighted_score)
weighted_score = accuracy_score(valid_y, valid_y_pred, sample_weight=valid_w)
print("Weighted valid Classification Accuracy: %f" % weighted_score)
weighted_score = accuracy_score(test_y, test_y_pred, sample_weight=test_w)
print("Weighted test Classification Accuracy: %f" % weighted_score)

Here train_X, train_y, and so on are the Tox21 datasets defined in the previous
chapter. Recall that all these quantities are NumPy arrays. n_estimators refers to the
number of decision trees in our forest. Setting 50 or 100 trees often provides decent
performance. Scikit-learn offers a simple object-oriented API with fit(X, y) and
predict(X) methods. This model achieves the following accuracy with respect to our
weighted accuracy metric:

Weighted train Classification Accuracy: 0.989845
Weighted valid Classification Accuracy: 0.681413

Recall that the fully connected network from Chapter 4 achieved performance:

Train Weighted Classification Accuracy: 0.742045
Valid Weighted Classification Accuracy: 0.648828

It looks like our baseline gets greater accuracy than our deep learning model! Time to
roll up our sleeves and get to work.

Graduate Student Descent
The simplest method to try good hyperparameters is to simply try a number of differ‐
ent hyperparameter variants manually to see what works. This strategy can be sur‐
prisingly effective and educational. A deep learning practitioner needs to build up
intuition about the structure of deep networks. Given the very weak state of theory,
empirical work is the best way to learn how to build deep learning models. We highly
recommend trying many variants of the fully connected model yourself. Be system‐
atic; record your choices and results in a spreadsheet and systematically explore the
space. Try to understand the effects of various hyperparameters. Which make net‐
work training proceed faster and which slower? What ranges of settings completely
break learning? (These are quite easy to find, unfortunately.)

There are a few software engineering tricks that can make this search easier. Make a
function whose arguments are the hyperparameter you wish to explore and have it
print out the accuracy. Then trying new hyperparameter combinations requires only
a single function call. Example 5-2 shows what this function signature would look like
for our fully connected network from the Tox21 case study.
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Example 5-2. A function mapping hyperparameters to different Tox21 fully connected
networks

def eval_tox21_hyperparams(n_hidden=50, n_layers=1, learning_rate=.001,
                           dropout_prob=0.5, n_epochs=45, batch_size=100,
                           weight_positives=True):

Let’s walk through each of these hyperparameters. n_hidden controls the number of
neurons in each hidden layer of the network. n_layers controls the number of hid‐
den layers. learning_rate controls the learning rate used in gradient descent, and
dropout_prob is the probability neurons are not dropped during training steps.
n_epochs controls the number of passes through the total data and batch_size con‐
trols the number of datapoints in each batch.

weight_positives is the only new hyperparameter here. For unbalanced datasets, it
can often be helpful to weight examples of both classes to have equal weight. For the
Tox21 dataset, DeepChem provides weights for us to use. We simply multiply the per-
example cross-entropy terms by the weights to perform this weighting (Example 5-3).

Example 5-3. Weighting positive samples for Tox21

entropy = tf.nn.sigmoid_cross_entropy_with_logits(logits=y_logit, labels=y_expand)
# Multiply by weights
if weight_positives:
  w_expand = tf.expand_dims(w, 1)
  entropy = w_expand * entropy

Why is the method of picking hyperparameter values called graduate student
descent? Machine learning, until recently, has been a primarily academic field. The
tried-and-true method for designing a new machine learning algorithm has been
describing the method desired to a new graduate student, and asking them to work
out the details. This process is a bit of a rite of passage, and often requires the student
to painfully try many design alternatives. On the whole, this is a very educational
experience, since the only way to gain design aesthetic is to build up a memory of
settings that work and don’t work.

Grid Search
After having tried a few manual settings for hyperparameters, the process will begin
to feel very tedious. Experienced programmers will be tempted to simply write a for
loop that iterates over the choices of hyperparameters desired. This process is more
or less the grid-search method. For each hyperparameter, pick a list of values that
might be good hyperparameters. Write a nested for loop that tries all combinations
of these values to find their validation accuracies, and keep track of the best
performers.
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There is one subtlety in the process, however. Deep networks can be fairly sensitive to
the choice of random seed used to initialize the network. For this reason, it’s worth
repeating each choice of hyperparameter settings multiple times and averaging the
results to damp the variance.

The code to do this is straightforward, as Example 5-4 shows.

Example 5-4. Performing grid search on Tox21 fully connected network
hyperparameters

scores = {}
n_reps = 3
hidden_sizes = [50]
epochs = [10]
dropouts = [.5, 1.0]
num_layers = [1, 2]

for rep in range(n_reps):
  for n_epochs in epochs:
    for hidden_size in hidden_sizes:
      for dropout in dropouts:
        for n_layers in num_layers:
          score = eval_tox21_hyperparams(n_hidden=hidden_size, n_epochs=n_epochs,
                                         dropout_prob=dropout, n_layers=n_layers)
          if (hidden_size, n_epochs, dropout, n_layers) not in scores:
            scores[(hidden_size, n_epochs, dropout, n_layers)] = []
          scores[(hidden_size, n_epochs, dropout, n_layers)].append(score)
print("All Scores")
print(scores)

avg_scores = {}
for params, param_scores in scores.iteritems():
  avg_scores[params] = np.mean(np.array(param_scores))
print("Scores Averaged over %d repetitions" % n_reps)

Random Hyperparameter Search
For experienced practitioners, it will often be very tempting to reuse magical hyper‐
parameter settings or search grids that worked in previous applications. These set‐
tings can be valuable, but they can also lead us astray. Each machine learning problem
is slightly different, and the optimal settings might lie in a region of parameter space
we haven’t previously considered. For that reason, it’s often worthwhile to try random
settings for hyperparameters (where the random values are chosen from a reasonable
range).

There’s also a deeper reason to try random searches. In higher-dimensional spaces,
regular grids can miss a lot of information, especially if the spacing between grid
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points isn’t great. Selecting random choices for grid points can help us from falling
into the trap of loose grids. Figure 5-4 illustrates this fact.

Figure 5-4. An illustration of why random hyperparameter search can be superior to
grid search.

How can we implement random hyperparameter search in software? A neat software
trick is to sample the random values desired up front and store them in a list. Then,
random hyperparameter search simply turns into grid search over these randomly
sampled lists. Here’s an example. For learning rates, it’s often useful to try a wide
range from .1 to .000001 or so. Example 5-5 uses NumPy to sample some random
learning rates.

Example 5-5. Sampling random learning rates

n_rates = 5
learning_rates = 10**(-np.random.uniform(low=1, high=6, size=n_rates))

We use a mathematical trick here. Note that .1 = 10–1 and .000001 = 10–6. Sampling
real-valued numbers between ranges like 1 and 6 is easy with np.random.uniform.
We can raise these sampled values to a power to recover our learning rates. Then
learning_rates holds a list of values that we can feed into our grid search code from
the previous section.

Challenge for the Reader
In this chapter, we’ve only covered the basics of hyperparameter tuning, but the tools
covered are quite powerful. As a challenge, try tuning the fully connected deep net‐
work to achieve validation performance higher than that of the random forest. This
might require a bit of work, but it’s well worth the experience.
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Review
In this chapter, we covered the basics of hyperparameter optimization, the process of
selecting values for model parameters that can’t be learned automatically on the train‐
ing data. In particular, we introduced random and grid hyperparameter search and
demonstrated the use of such code for optimizing models on the Tox21 dataset intro‐
duced in the last chapter.

In Chapter 6, we will return to our survey of deep architectures and introduce you to
convolutional neural networks, one of the fundamental building blocks of modern
deep architectures.
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CHAPTER 6

Convolutional Neural Networks

Convolutional neural networks allow deep networks to learn functions on structured
spatial data such as images, video, and text. Mathematically, convolutional networks
provide tools for exploiting the local structure of data effectively. Images satisfy cer‐
tain natural statistical properties. Let’s assume we represent an image as a two-
dimensional grid of pixels. Parts of an image that are close to one other in the pixel
grid are likely to vary together (for example, all pixels corresponding to a table in the
image are probably brown). Convolutional networks learn to exploit this natural
covariance structure in order to learn effectively.

Convolutional networks are a relatively old invention. Versions of convolutional net‐
works have been proposed in the literature dating back to the 1980s. While the
designs of these older convolutional networks were often quite sound, they required
resources that exceeded hardware available at the time. As a result, convolutional net‐
works languished in relative obscurity in the research literature.

This trend reversed dramatically following the 2012 ILSVRC challenge for object
detection in images, where the convolutional AlexNet achieved error rates half that of
its nearest competitors. AlexNet was able to use GPUs to train old convolutional
architectures on dramatically larger datasets. This combination of old architectures
with new hardware allowed AlexNet to dramatically outperform the state of the art in
image object detection. This trend has only continued, with convolutional neural net‐
works achieving tremendous boosts over other technologies for processing images. It
isn’t an exaggeration to say that nearly all modern image processing pipelines are now
powered by convolutional neural networks.

There has also been a renaissance in convolutional network design that has moved
convolutional networks well past the basic models from the 1980s. For one, networks
have been getting much deeper with powerful state-of-the-art networks reaching
hundreds of layers deep. Another broad trend has been toward generalizing convolu‐
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tional architectures to work on new datatypes. For example, graph convolutional
architectures allow convolutional networks to be applied to molecular data such as
the Tox21 dataset we encountered a few chapters ago! Convolutional architectures are
also making a mark in genomics and in text processing and even language
translation.

In this chapter, we will introduce the basic concepts of convolutional networks. These
will include the basic network components that constitute convolutional architec‐
tures and an introduction to the design principles that guide how these pieces are
joined together. We will also provide an in-depth example that demonstrates how to
use TensorFlow to train a convolutional network. The example code for this chapter
was adapted from the TensorFlow documentation tutorial on convolutional neural
networks. We encourage you to access the original tutorial on the TensorFlow website
if you’re curious about the changes we’ve made. As always, we encourage you to work
through the scripts for this chapter in the associated GitHub repo for this book.

Introduction to Convolutional Architectures
Most convolutional architectures are made up of a number of basic primitives. These
primitives include layers such as convolutional layers and pooling layers. There’s also
a set of associated vocabulary including local receptive field size, stride size, and
number of filters. In this section, we will give you a brief introduction to the basic
vocabulary and concepts underlying convolutional networks.

Local Receptive Fields
The local receptive field concept originates in neuroscience, where the receptive field
of a neuron is the part of the body’s sensory perception that affects the neuron’s firing.
Neurons have a certain field of “view” as they process sensory input that the brain
sees. This field of view is traditionally called the local receptive field. This “field of
view” could correspond to a patch of skin or to a segment of a person’s visual field.
Figure 6-1 illustrates a neuron’s local receptive field.
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Figure 6-1. An illustration of a neuron’s local receptive field.

Convolutional architectures borrow this latter concept with the computational notion
of “local receptive fields.” Figure 6-2 provides a pictorial representation of the local
receptive field concept applied to image data. Each local receptive field corresponds
to a patch of pixels in the image and is handled by a separate “neuron.” These “neu‐
rons” are directly analogous to those in fully connected layers. As with fully connec‐
ted layers, a nonlinear transformation is applied to incoming data (which originates
from the local receptive image patch).
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Figure 6-2. The local receptive field (RF) of a “neuron” in a convolutional network.

A layer of such “convolutional neurons” can be combined into a convolutional layer.
This layer can viewed as a transformation of one spatial region into another. In the
case of images, one batch of images is transformed into another by a convolutional
layer. Figure 6-3 illustrates such a transformation. In the next section, we will show
you more details about how a convolutional layer is constructed.

Figure 6-3. A convolutional layer performs an image transformation.

It’s worth emphasizing that local receptive fields don’t have to be limited to image
data. For example, in stacked convolutional architectures, where the output of one
convolutional layer feeds into the input of the next, the local receptive field will corre‐
spond to a “patch” of processed feature data.

Convolutional Kernels
In the last section, we mentioned that a convolutional layer applies nonlinear func‐
tion to a local receptive field in its input. This locally applied nonlinearity is at the
heart of convolutional architectures, but it’s not the only piece. The second part of the
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convolution is what’s called a “convolutional kernel.” A convolutional kernel is just a
matrix of weights, much like the weights associated with a fully connected layer.
Figure 6-4 diagrammatically illustrates how a convolutional kernel is applied to
inputs.

Figure 6-4. A convolutional kernel is applied to inputs. The kernel weights are multiplied
elementwise with the corresponding numbers in the local receptive field and the multi‐
plied numbers are summed. Note that this corresponds to a convolutional layer without
a nonlinearity.

The key idea behind convolutional networks is that the same (nonlinear) transforma‐
tion is applied to every local receptive field in the image. Visually, picture the local
receptive field as a sliding window dragged over the image. At each positioning of the
local receptive field, the nonlinear function is applied to return a single number cor‐
responding to that image patch. As Figure 6-4 demonstrates, this transformation
turns one grid of numbers into another grid of numbers. For image data, it’s common
to label the size of the local receptive field in terms of the number of pixels on each
size of the receptive field. For example, 5 × 5 and 7 × 7 local receptive field sizes are
commonly seen in convolutional networks.

What if we want to specify that local receptive fields should not overlap? The way to
do this is to alter the stride size of the convolutional kernel. The stride size controls
how the receptive field is moved over the input. Figure 6-4 demonstrates a one-
dimensional convolutional kernel, with stride sizes 1 and 2, respectively. Figure 6-5
illustrates how altering the stride size changes how the receptive field is moved over
the input.
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Figure 6-5. The stride size controls how the local receptive field “slides” over the input.
This is easiest to visualize on a one-dimensional input. The network on the left has stride
1, while that on the right has stride 2. Note that each local receptive field computes the
maximum of its inputs.

Now, note that the convolutional kernel we have defined transforms a grid of num‐
bers into another grid of numbers. What if we want more than one grid of numbers
output? It’s easy enough; we simply need to add more convolutional kernels for pro‐
cessing the image. Convolutional kernels are also called filters, so the number of fil‐
ters in a convolutional layer controls the number of transformed grids we obtain. A
collection of convolutional kernels forms a convolutional layer.

Convolutional Kernels on Multidimensional Inputs

In this section, we primarily described convolutional kernels as
transforming grids of numbers into other grids of numbers. Recall‐
ing our tensorial language from earlier chapters, convolutions
transform matrices into matrices.
What if your input has more dimensions? For example, an RGB
image typically has three color channels, so an RGB image is right‐
fully a rank-3 tensor. The simplest way to handle RGB data is to
dictate that each local receptive field includes all the color channels
associated with pixels in that patch. You might then say that the
local receptive field is of size 5 × 5 × 3 for a local receptive field of
size 5 × 5 pixels with three color channels.
In general, you can generalize to tensors of higher dimension by
expanding the dimensionality of the local receptive field corre‐
spondingly. This may also necessitate having multidimensional
strides, especially if different dimensions are to be handled sepa‐
rately. The details are straightforward to work out, and we leave
exploration of multidimensional convolutional kernels as an exer‐
cise for you to undertake.

124 | Chapter 6: Convolutional Neural Networks



Pooling Layers
In the previous section, we introduced the notion of convolutional kernels. These
kernels apply learnable nonlinear transformations to local patches of inputs. These
transformations are learnable, and by the universal approximation theorem, capable
of learning arbitrarily complex input transformations on local patches. This flexibility
gives convolutional kernels much of their power. But at the same time, having many
learnable weights in a deep convolutional network can slow training.

Instead of using a learnable transformation, it’s possible to instead use a fixed nonlin‐
ear transformation in order to reduce the computational cost of training a convolu‐
tional network. A popular fixed nonlinearity is “max pooling.” Such layers select and
output the maximally activating input within each local receptive patch. Figure 6-6
demonstrates this process. Pooling layers are useful for reducing the dimensionality
of input data in a structured fashion. More mathematically, they take a local receptive
field and replace the nonlinear activation function at each portion of the field with
the max (or min or average) function.

Figure 6-6. An illustration of a max pooling layer. Notice how the maximal value in each
colored region (each local receptive field) is reported in the output.

Pooling layers have become less useful as hardware has improved. While pooling is
still useful as a dimensionality reduction technique, recent research tends to avoid
using pooling layers due to their inherent lossiness (it’s not possible to back out of
pooled data which pixel in the input originated the reported activation). Nonetheless,
pooling appears in many standard convolutional architectures so it’s worth under‐
standing.

Constructing Convolutional Networks
A simple convolutional architecture applies a series of convolutional layers and pool‐
ing layers to its input to learn a complex function on the input image data. There are
a lot of details in forming these networks, but at its heart, architecture design is sim‐
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ply an elaborate form of Lego stacking. Figure 6-7 demonstrates how a convolutional
architecture might be built up out of constituent blocks.

Figure 6-7. An illustration of a simple convolutional architecture constructed out of
stacked convolutional and pooling layers.

Dilated Convolutions
Dilated or atrous convolutions are a newly popular form of convolutional layer. The
insight here is to leave gaps in the local receptive field for each neuron (atrous means
a trous, or “with holes” in French). The basic concept is an old one in signal process‐
ing that has recently found some good traction in the convolutional literature.

The core advantage to the atrous convolution is the increase in visible area for each
neuron. Let’s consider a convolution architecture whose first layer is a vanilla convo‐
lutional with 3 × 3 local receptive fields. Then a neuron one layer deeper in the archi‐
tecture in a second vanilla convolutional layer has receptive depth 5 × 5 (each neuron
in a local receptive field of the second layer itself has a local receptive field in the first
layer). Then, a neuron two layers deeper has receptive view 7 × 7. In general, a neu‐
ron N layers within the convolutional architecture has receptive view of size (2N + 1)
× (2N + 1). This linear growth in receptive view is fine for smaller images, but quickly
becomes a liability for large images.

The atrous convolution enables exponential growth in the visible receptive field by
leaving gaps in its local receptive fields. A “1-dilated” convolution leaves no gaps,
while a “2-dilated” convolution leaves one gap between each local receptive field ele‐
ment. Stacking dilated layers leads to exponentially increasing local receptive field
sizes. Figure 6-8 illustrates this exponential increase.

Dilated convolutions can be very useful for large images. For example, medical
images can stretch thousands of pixels in every dimension. Creating vanilla convolu‐
tional networks that have global understanding could require unreasonably deep net‐
works. Using dilated convolutions could enable networks to better understand the
global structure of such images.
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Figure 6-8. A dilated (or atrous) convolution. Gaps are left in the local receptive field for
each neuron. Diagram (a) depicts a 1-dilated 3 × 3 convolution. Diagram (b) depicts the
application of a 2-dilated 3 × 3 convolution to (a). Diagram (c) depicts the application of
a 4-dilated 3 × 3 convolution to (b). Notice that the (a) layer has receptive field of width
3, the (b) layer has receptive field of width 7, and the (c) layer has receptive field of width
15.

Applications of Convolutional Networks
In the previous section, we covered the mechanics of convolutional networks and
introduced you to many of the components that make up these networks. In this sec‐
tion, we describe some applications that convolutional architectures enable.

Object Detection and Localization
Object detection is the task of detecting the objects (or entities) present in a photo‐
graph. Object localization is the task of identifying where in the image the objects
exist and drawing a “bounding box” around each occurrence. Figure 6-9 demon‐
strates what detection and localization on standard images looks like.

Figure 6-9. Objects detected and localized with bounding boxes in some example images.
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Why is detection and localization important? One very useful localization task is
detecting pedestrians in images taken from a self-driving car. Needless to say, it’s
extremely important that a self-driving car be able to identify all nearby pedestrians.
Other applications of object detection could be used to find all instances of friends in
photos uploaded to a social network. Yet another application could be to identify
potential collision dangers from a drone.

This wealth of applications has made detection and localization the focus of tremen‐
dous amounts of research activity. The ILSVRC challenge mentioned multiple times
in this book focused on detecting and localizing objects found in the ImagetNet col‐
lection.

Image Segmentation
Image segmentation is the task of labeling each pixel in an image with the object it
belongs to. Segmentation is related to object localization, but is significantly harder
since it requires precisely understanding the boundaries between objects in images.
Until recently, image segmentation was often done with graphical models, an alter‐
nate form of machine learning (as opposed to deep networks), but recently convolu‐
tional segmentations have risen to prominence and allowed image segmentation
algorithms to achieve new accuracy and speed records. Figure 6-10 displays an exam‐
ple of image segmentation applied to data for self-driving car imagery.

Figure 6-10. Objects in an image are “segmented” into various categories. Image segmen‐
tation is expected to prove very useful for applications such as self-driving cars and
robotics since it will enable fine-grained scene understanding.
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Graph Convolutions
The convolutional algorithms we’ve shown you thus far expect rectangular tensors as
their inputs. Such inputs could come in the form of images, videos, or even sentences.
Is it possible to generalize convolutions to apply to irregular inputs?

The fundamental idea underlying convolutional layers is the notion of a local recep‐
tive field. Each neuron computes upon the inputs in its local receptive field, which
typically constitute adjacent pixels in an image input. For irregular inputs, such as the
undirected graph in Figure 6-11, this simple notion of a local receptive field doesn’t
make sense; there are no adjacent pixels. If we can define a more general local recep‐
tive field for an undirected graph, it stands to reason that we should be able to define
convolutional layers that accept undirected graphs.

Figure 6-11. An illustration of an undirected graph consisting of nodes connected by
edges.

As Figure 6-11 shows, a graph is made up of a collection of nodes connected by
edges. One potential definition of a local receptive field might be to define it to con‐
stitute a node and its collection of neighbors (where two nodes are considered neigh‐
bors if they are connected by an edge). Using this definition of local receptive fields,
it’s possible to define generalized notions of convolutional and pooling layers. These
layers can be assembled into graph convolutional architectures.

Where might such graph convolutional architectures prove useful? In chemistry, it
turns out molecules can be modeled as undirected graphs where atoms form nodes
and chemical bonds form edges. As a result, graph convolutional architectures are
particularly useful in chemical machine learning. For example, Figure 6-12 demon‐
strates how graph convolutional architectures can be applied to process molecular
inputs.
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Figure 6-12. An illustration of a graph convolutional architecture processing a molecular
input. The molecule is modeled as an undirected graph with atoms forming nodes and
chemical bond edges. The “graph topology” is the undirected graph corresponding to the
molecule. “Atom features” are vectors, one per atom, summarizing local chemistry.
Adapted from “Low Data Drug Discovery with One-Shot Learning.”
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Generating Images with Variational Autoencoders
The applications we’ve described thus far are all supervised learning problems. There
are well-defined inputs and outputs, and the task remains (using a convolutional net‐
work) to learn a sophisticated function mapping input to output. Are there unsuper‐
vised learning problems that can be solved with convolutional networks? Recall that
unsupervised learning requires “understanding” the structure of input datapoints. For
image modeling, a good measure of understanding the structure of input images is
being able to “sample” new images that come from the input distribution.

What does “sampling” an image mean? To explain, let’s suppose we have a dataset of
dog images. Sampling a new dog image requires the generation of a new image of a
dog that is not in the training data! The idea is that we would like a picture of a dog
that could have reasonably been included with the training data, but was not. How
could we solve this task with convolutional networks?

Perhaps we could train a model to take in word labels like “dog” and predict dog
images. We might possibly be able to train a supervised model to solve this prediction
problem, but the issue remains that our model could generate only one dog picture
given the input label “dog.” Suppose now that we could attach a random tag to each
dog—say “dog3422” or “dog9879.” Then all we’d need to do to get a new dog image
would be to attach a new random tag, say “dog2221,” to get out a new picture of a dog.

Variational autoencoders formalize these intuitions. Variational autoencoders consist
of two convolutional networks: the encoder and decoder network. The encoder net‐
work is used to transform an image into a flat “embedded” vector. The decoder net‐
work is responsible for transforming the embedded vector into images. Noise is
added to ensure that different images can be sampled by the decoder. Figure 6-13
illustrates a variational autoencoder.

Figure 6-13. A diagrammatic illustration of a variational autoencoder. A variational
autoencoder consists of two convolutional networks, the encoder and decoder.

There are more details involved in an actual implementation, but variational autoen‐
coders are capable of sampling images. However, naive variational encoders seem to
generate blurry image samples, as Figure 6-14 demonstrates. This blurriness may be
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because the L2 loss doesn’t penalize image blurriness sharply (recall our discussion
about L2 not penalizing small deviations). To generate crisp image samples, we will
need other architectures.

Figure 6-14. Images sampled from a variational autoencoder trained on a dataset of
faces. Note that sampled images are quite blurry.

Adversarial models
The L2 loss sharply penalizes large local deviations, but doesn’t severely penalize
many small local deviations, causing blurriness. How could we design an alternate
loss function that penalizes blurriness in images more sharply? It turns out that it’s
quite challenging to write down a loss function that does the trick. While our eyes can
quickly spot blurriness, our analytical tools aren’t quite so fast to capture the problem.

What if we could somehow “learn” a loss function? This idea sounds a little nonsensi‐
cal at first; where would we get training data? But it turns out that there’s a clever idea
that makes it feasible.

Suppose we could train a separate network that learns the loss. Let’s call this network
the discriminator. Let’s call the network that makes the images the generator. The
generator can be set to duel against the discriminator until the generator is capable of
producing images that are photorealistic. This form of architecture is commonly
called a generative adversarial network, or GAN.
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Faces generated by a GAN (Figure 6-15) are considerably crisper than those gener‐
ated by the naive variational autoencoder (Figure 6-14)! There are a number of other
promising results that have been achieved by GANs. The CycleGAN, for example,
appears capable of learning complex image transformations such as transmuting
horses into zebras and vice versa. Figure 6-16 shows some CycleGAN image transfor‐
mations.

Figure 6-15. Images sampled from a generative adversarial network (GAN) trained on a
dataset of faces. Note that sampled images are less blurry than those from the variational
autoencoder.
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Figure 6-16. The CycleGAN is capable of performing complex image transformations,
such as transforming images of horses into those of zebras (and vice versa).

Unfortunately, generative adversarial networks are still challenging to train in prac‐
tice. Making generators and discriminators learn reasonable functions requires a
deep bag of tricks. As a result, while there have been many exciting GAN demonstra‐
tions, GANs have not yet matured into a state where they can be widely deployed in
industrial applications.

Training a Convolutional Network in TensorFlow
In this section we consider a code sample for training a simple convolutional neural
network. In particular, our code sample will demonstrate how to train a LeNet-5 con‐
volutional architecture on the MNIST dataset using TensorFlow. As always, we rec‐
ommend that you follow along by running the full code sample from the GitHub
repo associated with the book.

The MNIST Dataset
The MNIST dataset consists of images of handwritten digits. The machine learning
challenge associated with MNIST consists of creating a model trained on the training
set of digits that generalizes to the validation set. Figure 6-17 shows some images
drawn from the MNIST dataset.
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Figure 6-17. Some images of handwritten digits from the MNIST dataset. The learning
challenge is to predict the digit from the image.

MNIST was a very important dataset for the development of machine learning meth‐
ods for computer vision. The dataset is challenging enough that obvious, non-
learning methods don’t tend to do well. At the same time, MNIST is small enough
that experimenting with new architectures doesn’t require very large amounts of
computing power.

However, the MNIST dataset has mostly become obsolete. The best models achieve
near one hundred percent test accuracy. Note that this fact doesn’t mean that the
problem of handwritten digit recognition is solved! Rather, it is likely that human sci‐
entists have overfit architectures to the MNIST dataset and capitalized on its quirks to
achieve very high predictive accuracies. As a result, it’s no longer good practice to use
MNIST to design new deep architectures. That said, MNIST is still a superb dataset
for pedagogical purposes.

Loading MNIST
The MNIST codebase is located online on Yann LeCun’s website. The download
script pulls down the raw file from the website. Notice how the script caches the
download so repeated calls to download() won’t waste effort.

Training a Convolutional Network in TensorFlow | 135

http://yann.lecun.com/exdb/mnist/


As a more general note, it’s quite common to store ML datasets in the cloud and have
user code retrieve it before processing for input into a learning algorithm. The Tox21
dataset we accessed via the DeepChem library in Chapter 4 followed this same design
pattern. In general, if you would like to host a large dataset for analysis, hosting on
the cloud and downloading to a local machine for processing as necessary seems
good practice. (This breaks down for very large datasets however, where network
transfer times become exorbitantly expensive.) See Example 6-1.

Example 6-1. This function downloads the MNIST dataset

def download(filename):
  """Download the data from Yann's website, unless it's already here."""
  if not os.path.exists(WORK_DIRECTORY):
    os.makedirs(WORK_DIRECTORY)
  filepath = os.path.join(WORK_DIRECTORY, filename)
  if not os.path.exists(filepath):
    filepath, _ = urllib.request.urlretrieve(SOURCE_URL + filename, filepath)
    size = os.stat(filepath).st_size
    print('Successfully downloaded', filename, size, 'bytes.')
  return filepath

This download checks for the existence of WORK_DIRECTORY. If this directory exists, it
assumes that the MNIST dataset has already been downloaded. Else, the script uses
the urllib Python library to perform the download and prints the number of bytes
downloaded.

The MNIST dataset is stored as a raw string of bytes encoding pixel values. In order
to easily process this data, we need to convert it into a NumPy array. The function
np.frombuffer provides a convenience that allows the conversion of a raw byte
buffer into a numerical array (Example 6-2). As we have noted elsewhere in this book,
deep networks can be destabilized by input data that occupies wide ranges. For stable
gradient descent, it is often necessary to constrain inputs to span a bounded range.
The original MNIST dataset contains pixel values ranging from 0 to 255. For stability,
this range needs to be shifted to have mean zero and unit range (from –0.5 to +0.5).

Example 6-2. Extracting images from a downloaded dataset into NumPy arrays

def extract_data(filename, num_images):
  """Extract the images into a 4D tensor [image index, y, x, channels].

  Values are rescaled from [0, 255] down to [-0.5, 0.5].
  """
  print('Extracting', filename)
  with gzip.open(filename) as bytestream:
    bytestream.read(16)
    buf = bytestream.read(IMAGE_SIZE * IMAGE_SIZE * num_images * NUM_CHANNELS)
    data = numpy.frombuffer(buf, dtype=numpy.uint8).astype(numpy.float32)
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    data = (data - (PIXEL_DEPTH / 2.0)) / PIXEL_DEPTH
    data = data.reshape(num_images, IMAGE_SIZE, IMAGE_SIZE, NUM_CHANNELS)
    return data

The labels are stored in a simple file as a string of bytes. There is a header consisting
of 8 bytes, with the remainder of the data containing labels (Example 6-3).

Example 6-3. This function extracts labels from the downloaded dataset into an array of
labels

def extract_labels(filename, num_images):
  """Extract the labels into a vector of int64 label IDs."""
  print('Extracting', filename)
  with gzip.open(filename) as bytestream:
    bytestream.read(8)
    buf = bytestream.read(1 * num_images)
    labels = numpy.frombuffer(buf, dtype=numpy.uint8).astype(numpy.int64)
  return labels

Given the functions defined in the previous examples, it is now feasible to download
and process the MNIST training and test dataset (Example 6-4).

Example 6-4. Using the functions defined in the previous examples, this code snippet
downloads and processes the MNIST train and test datasets

# Get the data.
train_data_filename = download('train-images-idx3-ubyte.gz')
train_labels_filename = download('train-labels-idx1-ubyte.gz')
test_data_filename = download('t10k-images-idx3-ubyte.gz')
test_labels_filename = download('t10k-labels-idx1-ubyte.gz')

# Extract it into NumPy arrays.
train_data = extract_data(train_data_filename, 60000)
train_labels = extract_labels(train_labels_filename, 60000)
test_data = extract_data(test_data_filename, 10000)
test_labels = extract_labels(test_labels_filename, 10000)

The MNIST dataset doesn’t explicitly define a validation dataset for hyperparameter
tuning. Consequently, we manually designate the final 5,000 datapoints of the train‐
ing dataset as validation data (Example 6-5).

Example 6-5. Extract the final 5,000 datasets of the training data for hyperparameter
validation

VALIDATION_SIZE = 5000  # Size of the validation set.

# Generate a validation set.
validation_data = train_data[:VALIDATION_SIZE, ...]
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validation_labels = train_labels[:VALIDATION_SIZE]
train_data = train_data[VALIDATION_SIZE:, ...]
train_labels = train_labels[VALIDATION_SIZE:]

Choosing the Correct Validation Set

In Example 6-5, we use the final fragment of training data as a vali‐
dation set to gauge the progress of our learning methods. In this
case, this method is relatively harmless. The distribution of data in
the test set is well represented by the distribution of data in the val‐
idation set.
However, in other situations, this type of simple validation set
selection can be disastrous. In molecular machine learning (the use
of machine learning to predict properties of molecules), it is almost
always the case that the test distribution is dramatically different
from the training distribution. Scientists are most interested in pro‐
spective prediction. That is, scientists would like to predict the
properties of molecules that have never been tested for the property
at hand. In this case, using the last fragment of training data for
validation, or even a random subsample of the training data, will
lead to misleadingly high accuracies. It’s quite common for a
molecular machine learning model to have 90% accuracy on vali‐
dation and, say, 60% on test.
To correct for this error, it becomes necessary to design validation
set selection methods that take pains to make the validation dissim‐
ilar from the training set. A variety of such algorithms exist for
molecular machine learning, most of which use various mathemat‐
ical estimates of graph dissimilarity (treating a molecule as a math‐
ematical graph with atoms as nodes and chemical bonds as edges).
This issue crops up in many other areas of machine learning as
well. In medical machine learning or in financial machine learning,
relying on historical data to make forecasts can be disastrous. For
each application, it’s important to critically reason about whether
performance on the selected validation set is actually a good proxy
for true performance.

TensorFlow Convolutional Primitives
We start by introducing the TensorFlow primitives that are used to construct our
convolutional networks (Example 6-6).
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Example 6-6. Defining a 2D convolution in TensorFlow

tf.nn.conv2d(
    input,
    filter,
    strides,
    padding,
    use_cudnn_on_gpu=None,
    data_format=None,
    name=None
)

The function tf.nn.conv2d is the built-in TensorFlow function that defines convolu‐
tional layers. Here, input is assumed to be a tensor of shape (batch, height,
width, channels) where batch is the number of images in a minibatch.

Note that the conversion functions defined previously read the MNIST data into this
format. The argument filter is a tensor of shape (filter_height, filter_width,
channels, out_channels) that specifies the learnable weights for the nonlinear
transformation learned in the convolutional kernel. strides contains the filter strides
and is a list of length 4 (one for each input dimension).

padding controls whether the input tensors are padded (with extra zeros as in
Figure 6-18) to guarantee that output from the convolutional layer has the same
shape as the input. If padding="SAME", then input is padded to ensure that the con‐
volutional layer outputs an image tensor of the same shape as the original input
image tensor. If padding="VALID" then extra padding is not added.

Figure 6-18. Padding for convolutional layers ensures that the output image has the
same shape as the input image.
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The code in Example 6-7 defines max pooling in TensorFlow.

Example 6-7. Defining max pooling in TensorFlow

tf.nn.max_pool(
    value,
    ksize,
    strides,
    padding,
    data_format='NHWC',
    name=None
)

The tf.nn.max_pool function performs max pooling. Here value has the same shape
as input for tf.nn.conv2d, (batch, height, width, channels). ksize is the size
of the pooling window and is a list of length 4. strides and padding behave as for
tf.nn.conv2d.

The Convolutional Architecture
The architecture defined in this section will closely resemble LeNet-5, the original
architecture used to train convolutional neural networks on the MNIST dataset. At
the time the LeNet-5 architecture was invented, it was exorbitantly expensive compu‐
tationally, requiring multiple weeks of compute to complete training. Today’s laptops
thankfully are more than sufficient to train LeNet-5 models. Figure 6-19 illustrates
the structure of the LeNet-5 architecture.

Figure 6-19. An illustration of the LeNet-5 convolutional architecture.
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Where Would More Compute Make a Difference?

The LeNet-5 architecture is decades old, but is essentially the right
architecture for the problem of digit recognition. However, its
computational requirements forced the architecture into relative
obscurity for decades. It’s interesting to ask, then, what research
problems today are similarly solved but limited solely by lack of
adequate computational power?
One good contender is video processing. Convolutional models are
quite good at processing video. However, it is unwieldy to store and
train models on large video datasets, so most academic papers don’t
report results on video datasets. As a result, it’s not so easy to hack
together a good video processing system.
This situation will likely change as computing capabilities increase
and it’s likely that video processing systems will become much
more commonplace. However, there’s one critical difference
between today’s hardware improvements and those of past decades.
Unlike in years past, Moore’s law has slowed dramatically. As a
result, improvements in hardware require more than natural tran‐
sistor shrinkage and often require considerable ingenuity in archi‐
tecture design. We will return to this topic in later chapters and
discuss the architectural needs of deep networks.

Let’s define the weights needed to train our LeNet-5 network. We start by defining
some basic constants that are used to define our weight tensors (Example 6-8).

Example 6-8. Defining basic constants for the LeNet-5 model

NUM_CHANNELS = 1
IMAGE_SIZE = 28
NUM_LABELS = 10

The architecture we define will use two convolutional layers interspersed with two
pooling layers, topped off by two fully connected layers. Recall that pooling requires
no learnable weights, so we simply need to create weights for the convolutional and
fully connected layers. For each tf.nn.conv2d, we need to create a learnable weight
tensor corresponding to the filter argument for tf.nn.conv2d. In this particular
architecture, we will also add a convolutional bias, one for each output channel
(Example 6-9).
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Example 6-9. Defining learnable weights for the convolutional layers

conv1_weights = tf.Variable(
    tf.truncated_normal([5, 5, NUM_CHANNELS, 32],  # 5x5 filter, depth 32.
                        stddev=0.1,
                        seed=SEED, dtype=tf.float32))
conv1_biases = tf.Variable(tf.zeros([32], dtype=tf.float32))
conv2_weights = tf.Variable(tf.truncated_normal(
    [5, 5, 32, 64], stddev=0.1,
    seed=SEED, dtype=tf.float32))
conv2_biases = tf.Variable(tf.constant(0.1, shape=[64], dtype=tf.float32))

Note that the convolutional weights are 4-tensors, while the biases are 1-tensors. The
first fully connected layer converts the outputs of the convolutional layer to a vector
of size 512. The input images start with size IMAGE_SIZE=28. After the two pooling
layers (each of which reduces the input by a factor of 2), we end with images of size
IMAGE_SIZE//4. We create the shape of the fully connected weights accordingly.

The second fully connected layer is used to provide the 10-way classification output,
so it has weight shape (512,10) and bias shape (10), shown in Example 6-10.

Example 6-10. Defining learnable weights for the fully connected layers

fc1_weights = tf.Variable(  # fully connected, depth 512.
    tf.truncated_normal([IMAGE_SIZE // 4 * IMAGE_SIZE // 4 * 64, 512],
                        stddev=0.1,
                        seed=SEED,
                        dtype=tf.float32))
fc1_biases = tf.Variable(tf.constant(0.1, shape=[512], dtype=tf.float32))
fc2_weights = tf.Variable(tf.truncated_normal([512, NUM_LABELS],
                                              stddev=0.1,
                                              seed=SEED,
                                              dtype=tf.float32))
fc2_biases = tf.Variable(tf.constant(
    0.1, shape=[NUM_LABELS], dtype=tf.float32))

With all the weights defined, we are now free to define the architecture of the net‐
work. The architecture has six layers in the pattern conv-pool-conv-pool-full-full
(Example 6-11).

Example 6-11. Defining the LeNet-5 architecture. Calling the function defined in this
example will instantiate the architecture.

def model(data, train=False):
  """The Model definition."""
  # 2D convolution, with 'SAME' padding (i.e. the output feature map has
  # the same size as the input). Note that {strides} is a 4D array whose
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  # shape matches the data layout: [image index, y, x, depth].
  conv = tf.nn.conv2d(data,
                      conv1_weights,
                      strides=[1, 1, 1, 1],
                      padding='SAME')
  # Bias and rectified linear non-linearity.
  relu = tf.nn.relu(tf.nn.bias_add(conv, conv1_biases))
  # Max pooling. The kernel size spec {ksize} also follows the layout of
  # the data. Here we have a pooling window of 2, and a stride of 2.
  pool = tf.nn.max_pool(relu,
                        ksize=[1, 2, 2, 1],
                        strides=[1, 2, 2, 1],
                        padding='SAME')
  conv = tf.nn.conv2d(pool,
                      conv2_weights,
                      strides=[1, 1, 1, 1],
                      padding='SAME')
  relu = tf.nn.relu(tf.nn.bias_add(conv, conv2_biases))
  pool = tf.nn.max_pool(relu,
                        ksize=[1, 2, 2, 1],
                        strides=[1, 2, 2, 1],
                        padding='SAME')
  # Reshape the feature map cuboid into a 2D matrix to feed it to the
  # fully connected layers.
  pool_shape = pool.get_shape().as_list()
  reshape = tf.reshape(
      pool,
      [pool_shape[0], pool_shape[1] * pool_shape[2] * pool_shape[3]])
  # Fully connected layer. Note that the '+' operation automatically
  # broadcasts the biases.
  hidden = tf.nn.relu(tf.matmul(reshape, fc1_weights) + fc1_biases)
  # Add a 50% dropout during training only. Dropout also scales
  # activations such that no rescaling is needed at evaluation time.
  if train:
    hidden = tf.nn.dropout(hidden, 0.5, seed=SEED)
  return tf.matmul(hidden, fc2_weights) + fc2_biases

As noted previously, the basic architecture of the network intersperses tf.nn.conv2d,
tf.nn.max_pool, with nonlinearities, and a final fully connected layer. For regulariza‐
tion, a dropout layer is applied after the final fully connected layer, but only during
training. Note that we pass in the input as an argument data to the function model().

The only part of the network that remains to be defined are the placeholders
(Example 6-12). We need to define two placeholders for inputting the training images
and the training labels. In this particular network, we also define a separate place‐
holder for evaluation that allows us to input larger batches when evaluating.
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Example 6-12. Define placeholders for the architecture

BATCH_SIZE = 64
EVAL_BATCH_SIZE = 64

train_data_node = tf.placeholder(
    tf.float32,
    shape=(BATCH_SIZE, IMAGE_SIZE, IMAGE_SIZE, NUM_CHANNELS))
train_labels_node = tf.placeholder(tf.int64, shape=(BATCH_SIZE,))
eval_data = tf.placeholder(
    tf.float32,
    shape=(EVAL_BATCH_SIZE, IMAGE_SIZE, IMAGE_SIZE, NUM_CHANNELS))

With these definitions in place, we now have the data processed, inputs and weights
specified, and the model constructed. We are now prepared to train the network
(Example 6-13).

Example 6-13. Training the LeNet-5 architecture

# Create a local session to run the training.
start_time = time.time()
with tf.Session() as sess:
  # Run all the initializers to prepare the trainable parameters.
  tf.global_variables_initializer().run()
  # Loop through training steps.
  for step in xrange(int(num_epochs * train_size) // BATCH_SIZE):
    # Compute the offset of the current minibatch in the data.
    # Note that we could use better randomization across epochs.
    offset = (step * BATCH_SIZE) % (train_size - BATCH_SIZE)
    batch_data = train_data[offset:(offset + BATCH_SIZE), ...]
    batch_labels = train_labels[offset:(offset + BATCH_SIZE)]
    # This dictionary maps the batch data (as a NumPy array) to the
    # node in the graph it should be fed to.
    feed_dict = {train_data_node: batch_data,
                 train_labels_node: batch_labels}
    # Run the optimizer to update weights.
    sess.run(optimizer, feed_dict=feed_dict)

The structure of this fitting code looks quite similar to other code for fitting we’ve
seen so far in this book. In each step, we construct a feed dictionary, and then run a
step of the optimizer. Note that we use minibatch training as before.

Evaluating Trained Models
We now have a model training. How can we evaluate the accuracy of the trained
model? A simple method is to define an error metric. As in previous chapters, we
shall use a simple classification metric to gauge accuracy (Example 6-14).
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Example 6-14. Evaluating the error of trained architectures

def error_rate(predictions, labels):
  """Return the error rate based on dense predictions and sparse labels."""
  return 100.0 - (
      100.0 *
      numpy.sum(numpy.argmax(predictions, 1) == labels) /
      predictions.shape[0])

We can use this function to evaluate the error of the network as we train. Let’s intro‐
duce an additional convenience function that evaluates predictions on any given
dataset in batches (Example 6-15). This convenience is necessary since our network
can only handle inputs with fixed batch sizes.

Example 6-15. Evaluating a batch of data at a time

def eval_in_batches(data, sess):
  """Get predictions for a dataset by running it in small batches."""
  size = data.shape[0]
  if size < EVAL_BATCH_SIZE:
    raise ValueError("batch size for evals larger than dataset: %d"
                     % size)
  predictions = numpy.ndarray(shape=(size, NUM_LABELS),
                              dtype=numpy.float32)
  for begin in xrange(0, size, EVAL_BATCH_SIZE):
    end = begin + EVAL_BATCH_SIZE
    if end <= size:
      predictions[begin:end, :] = sess.run(
          eval_prediction,
          feed_dict={eval_data: data[begin:end, ...]})
    else:
      batch_predictions = sess.run(
          eval_prediction,
          feed_dict={eval_data: data[-EVAL_BATCH_SIZE:, ...]})
      predictions[begin:, :] = batch_predictions[begin - size:, :]
  return predictions

We can now add a little instrumentation (in the inner for-loop of training) that peri‐
odically evaluates the model’s accuracy on the validation set. We can end training by
scoring test accuracy. Example 6-16 shows the full fitting code with instrumentation
added in.

Example 6-16. The full code for training the network, with instrumentation added

# Create a local session to run the training.
start_time = time.time()
with tf.Session() as sess:
  # Run all the initializers to prepare the trainable parameters.
  tf.global_variables_initializer().run()
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  # Loop through training steps.
  for step in xrange(int(num_epochs * train_size) // BATCH_SIZE):
    # Compute the offset of the current minibatch in the data.
    # Note that we could use better randomization across epochs.
    offset = (step * BATCH_SIZE) % (train_size - BATCH_SIZE)
    batch_data = train_data[offset:(offset + BATCH_SIZE), ...]
    batch_labels = train_labels[offset:(offset + BATCH_SIZE)]
    # This dictionary maps the batch data (as a NumPy array) to the
    # node in the graph it should be fed to.
    feed_dict = {train_data_node: batch_data,
                 train_labels_node: batch_labels}
    # Run the optimizer to update weights.
    sess.run(optimizer, feed_dict=feed_dict)
    # print some extra information once reach the evaluation frequency
    if step % EVAL_FREQUENCY == 0:
      # fetch some extra nodes' data
      l, lr, predictions = sess.run([loss, learning_rate,
                                     train_prediction],
                                    feed_dict=feed_dict)
      elapsed_time = time.time() - start_time
      start_time = time.time()
      print('Step %d (epoch %.2f), %.1f ms' %
            (step, float(step) * BATCH_SIZE / train_size,
             1000 * elapsed_time / EVAL_FREQUENCY))
      print('Minibatch loss: %.3f, learning rate: %.6f' % (l, lr))
      print('Minibatch error: %.1f%%'
            % error_rate(predictions, batch_labels))
      print('Validation error: %.1f%%' % error_rate(
          eval_in_batches(validation_data, sess), validation_labels))
      sys.stdout.flush()
  # Finally print the result!
  test_error = error_rate(eval_in_batches(test_data, sess),
                          test_labels)
  print('Test error: %.1f%%' % test_error)

Challenge for the Reader
Try training the network yourself. You should be able to achieve test error of < 1%!

Review
In this chapter, we have shown you the basic concepts of convolutional network
design. These concepts include convolutional and pooling layers that constitute core
building blocks of convolutional networks. We then discussed applications of convo‐
lutional architectures such as object detection, image segmentation, and image gener‐
ation. We ended the chapter with an in-depth case study that showed you how to
train a convolutional architecture on the MNIST handwritten digit dataset.

146 | Chapter 6: Convolutional Neural Networks



In Chapter 7, we will cover recurrent neural networks, another core deep learning
architecture. Unlike convolutional networks, which were designed for image process‐
ing, recurrent architectures are powerfully suited to handling sequential data such as
natural language datasets.
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CHAPTER 7

Recurrent Neural Networks

So far in this book, we’ve introduced you to the use of deep learning to process vari‐
ous types of inputs. We started from simple linear and logistic regression on fixed
dimensional feature vectors, and then followed up with a discussion of fully connec‐
ted deep networks. These models take in arbitrary feature vectors with fixed, prede‐
termined sizes. These models make no assumptions about the type of data encoded
into these vectors. On the other hand, convolutional networks place strong assump‐
tions upon the structure of their data. Inputs to convolutional networks have to sat‐
isfy a locality assumption that allows for the definition of a local receptive field.

How could we use the networks that we’ve described thus far to process data like sen‐
tences? Sentences do have some locality properties (nearby words are typically
related), and it is indeed possible to use a one-dimensional convolutional network to
process sentence data. That said, most practitioners resort to a different type of archi‐
tecture, the recurrent neural network, in order to handle sequences of data.

Recurrent neural networks (RNNs) are designed natively to allow deep networks to
process sequences of data. RNNs assume that incoming data takes the form of a
sequence of vectors or tensors. If we transform each word in a sentence into a vector
(more on how to do this later), sentences can be fed into RNNs. Similarly, video (con‐
sidered as a sequence of images) can similarly be processed by an RNN. At each
sequence position, an RNN applies an arbitrary nonlinear transformation to the
input at that sequence location. This nonlinear transformation is shared for all
sequence steps.

The description in the previous paragraph is a little abstract, but turns out to be
immensely powerful. In this chapter, you will learn more details about how RNNs are
structured and about how to implement RNNs in TensorFlow. We will also discuss
how RNNs can be used in practice to perform tasks like sampling new sentences or
generating text for applications such as chatbots.
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The case study for this chapter trains a recurrent neural network language model on
the Penn Treebank corpus, a body of sentences extracted from Wall Street Journal
articles. This tutorial was adapted from the TensorFlow official documentation tuto‐
rial on recurrent networks. (We encourage you to access the original tutorial on the
TensorFlow website if you’re curious about the changes we’ve made.) As always, we
recommend that you follow along with the code in the GitHub repo associated with
this book.

Overview of Recurrent Architectures
Recurrent architectures are useful for modeling very complex time varying datasets.
Time varying datasets are traditionally called time-series. Figure 7-1 displays a num‐
ber of time-series datasets.

Figure 7-1. Some time-series datasets that we might be interested in modeling.

In time-series modeling, we design learning systems that are capable of learning the
evolution rule that models how the future of the system at hand evolves depending
on the past. Mathematically, let’s suppose that at each time step, we receive a data‐
point xt where t is the current time. Then, time-series methods seek to learn some
function f such that
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xt + 1 = f x1,⋯, xt

The idea is that f encodes the underlying dynamics of the system well and learning it
from data would enable a learning system to predict the future of the system at hand.
In practice, it’s too unwieldy to learn a function that depends on all past inputs, so
learning systems often assume that all information about last datapoints x1,⋯, xt − 1
can be encoded into some fixed vector ht. Then, the update equation simplifies into
the format

xt + 1, ht + 1 = f xt, ht

Notice that we assume that the same function f here applies for all timesteps t. That is,
we assume the time-series to be stationary (Figure 7-2). This assumption is broken
for many systems, notably including the stock market where today’s rules need not
hold tomorrow.

Figure 7-2. A mathematical model of a time-series with a stationary evolution rule.
Recall that a stationary system is one whose underlying dynamics don’t shift over time.

What does this equation have to do with recurrent neural nets? The basic answer
derives from the universal approximation theorem that we introduced in Chapter 4.
The function f can be arbitrarily complex, so using a fully connected deep network to
learn f seems like a reasonable idea. This intuition essentially defines the RNN. A
simple recurrent network can be viewed as a fully connected network that is applied
repeatedly to each time step of the data.

In fact, recurrent neural networks really become interesting only for complex high-
dimensional time-series. For simpler systems, there are classical signal processing
time-series methods that often do a good job of modeling time dynamics. However,
for complex systems, such as speech (see the speech spectrogram in Figure 7-3),
RNNs come into their own and offer capabilities that other methods can’t.
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Figure 7-3. A speech spectrogram representing the frequencies found in a speech sample.

Recurrent Cells
Gradient Instability

Recurrent networks tend to degrade signal over time. Think of it as
attenuating a signal by a multiplicative factor at each timestep. As a
result, after 50 timesteps, the signal is quite degraded.
As a result of this instability, it has been challenging to train recur‐
rent neural networks on longer time-series. A number of methods
have arisen to combat this instability, which we will discuss in the
remainder of this section.

There are a number of elaborations on the concept of a simple recurrent neural net‐
work that have proven significantly more successful in practical applications. In this
section, we will briefly review some of these variations.

Long Short-Term Memory (LSTM)
Part of the challenge with the standard recurrent cell is that signals from the distant
past attenuate rapidly. As a result, RNNs can fail to learn models of complex depen‐
dencies. This failure becomes particularly notable in applications such as language
modeling, where words can have complex dependencies on earlier phrases.

One potential solution to this issue is to allow states from the past to pass through
unmodified. The long short-term memory (LSTM) architecture proposes a mecha‐
nism to allow past state to pass through to the present with minimal modifications.
Empirically using an LSTM “cell” (shown in Figure 7-4) seems to offer superior learn‐
ing performance when compared to simple recurrent neural networks using fully
connected layers.
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Figure 7-4. A long short-term memory (LSTM) cell. LSTMs perform better than stan‐
dard recurrent neural networks at preserving long-range dependencies in inputs. As a
result, LSTMs are often preferred for complex sequential data, such as natural language.

So Many Equations!

The LSTM equations involve many sophisticated terms. If you are
interested in understanding precisely the mathematical intuitions
behind the LSTM, we encourage you to play with the equations
with pencil and paper and trying to take derivatives of the LSTM
cell.
However, for other readers who are primarily interested in using
recurrent architectures to solve practical problems, we believe it
isn’t absolutely necessary to delve into the nitty-gritty details of
how LSTMs work. Rather, keep the high-level intuition that past
state is allowed to pass through, and work through the example
code for this chapter in some depth.

Optimizing Recurrent Networks

Unlike fully connected networks or convolutional networks,
LSTMs involve some sophisticated mathematical operations and
control-flow operations. As a result, training large recurrent net‐
works at scale has proven to be challenging, even with modern
GPU hardware.
Significant effort has been put into optimizing RNN implementa‐
tions to run quickly on GPU hardware. In particular, Nvidia has
incorporated RNNs into their CuDNN library that provides spe‐
cially optimized code for training deep networks on GPUs. Luckily
for TensorFlow users, integration with libraries such as CuDNN is
performed within TensorFlow itself so you don’t need to worry too
much about code optimization (unless of course, you’re working
on very large-scale datasets). We will discuss hardware needs for
deep neural networks at greater depth in Chapter 9.
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Gated Recurrent Units (GRU)
The complexity, both conceptual and computational, for LSTM cells has motivated a
number of researchers to attempt to simplify the LSTM equations while retaining the
performance gains and modeling capabilities of the original equations.

There are a number of contenders for LSTM replacement, but one of the frontrun‐
ners is the gated recurrent unit (GRU), shown in Figure 7-5. The GRU removes one
of the subcomponents of the LSTM but empirically seems to achieve performance
similar to that of the LSTM. The GRU might be a suitable replacement for LSTM cells
on sequence modeling projects.

Figure 7-5. A gated recurrent unit (GRU) cell. GRUs preserve many of the benefits of
LSTMs at lower computational cost.

Applications of Recurrent Models
While recurrent neural networks are useful tools for modeling time-series datasets,
there are a host of other applications of recurrent networks. These include applica‐
tions such as natural language modeling, machine translation, chemical retrosynthe‐
sis, and arbitrary computation with Neural Turing machines. In this section, we
provide a brief tour of some of these exciting applications.

Sampling from Recurrent Networks
So far, we’ve taught you how recurrent networks can learn to model the time evolu‐
tion of sequences of data. It stands to reason that if you understand the evolution rule
for a set of sequences, you ought to be able to sample new sequences from the distri‐
bution of training sequences. And indeed, it turns out that that good sequences can
be sampled from trained models. The most useful application thus far is in language
modeling. Being able to generate realistic sentences is a very useful tool that under‐
pins systems such as autocomplete and chatbots.
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Why Don’t We Use GANs for Sequences?

In Chapter 6, we discussed the problem of generating new images.
We discussed models such as variational autoencoders that pro‐
duced only blurry images and introduced the technology of gener‐
ative adversarial networks that proves capable of producing sharp
images. The question remains, though: if we need GANs for good
image samples, why don’t we use them for good sentences?
It turns out that today’s generative adversarial models are mediocre
at sampling sequences. It’s not clear why this is the case. Theoretical
understanding of GANs remains very weak (even by the standards
of deep learning theory), but something about the game theoretic
equilibrium discovery seems to perform worse for sequences than
for images.

Seq2seq Models
Sequence-to-sequence (seq2seq) models are powerful tools that enable models to
transform one sequence into another. The core idea of a sequence-to-sequence model
is to use an encoding recurrent network that embeds input sequences into vector
spaces alongside a decoding network that enables sampling of output sequences as
described in previous sentences. Figure 7-6 illustrates a seq2seq model.

Figure 7-6. Sequence-to-sequence models are powerful tools that can learn sequence
transformations. They have been applied to machine translation (for example, trans‐
forming a sequence of English words to Mandarin) and chemical retrosynthesis (trans‐
forming a sequence of chemical products into a sequence of reactants).

Things get interesting since encoder and decoder layers can themselves be deep.
(RNN layers can be stacked in a natural fashion.) The Google neural machine transla‐
tion (GNMT) system has many stacked encoding and decoding layers. As a result of
this powerful representational capacity, it is capable of performing state-of-the-art
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translations far beyond the capabilities of its nearest nondeep competitors. Figure 7-7
illustrates the GNMT architecture.

Figure 7-7. The Google neural machine translation (GNMT) architecture is a deep
seq2seq model that learns to perform machine translation.

While so far we’ve mainly discussed applications to natural language processing, the
seq2seq architecture has myriad applications in other domains. One of the authors
has used seq2seq architectures to perform chemical retrosynthesis, the act of decon‐
structing molecules into simpler constituents. Figure 7-8 illustrates.
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Figure 7-8. A seq2seq model for chemical retrosynthesis transforms a sequence of chemi‐
cal products into a sequence of chemical reactants.

Neural Turing Machines
The dream of machine learning has been to move further up the abstraction stack:
moving from learning short pattern-matching engines to learning to perform arbi‐
trary computations. The Neural Turing machine is a powerful step in this evolution.

The Turing machine was a seminal contribution to the mathematical theory of com‐
putation. It was the first mathematical model of a machine capable of performing any
computation. The Turing machine maintains a “tape” that provides a memory of the
performed computation. The second part of the machine is a “head” that performs
transformations on single tape cells. The insight of the Turing machine was that the
“head” didn’t need to be very complicated in order to perform arbitrarily complicated
calculations.

The Neural Turing machine (NTM) is a very clever attempt to transmute a Turing
machine itself into a neural network. The trick in this transmutation is to turn dis‐
crete actions into soft continuous functions (this is a trick that pops up in deep learn‐
ing repeatedly, so take note!)

The Turing machine head is quite similar to the RNN cell! As a result, the NTM can
be trained end-to-end to learn to perform arbitrary computations, in principle at least
(Figure 7-9). In practice, there are severe limitations to the set of computations that
the NTM can perform. Gradient flow instabilities (as always) limit what can be
learned. More research and experimentation will be needed to devise successors to
NTMs capable of learning more useful functions.
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Figure 7-9. A Neural Turing machine (NTM) is a learnable version of a Turing machine.
It maintains a tape where it can store the outputs of intermediate computations. While
NTMs have many practical limitations, it’s possible that their intellectual descendants
will be capable of learning powerful algorithms.

Turing Completeness

The concept of Turing completeness is an important notion in
computer science. A programming language is said to be Turing
complete if it is capable of performing any computation that can be
performed by a Turing machine. The Turing machine itself was
invented to provide a mathematical model of what it means for a
function to be “computable.” The machine provides the capability
to read, write, and store in memory various instructions, abstract
primitives that underlie all computing machines.
Over time, a large body of work has shown that the Turing
machine closely models the set of computations performable in the
physical world. To a first approximation, if it can be shown that a
Turing machine is incapable of performing a computation, no
computing device is capable of it either. On the other side, if it can
be shown that a computing system can perform the basic opera‐
tions of a Turing machine, it is then “Turing complete” and capable
of performing in principle any computation that can be performed
at all. A number of surprising systems are Turing complete. We
encourage you to read more about this topic if interested.
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Recurrent Networks Are Turing Complete

Perhaps unsurprisingly, NTMs are capable of performing any com‐
putation a Turing machine can and are consequently Turing com‐
plete. However, a less known fact is that vanilla recurrent neural
networks are themselves Turing complete! Put another way, in
principle, a recurrent neural network is capable of learning to per‐
form arbitrary computation.
The basic idea is that the transition operator can learn to perform
basic reading, writing, and storage operations. The unrolling of the
recurrent network over time allows for the performance of com‐
plex computations. In some sense, this fact shouldn’t be too
surprising. The universal approximation theorem already demon‐
strates that fully connected networks are capable of learning arbi‐
trary functions. Chaining arbitrary functions together over time
leads to arbitrary computations. (The technical details required to
formally prove this are formidable, though.)

Working with Recurrent Neural Networks in Practice
In this section, you will learn about the use of recurrent neural networks for language
modeling on the Penn Treebank dataset, a natural language dataset built from Wall
Street Journal articles. We will introduce the TensorFlow primitives needed to per‐
form this modeling and will also walk you through the data handling and preprocess‐
ing steps needed to prepare data for training. We encourage you to follow along and
try running the code in the GitHub repo associated with the book.

Processing the Penn Treebank Corpus
The Penn Treebank contains a million-word corpus of Wall Street Journal articles.
This corpus can be used for either character-level or word-level modeling (the tasks
of predicting the next character or word in a sentence given those preceding). The
efficacy of models is measured using the perplexity of trained models (more on this
metric later).

The Penn Treebank corpus consists of sentences. How can we transform sentences
into a form that can be fed to machine learning systems such as recurrent language
models? Recall that machine learning models accept tensors (with recurrent models
accepting sequences of tensors) as input. Consequently, we need to transform words
into tensors for machine learning.

The simplest method of transforming words into vectors is to use “one-hot” encod‐
ing. In this encoding, let’s suppose that our language dataset uses a vocabulary that
has V  words. Then each word is transformed into a vector of shape V . All the
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entries of this vector are zero, except for one entry, at the index that corresponds to
the current word. For an example of this embedding, see Figure 7-10.

Figure 7-10. One-hot encodings transform words into vectors with only one nonzero
entry (which is typically set to one). Different indices in the vector uniquely represent
words in a language corpus.

It’s also possible to use more sophisticated embeddings. The basic idea is similar to
that for the one-hot encoding. Each word is associated with a unique vector. How‐
ever, the key difference is that it’s possible to learn this encoding vector directly from
data to obtain a “word embedding” for the word in question that’s meaningful for the
dataset at hand. We will show you how to learn word embeddings later in this
chapter.

In order to process the Penn Treebank data, we need to find the vocabulary of words
used in the corpus, then transform each word into its associated word vector. We will
then show how to feed the processed data into a TensorFlow model.

Penn Treebank Limitations

The Penn Treebank is a very useful dataset for language modeling,
but it no longer poses a challenge for state-of-the-art language
models; researchers have already overfit models on the peculiarities
of this collection. State-of-the-art research would use larger data‐
sets such as the billion-word-corpus language benchmark. How‐
ever, for our exploratory purposes, the Penn Treebank easily
suffices.

Code for Preprocessing
The snippet of code in Example 7-1 reads in the raw files associated with the Penn
Treebank corpus. The corpus is stored with one sentence per line. Some Python
string handling is done to replace "\n" newline markers with fixed-token "<eos>"
and then split the file into a list of tokens.
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Example 7-1. This function reads in the raw Penn Treebank file

def _read_words(filename):
  with tf.gfile.GFile(filename, "r") as f:
    if sys.version_info[0] >= 3:
      return f.read().replace("\n", "<eos>").split()
    else:
      return f.read().decode("utf-8").replace("\n", "<eos>").split()

With _read_words defined, we can build the vocabulary associated with a given file
using function _build_vocab defined in Example 7-2. We simply read in the words in
the file, and count the number of unique words in the file using Python’s collec
tions library. For convenience, we construct a dictionary object mapping words to
their unique integer identifiers (their positions in the vocabulary). Tying it all
together, _file_to_word_ids transforms a file into a list of word identifiers
(Example 7-3).

Example 7-2. This function builds a vocabulary consisting of all words in the specified
file

def _build_vocab(filename):
  data = _read_words(filename)

  counter = collections.Counter(data)
  count_pairs = sorted(counter.items(), key=lambda x: (-x[1], x[0]))

  words, _ = list(zip(*count_pairs))
  word_to_id = dict(zip(words, range(len(words))))

  return word_to_id

Example 7-3. This function transforms words in a file into id numbers

def _file_to_word_ids(filename, word_to_id):
  data = _read_words(filename)
  return [word_to_id[word] for word in data if word in word_to_id]

With these utilities in place, we can process the Penn Treebank corpus with function
ptb_raw_data (Example 7-4). Note that training, validation, and test datasets are pre-
specified, so we need only read each file into a list of unique indices.

Example 7-4. This function loads the Penn Treebank data from the specified location

def ptb_raw_data(data_path=None):
  """Load PTB raw data from data directory "data_path".

  Reads PTB text files, converts strings to integer ids,
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  and performs mini-batching of the inputs.

  The PTB dataset comes from Tomas Mikolov's webpage:
  http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz

  Args:
    data_path: string path to the directory where simple-examples.tgz
               has been extracted.

  Returns:
    tuple (train_data, valid_data, test_data, vocabulary)
    where each of the data objects can be passed to PTBIterator.
  """

  train_path = os.path.join(data_path, "ptb.train.txt")
  valid_path = os.path.join(data_path, "ptb.valid.txt")
  test_path = os.path.join(data_path, "ptb.test.txt")

  word_to_id = _build_vocab(train_path)
  train_data = _file_to_word_ids(train_path, word_to_id)
  valid_data = _file_to_word_ids(valid_path, word_to_id)
  test_data = _file_to_word_ids(test_path, word_to_id)
  vocabulary = len(word_to_id)
  return train_data, valid_data, test_data, vocabulary

tf.GFile and tf.Flags

TensorFlow is a large project that contains many bits and pieces.
While most of the library is devoted to machine learning, there’s
also a large proportion that’s dedicated to loading and massaging
data. Some of these functions provide useful capabilities that aren’t
found elsewhere. Other parts of the loading functionality are less
useful, however.
tf.GFile and tf.FLags provide functionality that is more or less
identical to standard Python file handling and argparse. The prov‐
enance of these tools is historical. With Google, custom file han‐
dlers and flag handling are required by internal code standards. For
the rest of us, though, it’s better style to use standard Python tools
whenever possible. It’s much better for readability and stability.

Loading Data into TensorFlow
In this section, we cover the code needed to load our processed indices into Tensor‐
Flow. To do so, we will introduce you to a new bit of TensorFlow machinery. Until
now, we’ve used feed dictionaries to pass data into TensorFlow. While feed dictionar‐
ies are fine for small toy datasets, they are often not good choices for larger datasets,
since large Python overheads involving packing and unpacking dictionaries are intro‐
duced. For more performant code, it’s better to use TensorFlow queues.
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tf.Queue provides a way to load data asynchronously. This allows decoupling of the
GPU compute thread from the CPU-bound data preprocessing thread. This decou‐
pling is particularly useful for large datasets where we want to keep the GPU maxi‐
mally active.

It’s possible to feed tf.Queue objects into TensorFlow placeholders to train models
and achieve greater performance. We will demonstrate how to do so later in this
chapter.

The function ptb_producer introduced in Example 7-5 transforms raw lists of indi‐
ces into tf.Queues that can pass data into a TensorFlow computational graph. Let’s
start by introducing some of the computational primitives we use.
tf.train.range_input_producer is a convenience operation that produces a
tf.Queue from an input tensor. The method tf.Queue.dequeue() pulls a tensor from
the queue for training. tf.strided_slice extracts the part of this tensor that corre‐
sponds to the data for the current minibatch.

Example 7-5. This function loads the Penn Treebank data from the specified location

def ptb_producer(raw_data, batch_size, num_steps, name=None):
  """Iterate on the raw PTB data.

  This chunks up raw_data into batches of examples and returns
  Tensors that are drawn from these batches.

  Args:
    raw_data: one of the raw data outputs from ptb_raw_data.
    batch_size: int, the batch size.
    num_steps: int, the number of unrolls.
    name: the name of this operation (optional).

  Returns:
    A pair of Tensors, each shaped [batch_size, num_steps]. The
    second element of the tuple is the same data time-shifted to the
    right by one.

  Raises:
    tf.errors.InvalidArgumentError: if batch_size or num_steps are
    too high.
  """
  with tf.name_scope(name, "PTBProducer",
                     [raw_data, batch_size, num_steps]):
    raw_data = tf.convert_to_tensor(raw_data, name="raw_data",
                                    dtype=tf.int32)

    data_len = tf.size(raw_data)
    batch_len = data_len // batch_size
    data = tf.reshape(raw_data[0 : batch_size * batch_len],
                      [batch_size, batch_len])
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    epoch_size = (batch_len - 1) // num_steps
    assertion = tf.assert_positive(
        epoch_size,
        message="epoch_size == 0, decrease batch_size or num_steps")
    with tf.control_dependencies([assertion]):
      epoch_size = tf.identity(epoch_size, name="epoch_size")

    i = tf.train.range_input_producer(epoch_size,
                                      shuffle=False).dequeue()
    x = tf.strided_slice(data, [0, i * num_steps],
                         [batch_size, (i + 1) * num_steps])
    x.set_shape([batch_size, num_steps])
    y = tf.strided_slice(data, [0, i * num_steps + 1],
                         [batch_size, (i + 1) * num_steps + 1])
    y.set_shape([batch_size, num_steps])
    return x, y

tf.data

TensorFlow (from version 1.4 onward) supports a new module
tf.data with a new class tf.data.Dataset that provides an
explicit API for representing streams of data. It’s likely that tf.data
will eventually supersede queues as the preferred input modality,
especially since it has a well-thought-out functional API.
At the time of writing, the tf.data module was just released and
remained relatively immature compared with other parts of the
API, so we decided to stick with queues for the examples. However,
we encourage you to learn about tf.data yourself.

The Basic Recurrent Architecture
We will use an LSTM cell for modeling the Penn Treebank, since LSTMs often offer
superior performance for language modeling challenges. The function tf.con
trib.rnn.BasicLSTMCell implements the basic LSTM cell for us already, so no need
to implement it ourselves (Example 7-6).

Example 7-6. This function wraps an LSTM cell from tf.contrib

def lstm_cell():
  return tf.contrib.rnn.BasicLSTMCell(
      size, forget_bias=0.0, state_is_tuple=True,
      reuse=tf.get_variable_scope().reuse)
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Is Using TensorFlow Contrib Code OK?

Note that the LSTM implementation we use is drawn from tf.con
trib. Is it acceptable to use code from tf.contrib for industrial-
strength projects? The jury still appears to be out on this one. From
our personal experience, code in tf.contrib tends to be a bit shak‐
ier than code in the core TensorFlow library, but is usually still
pretty solid. There are often many useful libraries and utilities that
are only available as part of tf.contrib. Our recommendation is to
use pieces from tf.contrib as necessary, but make note of the
pieces you use and replace them if an equivalent in the core Ten‐
sorFlow library becomes available.

The snippet in Example 7-7 instructs TensorFlow to learn a word embedding for each
word in our vocabulary. The key function for us is tf.nn.embedding_lookup, which
allows us to perform the correct tensorial lookup operation. Note that we need to
manually define the embedding matrix as a TensorFlow variable.

Example 7-7. Learn a word embedding for each word in the vocabulary

with tf.device("/cpu:0"):
  embedding = tf.get_variable(
      "embedding", [vocab_size, size], dtype=tf.float32)
  inputs = tf.nn.embedding_lookup(embedding, input_.input_data)

With our word vectors in hand, we simply need to apply the LSTM cell (using func‐
tion lstm_cell) to each word vector in our sequence. To do this, we simply use a
Python for-loop to construct the needed set of calls to cell(). There’s only one trick
here: we need to make sure we reuse the same variables at each timestep, since the
LSTM cell should perform the same operation at each timestep. Luckily, the method
reuse_variables() for variable scopes allows us to do so without much effort. See
Example 7-8.

Example 7-8. Apply LSTM cell to each word vector in input sequence

outputs = []
state = self._initial_state
with tf.variable_scope("RNN"):
  for time_step in range(num_steps):
    if time_step > 0: tf.get_variable_scope().reuse_variables()
    (cell_output, state) = cell(inputs[:, time_step, :], state)
    outputs.append(cell_output)
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All that remains now is to define the loss associated with the graph in order to train
it. Conveniently, TensorFlow offers a loss for training language models in tf.con
trib. We need only make a call to tf.contrib.seq2seq.sequence_loss

(Example 7-9). Underneath the hood, this loss turns out to be a form of perplexity.

Example 7-9. Add the sequence loss

# use the contrib sequence loss and average over the batches
loss = tf.contrib.seq2seq.sequence_loss(
   logits,
   input_.targets,
   tf.ones([batch_size, num_steps], dtype=tf.float32),
   average_across_timesteps=False,
   average_across_batch=True
)
# update the cost variables
self._cost = cost = tf.reduce_sum(loss)

Perplexity

Perplexity is often used for language modeling challenges. It is a
variant of the binary cross-entropy that is useful for measuring
how close the learned distribution is to the true distribution of
data. Empirically, perplexity has proven useful for many language
modeling challenges and we make use of it here in that capacity
(since the sequence_loss just implements perplexity specialized to
sequences inside).

We can then train this graph using a standard gradient descent method. We leave out
some of the messy details of the underlying code, but suggest you check GitHub if
curious. Evaluating the quality of the trained model turns out to be straightforward as
well, since the perplexity is used both as the training loss and the evaluation metric.
As a result, we can simply display self._cost to gauge how the model is training. We
encourage you to train the model for yourself!

Challenge for the Reader
Try lowering perplexity on the Penn Treebank by experimenting with different model
architectures. Note that these experiments might be time-consuming without a GPU.

Review
This chapter introduced you to recurrent neural networks (RNNs), a powerful archi‐
tecture for learning on sequential data. RNNs are capable of learning the underlying
evolution rule that governs a sequence of data. While RNNs can be used for modeling
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simple time-series, they are most powerful when modeling complex sequential data
such as speech and natural language.

We introduced you to a number of RNN variants such as LSTMs and GRUs, which
perform better on data with complex long-range interactions, and also took a brief
detour to discuss the exciting prospect of Neural Turing machines. We ended the
chapter with an in-depth case study that applied LSTMs to model the Penn Treebank.

In Chapter 8, we will introduce you to reinforcement learning, a powerful technique
for learning to play games.
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CHAPTER 8

Reinforcement Learning

The learning techniques we’ve covered so far in this book fall into the categories of
supervised or unsupervised learning. In both cases, solving a given problem requires
a data scientist to design a deep architecture that handles and processes input data
and to connect the output of the architecture to a loss function suitable for the prob‐
lem at hand. This framework is widely applicable, but not all applications fall neatly
into this style of thinking. Let’s consider the challenge of training a machine learning
model to win a game of chess. It seems reasonable to process the board as spatial
input using a convolutional network, but what would the loss entail? None of our
standard loss functions such as cross-entropy or L2 loss quite seem to apply.

Reinforcement learning provides a mathematical framework well suited to solving
games. The central mathematical concept is that of the Markov decision process, a tool
for modeling AI agents that interact with environments that offer rewards upon com‐
pletion of certain actions. This framework proves to be flexible and general, and has
found a number of applications in recent years. It’s worth noting that reinforcement
learning as a field is quite mature and has existed in recognizable form since the
1970s. However, until recently, most reinforcement learning systems were only capa‐
ble of solving toy problems. Recent work has revealed that these limitations were
likely due to the lack of sophisticated data intake mechanisms; hand-engineered fea‐
tures for many games or robotic environments often did not suffice. Deep representa‐
tion extractions trained end-to-end on modern hardware seem to break through the
barriers of earlier reinforcement learning systems and have achieved notable results
in recent years.

Arguably, the first breakthrough in deep reinforcement learning was on ATARI
arcade games. ATARI arcade games were traditionally played in video game arcades
and offered users simple games that don’t typically require sophisticated strategizing
but might require good reflexes. Figure 8-1 shows a screenshot from the popular
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ATARI game Breakout. In recent years, due to the development of good ATARI emu‐
lation software, ATARI games have become a testbed for gameplay algorithms. At
first, reinforcement learning algorithms applied to ATARI didn’t achieve superb
results; the requirement that the algorithm understand a visual game state frustrated
most attempts. However, as convolutional networks matured, researchers at Deep‐
Mind realized that convolutional networks could be combined with existing rein‐
forcement learning techniques and trained end-to-end.

Figure 8-1. A screenshot of the ATARI arcade game Breakout. Players have to use the
paddle at the bottom of the screen to bounce a ball that breaks the tiles at the top of the
screen.

The resulting system achieved superb results, and learned to play many ATARI games
(especially those dependent on quick reflexes) at superhuman standards. Figure 8-2
lists ATARI scores achieved by DeepMind’s DQN algorithm. This breakthrough
result spurred tremendous growth in the field of deep reinforcement learning and
inspired legions of researchers to explore the potential of deep reinforcement learn‐
ing techniques. At the same time, DeepMind’s ATARI results showed reinforcement
learning techniques were capable of solving systems dependent on short-term move‐
ments. These results didn’t demonstrate that deep reinforcement learning systems
were capable of solving games that required greater strategic planning.
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Figure 8-2. Results of DeepMind’s DQN reinforcement learning algorithm on various
ATARI games. 100% is the score of a strong human player. Note that DQN achieves
superhuman performance on many games, but is quite weak on others.
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Computer Go

In 1994, IBM revealed the system Deep Blue, which later succeeded
in defeating Garry Kasparov in a highly publicized chess match.
This system relied on brute force computation to expand the tree
of possible chess moves (with some help from handcrafted chess
heuristics) to play master-level chess.
Computer scientists attempted to apply similar techniques to other
games such as Go. Unfortunately for early experimenters, Go’s 19 ×
19 game board is significantly larger than chess’s 8 × 8 board. As a
result, trees of possible moves explode much more quickly than for
chess, and simple back-of-the-envelope calculations indicated that
Moore’s law would take a very long time to enable brute force solu‐
tion of Go in the style of Deep Blue. Complicating matters, there
existed no simple heuristic for evaluating who’s winning in a half-
played Go game (determining whether black or white is ahead is a
notoriously noisy art for the best human analysts). As a result, until
very recently, many prominent computer scientists believed that
strong computer Go play was a decade away at the least.

To demonstrate the prowess of its reinforcement learning algorithms, DeepMind
took on the challenge of learning to play Go, a game that requires complex strategic
planning. In a tour-de-force paper, DeepMind revealed its deep reinforcement learn‐
ing engine, AlphaGo, which combined convolutional networks with tree-based
search to defeat the human Go master Lee Sedol (Figure 8-3).

Figure 8-3. Human Go champion Lee Sedol battles AlphaGo. Lee Sedol eventually lost
the match 1–4, but succeeded in winning one game. It’s unlikely that this victory can be
replicated against the vastly improved successors of AlphaGo such as AlphaZero.
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AlphaGo convincingly demonstrated that deep reinforcement learning techniques
were capable of learning to solve complex strategic games. The heart of the break‐
through was the realization that convolutional networks could learn to estimate
whether black or white was ahead in a half-played game, which enabled game trees to
be truncated at reasonable depths. (AlphaGo also estimates which moves are most
fruitful, enabling a second pruning of the game tree space.) AlphaGo’s victory really
launched deep reinforcement learning into prominence, and a host of researchers are
working to transform AlphaGo-style systems into practical use.

In this chapter, we discuss reinforcement learning algorithms and specifically deep
reinforcement learning architectures. We then show readers how to successfully apply
reinforcement learning to the game of tic-tac-toe. Despite the simplicity of the game,
training a successful reinforcement learner for tic-tac-toe requires significant sophis‐
tication, as you will soon see.

The code for this chapter was adapted from the DeepChem reinforcement learning
library, and in particular from example code created by Peter Eastman and Karl
Leswing. Thanks to Peter for debugging and tuning help on this chapter’s example
code.

Markov Decision Processes
Before launching into a discussion of reinforcement learning algorithms, it will be
useful to pin down the family of problems that reinforcement learning methods seek
to solve. The mathematical framework of Markov decision processes (MDPs) is very
useful for formulating reinforcement learning methods. Traditionally, MDPs are
introduced with a battery of Greek symbols, but we will instead try to proceed by
providing some basic intuition.

The heart of MDPs is the pair of an environment and an agent. An environment enco‐
des a “world” in which the agent seeks to act. Example environments could include
game worlds. For example, a Go board with master Lee Sedol sitting opposite is a
valid environment. Another potential environment could be the environment sur‐
rounding a small robot helicopter. In a prominent early reinforcement learning suc‐
cess, a team at Stanford led by Andrew Ng trained a helicopter to fly upside down
using reinforcement learning as shown in Figure 8-4.
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Figure 8-4. Andrew Ng’s team at Stanford, from 2004 to 2010, trained a helicopter to
learn to fly upside down using reinforcement learning. This work required the construc‐
tion of a sophisticated physically accurate simulator.

The agent is the learning entity that acts within the environment. In our first example,
AlphaGo itself is the agent. In the second, the robot helicopter (or more accurately,
the control algorithm in the robot helicopter) is the agent. Each agent has a set of
actions that it can take within the environment. For AlphaGo, these constitute valid
Go moves. For the robot helicopter, these include control of the main and secondary
rotors.

Actions the agent takes are presumed to have an effect on the environment. In the
case of AlphaGo, this effect is deterministic (AlphaGo deciding to place a Go stone
results in the stone being placed). In the case of the helicopter, the effect is likely
probabilistic (changes in helicopter position may depend on wind conditions, which
can’t be modeled effectively).

The final piece of the model is the notion of reward. Unlike supervised learning
where explicit labels are present to learn from, or unsupervised learning where the
challenge is to learn the underlying structure of the data, reinforcement learning
operates in a setting of partial, sparse rewards. In Go, rewards are achieved at the end
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of the game upon victory or defeat, while in helicopter flight, rewards might be pre‐
sented for successful flights or completion of trick moves.

Reward Function Engineering Is Hard

One of the largest challenges in reinforcement learning is designing
rewards that induce agents to learn desired behaviors. For even
simple win/loss games such as Go or tic-tac-toe, this can be sur‐
prisingly difficult. How much should a loss be punished and how
much should a win be rewarded? There don’t yet exist good
answers.
For more complex behaviors, this can be extremely challenging. A
number of studies have demonstrated that simple rewards can
result in agents learning unexpected and even potentially damaging
behaviors. These systems spur fears of future agents with greater
autonomy wreaking havoc when unleashed in the real world after
having been trained to optimize bad reward functions.
In general, reinforcement learning is less mature than supervised
learning techniques, and we caution that decisions to deploy rein‐
forcement learning in production systems should be taken very
carefully. Given uncertainty over learned behavior, make sure to
thoroughly test any deployed reinforcement learned system.

Reinforcement Learning Algorithms
Now that we’ve introduced you to the core mathematical structures underlying rein‐
forcement learning, let’s consider how to design algorithms that learn intelligent
behaviors for reinforcement learning agents. At a high level, reinforcement learning
algorithms can be separated into the buckets of model-based and model-free algo‐
rithms. The central difference is whether the algorithm seeks to learn an internal
model of how its environment acts. For simpler environments, such as tic-tac-toe, the
model dynamics are trivial. For more complex environments, such as helicopter flight
or even ATARI games, the underlying environment is likely extraordinarily complex.
Avoiding the construction of an explicit model of the environment in favor of an
implicit model that advises the agent on how to act may well be more pragmatic.
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Simulations and Reinforcement Learning

Any reinforcement learning algorithm requires iteratively improv‐
ing the performance of the current agent by evaluating the agent’s
current behavior and changing it to improve received rewards.
These updates to the agent structure often include some gradient
descent update, as we will see in the following sections. However, as
you know intimately from previous chapters, gradient descent is a
slow training algorithm! Millions or even billions of gradient
descent steps may be required to learn an effective model.
This poses a problem if the learning environment is in the real
world; how can an agent interact millions of times with the real
world? In most cases it can’t. As a result, most sophisticated rein‐
forcement learning systems depend critically on simulators that
allow interaction with a simulation computational version of the
environment. For the helicopter flight environment, one of the
hardest challenges researchers faced was building an accurate heli‐
copter physics simulator that allowed learning of effective flight
policies computationally.

Q-Learning
In the framework of Markov decision processes, agents take actions in an environ‐
ment and obtain rewards that are (presumably) tied to agent actions. The Q function
predicts the expected reward for taking a given action in a particular environment
state. This concept seems very straightforward, but the trickiness arises when this
expected reward includes discounted rewards from future actions.

Discounting Rewards

The notion of a discounted reward is widespread, and is often
introduced in the context of finances. Suppose a friend says he’ll
pay you $10 next week. That future 10 dollars is worth less to you
than 10 dollars in your hand right now (what if the payment never
happens, for one?). So mathematically, it’s common practice to
introduce a discounting factor γ (typically between 0 and 1) that
lowers the “present-value” of future payments. For example, say
your friend is somewhat untrustworthy. You might decide to set γ =
0.5 and value your friend’s promise as worth 10γ = 5 dollars today
to account for uncertainty in rewards.

However, these future rewards depend on actions taken by the agent in the future. As
a result, the Q function must be formulated recursively in terms of itself, since
expected rewards for one state depend on those for another state. This recursive defi‐
nition makes learning the Q function tricky. This recursive relationship can be
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formulated explicitly for simple environments with discrete state spaces and solved
with dynamic programming methods. For more general environments, Q-learning
methods were not very useful until recently.

Recently, Deep Q-networks (DQN) were introduced by DeepMind and used to solve
ATARI games as mentioned earlier. The key insight underlying DQN is once again
the universal approximation theorem; since Q may be arbitrarily complex, we should
model it with a universal approximator such as a deep network. While using neural
networks to model Q had been done before, DeepMind also introduced the notion of
experience replay for these networks, which let them train DQN models effectively at
scale. Experience replay stores observed game outcomes and transitions from past
games, and resamples them while training (in addition to training on new games) to
ensure that lessons from the past are not forgotten by the network.

Catastrophic Forgetting

Neural networks quickly forget the past. In fact, this phenomenon,
termed catastrophic forgetting, can occur very rapidly; a few mini‐
batch updates can be sufficient for the network to forget a complex
behavior it previously knew. As a result, without techniques like
experience replay that ensure the network always trains on epi‐
sodes from past matches, it wouldn’t be possible to learn complex
behaviors.
Designing a training algorithm for deep networks that doesn’t suf‐
fer from catastrophic forgetting is still a major open problem today.
Humans notably don’t suffer from catastrophic forgetting; even if
you haven’t ridden a bike in years, it’s likely you still remember how
to do so. Creating a neural network that has similar resilience
might involve the addition of long-term external memory, along
the lines of the Neural Turing machine. Unfortunately, none of the
attempts thus far at designing resilient architectures has really
worked well.

Policy Learning
In the previous section, you learned about Q-learning, which seeks to understand the
expected rewards for taking given actions in given environment states. Policy learn‐
ing is an alternative mathematical framework for learning agent behavior. It introdu‐
ces the policy function π that assigns a probability to each action that an agent can
take in a given state.

Note that a policy is sufficient for defining agent behavior entirely. Given a policy, an
agent can act just by sampling a suitable action for the current environment state.
Policy learning is convenient, since policies can be learned directly through an algo‐
rithm called policy gradient. This algorithm uses a couple mathematical tricks to
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enable policy gradients to be computed directly via backpropagation for deep net‐
works. The key concept is the rollout. Let an agent act in an environment according to
its current policy and observe all rewards that come in. Then backpropagate to
increase the likelihood of those actions that led to more fruitful rewards. This
description is accurate at a high level, but we will see more implementation details
later in the chapter.

A policy is often associated with a value function V. This function returns the
expected discounted reward for following policy π starting from the current state of
the environment. V and Q are closely related functions since both provide estimates
of future rewards starting from present state, but V does not specify an action to be
taken and assumes rather that actions are sampled from π.

Another commonly defined function is the advantage A. This function defines the
difference in expected reward due to taking a particular action a in a given environ‐
ment state s, as opposed to following the base policy π. Mathematically, A is defined
in terms of Q and V:

A s, a = Q s, a − V s

The advantage is useful in policy-learning algorithms, since it lets an algorithm quan‐
tify how a particular action may have been better suited than the present recommen‐
dation of the policy.

Policy Gradient Outside Reinforcement Learning

Although we have introduced policy gradient as a reinforcement
learning algorithm, it can equally be viewed as a tool for learning
deep networks with nondifferentiable submodules. What does this
mean when we unpack the mathematical jargon?
Let’s suppose we have a deep network that calls an external pro‐
gram within the network itself. This external program is a black
box; it could be a network call or an invocation of a 1970s COBOL
routine. How can we learn the rest of the deep network when this
module has no gradient?
It turns out that policy gradient can be repurposed to estimate an
“effective” gradient for the system. The simple intuition is that mul‐
tiple “rollouts” can be run, which are used to estimate gradients.
Expect to see research over the next few years extending this idea
to create large networks with nondifferential modules.
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Asynchronous Training
A disadvantage of the policy gradient methods presented in the previous section is
that performing the rollout operations requires evaluating agent behavior in some
(likely simulated) environment. Most simulators are complicated pieces of software
that can’t be run on the GPU. As a result, taking a single learning step will require
running long CPU-bound calculations. This can lead to unreasonably slow training.

Asynchronous reinforcement learning methods seek to speed up this process by
using multiple asynchronous CPU threads to perform rollouts independently. These
worker threads will perform rollouts, estimate gradient updates to the policy locally,
and then periodically synchronize with the global set of parameters. Empirically,
asynchronous training appears to significantly speed up reinforcement learning and
allows for fairly sophisticated policies to be learned on laptops. (Without GPUs! The
majority of computational power is used on rollouts, so gradient update steps are
often not the rate limiting aspect of reinforcement learning training.) The most popu‐
lar algorithm for asynchronous reinforcement learning currently is the asynchronous
actor advantage critic (A3C) algorithm.

CPU or GPU?

GPUs are necessary for most large deep learning applications, but
reinforcement learning currently appears to be an exception to this
general rule. The reliance of reinforcement learning algorithms to
perform many rollouts seems to currently bias reinforcement
learning implementations toward multicore CPU systems. It’s likely
that in specific applications, individual simulators can be ported to
work more quickly on GPUs, but CPU-based simulations will likely
continue to dominate for the near future.

Limits of Reinforcement Learning
The framework of Markov decision processes is immensely general. For example,
behavioral scientists routinely use Markov decision processes to understand and
model human decision making. The mathematical generality of this framework has
spurred scientists to posit that solving reinforcement learning might spur the creation
of artificial general intelligences (AGIs). The stunning success of AlphaGo against Lee
Sedol amplified this belief, and indeed research groups such as OpenAI and Deep‐
Mind aiming to build AGIs focus much of their efforts on developing new reinforce‐
ment learning techniques.

Nonetheless, there are major weaknesses to reinforcement learning as it currently
exists. Careful benchmarking work has shown that reinforcement learning techniques
are very susceptible to choice of hyperparameters (even by the standards of deep
learning, which is already much finickier than other techniques like random forests).
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As we have mentioned, reward function engineering is very immature. Humans are
capable of internally designing their own reward functions or effectively learning to
copy reward functions from observation. Although “inverse reinforcement learning”
algorithms that learn reward functions directly have been proposed, these algorithms
have many limitations in practice.

In addition to these fundamental limitations, there are still many practical scaling
issues. Humans are capable of playing games that combine high-level strategizing
with thousands of “micro” moves. For example, master-level play of the strategy game
StarCraft (see Figure 8-5) requires sophisticated strategic ploys combined with care‐
ful control of hundreds of units. Games can require thousands of local moves to be
played to completion. In addition, unlike Go or chess, StarCraft has a “fog of war”
where players cannot see the entire game state. This combination of large game state
and uncertainty has foiled reinforcement learning attempts on StarCraft. As a result,
teams of AI researchers at DeepMind and other groups are focusing serious effort on
solving StarCraft with deep reinforcement learning methods. Despite some serious
effort, though, the best StarCraft bots remain at amateur level.

Figure 8-5. A collection of subtasks required for playing the real-time strategy game Star‐
Craft. In this game, players must build an army that they can use to defeat the opposing
force. Successful StarCraft play requires mastery of resource planning, exploration, and
complex strategy. The best computer StarCraft agents remain at amateur level.

In general, there’s wide consensus that reinforcement learning is a useful technique
that’s likely to be deeply influential over the next few decades, but it’s also clear that
the many practical limitations of reinforcement learning methods will mean that
most work will continue to be done in research labs for the near future.
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Playing Tic-Tac-Toe
Tic-tac-toe is a simple two-player game. Players place Xs and Os on a 3 × 3 game
board until one player succeeds in placing three of her pieces in a row. The first player
to do so wins. If neither player succeeds in obtaining three in a row before the board
is filled up, the game ends in a draw. Figure 8-6 illustrates a tic-tac-toe game board.

Figure 8-6. A tic-tac-toe game board.

Tic-tac-toe is a nice testbed for reinforcement learning techniques. The game is sim‐
ple enough that exorbitant amounts of computational power aren’t required to train
effective agents. At the same time, despite tic-tac-toe’s simplicity, learning an effective
agent requires considerable sophistication. The TensorFlow code for this section is
arguably the most sophisticated example found in this book. We will walk you
through the design of a TensorFlow tic-tac-toe asynchronous reinforcement learning
agent in the remainder of this section.

Object Orientation
The code we’ve introduced thus far in this book has primarily consisted of scripts
augmented by smaller helper functions. In this chapter, however, we will swap to an
object-oriented programming style. This style of programming might be new to you,
especially if you hail from the scientific world rather than from the tech world.
Briefly, an object-oriented program defines objects that model aspects of the world.
For example, you might want to define Environment or Agent or Reward objects that
directly correspond to these mathematical concepts. A class is a template for objects
that can be used to instantiate (or create) many new objects. For example, you will
shortly see an Environment class definition we will use to define many particular Envi
ronment objects.

Object orientation is particularly powerful for building complex systems, so we will
use it to simplify the design of our reinforcement learning system. In practice, your
real-world deep learning (or reinforcement learning) systems will likely need to be
object oriented as well, so we encourage taking some time to master object-oriented
design. There are many superb books that cover the fundamentals of object-oriented
design, and we recommend that you check them out as necessary.

Playing Tic-Tac-Toe | 181



Abstract Environment
Let’s start by defining an abstract Environment object that encodes the state of a sys‐
tem in a list of NumPy objects (Example 8-1). This Environment object is quite gen‐
eral (adapted from DeepChem’s reinforcement learning engine) so it can easily serve
as a template for other reinforcement learning projects you might seek to implement.

Example 8-1. This class defines a template for constructing new environments

class Environment(object):
  """An environment in which an actor performs actions to accomplish a task.

  An environment has a current state, which is represented as either a single NumPy
  array, or optionally a list of NumPy arrays.  When an action is taken, that causes
  the state to be updated.  Exactly what is meant by an "action" is defined by each
  subclass.  As far as this interface is concerned, it is simply an arbitrary object.
  The environment also computes a reward for each action, and reports when the task
  has been terminated (meaning that no more actions may be taken).
  """

  def __init__(self, state_shape, n_actions, state_dtype=None):
    """Subclasses should call the superclass constructor in addition to doing their
       own initialization."""
    self.state_shape = state_shape
    self.n_actions = n_actions
    if state_dtype is None:
      # Assume all arrays are float32.
      if isinstance(state_shape[0], collections.Sequence):
        self.state_dtype = [np.float32] * len(state_shape)
      else:
        self.state_dtype = np.float32
    else:
      self.state_dtype = state_dtype

Tic-Tac-Toe Environment
We need to specialize the Environment class to create a TicTacToeEnvironment suit‐
able for our needs. To do this, we construct a subclass of Environment that adds on
more features, while retaining the core functionality of the original superclass. In
Example 8-2, we define TicTacToeEnvironment as a subclass of Environment that
adds details specific to tic-tac-toe.

Example 8-2. The TicTacToeEnvironment class defines a template for constructing new
tic-tac-toe environments

class TicTacToeEnvironment(dc.rl.Environment):
  """
  Play tictactoe against a randomly acting opponent

182 | Chapter 8: Reinforcement Learning



  """
  X = np.array([1.0, 0.0])
  O = np.array([0.0, 1.0])
  EMPTY = np.array([0.0, 0.0])

  ILLEGAL_MOVE_PENALTY = -3.0
  LOSS_PENALTY = -3.0
  NOT_LOSS = 0.1
  DRAW_REWARD = 5.0
  WIN_REWARD = 10.0

  def __init__(self):
    super(TicTacToeEnvironment, self).__init__([(3, 3, 2)], 9)
    self.terminated = None
    self.reset()

The first interesting tidbit to note here is that we define the board state as a NumPy
array of shape (3, 3, 2). We use a one-hot encoding of X and O (one-hot encodings
aren’t only useful for natural language processing!).

The second important thing to note is that the environment explicitly defines the
reward function by setting penalties for illegal moves and losses, and rewards for
draws and wins. This snippet powerfully illustrates the arbitrary nature of reward
function engineering. Why these particular numbers?

Empirically, these choices appear to result in stable behavior, but we encourage you to
experiment with alternate reward settings to observe results. In this implementation,
we specify that the agent always plays X, but randomize whether X or O goes first. The
function get_O_move() simply places an O on a random open tile on the game board.
TicTacToeEnvironment encodes an opponent that plays O while always selecting a
random move. The reset() function simply clears the board, and places an O tile
randomly if O is going first during this game. See Example 8-3.

Example 8-3. More methods from the TicTacToeEnvironment class

def reset(self):
  self.terminated = False
  self.state = [np.zeros(shape=(3, 3, 2), dtype=np.float32)]

  # Randomize who goes first
  if random.randint(0, 1) == 1:
    move = self.get_O_move()
    self.state[0][move[0]][move[1]] = TicTacToeEnvironment.O

def get_O_move(self):
  empty_squares = []
  for row in range(3):
    for col in range(3):
      if np.all(self.state[0][row][col] == TicTacToeEnvironment.EMPTY):
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        empty_squares.append((row, col))
  return random.choice(empty_squares)

The utility function game_over() reports that the game has ended if all tiles are filled.
check_winner() checks whether the specified player has achieved three in a row and
won the game (Example 8-4).

Example 8-4. Utility methods from the TicTacToeEnvironment class for detecting when
the game has ended and who won

def check_winner(self, player):
  for i in range(3):
    row = np.sum(self.state[0][i][:], axis=0)
    if np.all(row == player * 3):
      return True
    col = np.sum(self.state[0][:][i], axis=0)
    if np.all(col == player * 3):
      return True

  diag1 = self.state[0][0][0] + self.state[0][1][1] + self.state[0][2][2]
  if np.all(diag1 == player * 3):
    return True
  diag2 = self.state[0][0][2] + self.state[0][1][1] + self.state[0][2][0]
  if np.all(diag2 == player * 3):
    return True
  return False

def game_over(self):
  for i in range(3):
    for j in range(3):
      if np.all(self.state[0][i][j] == TicTacToeEnvironment.EMPTY):
        return False
  return True

In our implementation, an action is simply a number between 0 and 8 specifying the
tile on which the X tile is placed. The step() method checks whether this tile is occu‐
pied (returning a penalty if so), then places the tile. If X has won, a reward is returned.
Else, the random O opponent is allowed to make a move. If O won, then a penalty is
returned. If the game has ended as a draw, then a penalty is returned. Else, the game
continues with a NOT_LOSS reward. See Example 8-5.

Example 8-5. This method performs a step of the simulation

def step(self, action):
  self.state = copy.deepcopy(self.state)
  row = action // 3
  col = action % 3
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  # Illegal move -- the square is not empty
  if not np.all(self.state[0][row][col] == TicTacToeEnvironment.EMPTY):
    self.terminated = True
    return TicTacToeEnvironment.ILLEGAL_MOVE_PENALTY

  # Move X
  self.state[0][row][col] = TicTacToeEnvironment.X

  # Did X Win
  if self.check_winner(TicTacToeEnvironment.X):
    self.terminated = True
    return TicTacToeEnvironment.WIN_REWARD

  if self.game_over():
    self.terminated = True
    return TicTacToeEnvironment.DRAW_REWARD

  move = self.get_O_move()
  self.state[0][move[0]][move[1]] = TicTacToeEnvironment.O

  # Did O Win
  if self.check_winner(TicTacToeEnvironment.O):
    self.terminated = True
    return TicTacToeEnvironment.LOSS_PENALTY

  if self.game_over():
    self.terminated = True
    return TicTacToeEnvironment.DRAW_REWARD

  return TicTacToeEnvironment.NOT_LOSS

The Layer Abstraction
Running an asynchronous reinforcement learning algorithm such as A3C requires
that each thread have access to a separate copy of the policy model. These copies of
the model have to be periodically re-synced with one another for training to proceed.
What is the easiest way we can construct multiple copies of the TensorFlow graph
that we can distribute to each thread?

One simple possibility is to create a function that creates a copy of the model in a sep‐
arate TensorFlow graph. This approach works well, but gets to be a little messy, espe‐
cially for sophisticated networks. Using a little bit of object orientation can
significantly simplify this process. Since our reinforcement learning code is adapted
from the DeepChem library, we use a simplified version of the TensorGraph frame‐
work from DeepChem (see https://deepchem.io for information and docs). This
framework is similar to other high-level TensorFlow frameworks such as Keras. The
core abstraction in all such models is the introduction of a Layer object that encapsu‐
lates a portion of a deep network.
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A Layer is a portion of a TensorFlow graph that accepts a list in_layers of input lay‐
ers. In this abstraction, a deep architecture consists of a directed graph of layers.
Directed graphs are similar to the undirected graphs you saw in Chapter 6, but have
directions on their edges. In this case, the in_layers have edges to the new Layer,
with the direction pointing toward the new layer. You will learn more about this con‐
cept in the next section.

We use tf.register_tensor_conversion_function, a utility that allows arbitrary
classes to register themselves as tensor convertible. This registration will mean that a
Layer can be converted into a TensorFlow tensor via a call to tf.convert_to_tensor.
The _get_input_tensors() private method is a utility that uses tf.convert_to_ten
sor to transform input layers into input tensors. Each Layer is responsible for imple‐
menting a create_tensor() method that specifies the operations to add to the
TensorFlow computational graph. See Example 8-6.

Example 8-6. The Layer object is the fundamental abstraction in object-oriented deep
architectures. It encapsulates a part of the netwok such as a fully connected layer or a
convolutional layer. This example defines a generic superclass for all such layers.

class Layer(object):

  def __init__(self, in_layers=None, **kwargs):
    if "name" in kwargs:
      self.name = kwargs["name"]
    else:
      self.name = None
    if in_layers is None:
      in_layers = list()
    if not isinstance(in_layers, Sequence):
      in_layers = [in_layers]
    self.in_layers = in_layers
    self.variable_scope = ""
    self.tb_input = None

  def create_tensor(self, in_layers=None, **kwargs):
    raise NotImplementedError("Subclasses must implement for themselves")

  def _get_input_tensors(self, in_layers):
    """Get the input tensors to his layer.

    Parameters
    ----------
    in_layers: list of Layers or tensors
      the inputs passed to create_tensor().  If None, this layer's inputs will
      be used instead.
    """
    if in_layers is None:
      in_layers = self.in_layers

186 | Chapter 8: Reinforcement Learning



    if not isinstance(in_layers, Sequence):
      in_layers = [in_layers]
    tensors = []
    for input in in_layers:
      tensors.append(tf.convert_to_tensor(input))
    return tensors

def _convert_layer_to_tensor(value, dtype=None, name=None, as_ref=False):
  return tf.convert_to_tensor(value.out_tensor, dtype=dtype, name=name)

tf.register_tensor_conversion_function(Layer, _convert_layer_to_tensor)

The preceding description is abstract, but in practice easy to use. Example 8-7 shows
a Squeeze layer that wraps tf.squeeze with a Layer (you will find this class conve‐
nient later). Note that Squeeze is a subclass of Layer.

Example 8-7. The Squeeze layer squeezes its input

class Squeeze(Layer):

  def __init__(self, in_layers=None, squeeze_dims=None, **kwargs):
    self.squeeze_dims = squeeze_dims
    super(Squeeze, self).__init__(in_layers, **kwargs)

  def create_tensor(self, in_layers=None, **kwargs):
    inputs = self._get_input_tensors(in_layers)
    parent_tensor = inputs[0]
    out_tensor = tf.squeeze(parent_tensor, squeeze_dims=self.squeeze_dims)
    self.out_tensor = out_tensor
    return out_tensor

The Input layer wraps placeholders for convenience (Example 8-8). Note that the
Layer.create_tensor method must be invoked for each layer we use in order to con‐
struct a TensorFlow computational graph.

Example 8-8. The Input layer adds placeholders to the computation graph

class Input(Layer):

  def __init__(self, shape, dtype=tf.float32, **kwargs):
    self._shape = tuple(shape)
    self.dtype = dtype
    super(Input, self).__init__(**kwargs)

  def create_tensor(self, in_layers=None, **kwargs):
    if in_layers is None:
      in_layers = self.in_layers
    out_tensor = tf.placeholder(dtype=self.dtype, shape=self._shape)
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    self.out_tensor = out_tensor
    return out_tensor

tf.keras and tf.estimator

TensorFlow has now integrated the popular Keras object-oriented
frontend into the core TensorFlow library. Keras includes a Layer
class definition that closely matches the Layer objects you’ve just
learned about in this section. In fact, the Layer objects here were
adapted from the DeepChem library, which in turn adapted them
from an earlier version of Keras.
It’s worth noting, though, that tf.keras has not yet become the
standard higher-level interface to TensorFlow. The tf.estimator
module provides an alternative (albeit less rich) high-level interface
to raw TensorFlow.
Regardless of which frontend eventually becomes standard, we
think that understanding the fundamental design principles for
building your own frontend is instructive and worthwhile. You
might need to build a new system for your organization that
requires an alternative design, so a solid grasp of design principles
will serve you well.

Defining a Graph of Layers
We mentioned briefly in the previous section that a deep architecture could be visual‐
ized as a directed graph of Layer objects. In this section, we transform this intuition
into the TensorGraph object. These objects are responsible for constructing the
underlying TensorFlow computation graph.

A TensorGraph object is responsible for maintaining a tf.Graph, a tf.Session, and a
list of layers (self.layers) internally (Example 8-9). The directed graph is repre‐
sented implicitly, by the in_layers belonging to each Layer object. TensorGraph also
contains utilities for saving this tf.Graph instance to disk and consequently assigns
itself a directory (using tempfile.mkdtemp() if none is specified) to store check‐
points of the weights associated with its underlying TensorFlow graph.

Example 8-9. The TensorGraph contains a graph of layers; TensorGraph objects can be
thought of as the “model” object holding the deep architecture you want to train

class TensorGraph(object):

  def __init__(self,
               batch_size=100,
               random_seed=None,
               graph=None,
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               learning_rate=0.001,
               model_dir=None,
               **kwargs):
    """
    Parameters
    ----------
    batch_size: int
      default batch size for training and evaluating
    graph: tensorflow.Graph
      the Graph in which to create Tensorflow objects.  If None, a new Graph
      is created.
    learning_rate: float or LearningRateSchedule
      the learning rate to use for optimization
    kwargs
    """

    # Layer Management
    self.layers = dict()
    self.features = list()
    self.labels = list()
    self.outputs = list()
    self.task_weights = list()
    self.loss = None
    self.built = False
    self.optimizer = None
    self.learning_rate = learning_rate

    # Singular place to hold Tensor objects which don't serialize
    # See TensorGraph._get_tf() for more details on lazy construction
    self.tensor_objects = {
        "Graph": graph,
        #"train_op": None,
    }
    self.global_step = 0
    self.batch_size = batch_size
    self.random_seed = random_seed
    if model_dir is not None:
      if not os.path.exists(model_dir):
        os.makedirs(model_dir)
    else:
      model_dir = tempfile.mkdtemp()
      self.model_dir_is_temp = True
    self.model_dir = model_dir
    self.save_file = "%s/%s" % (self.model_dir, "model")
    self.model_class = None

The private method _add_layer does bookkeeping work to add a new Layer obect to
the TensorGraph (Example 8-10).
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Example 8-10. The _add_layer method adds a new Layer object

def _add_layer(self, layer):
  if layer.name is None:
    layer.name = "%s_%s" % (layer.__class__.__name__, len(self.layers) + 1)
  if layer.name in self.layers:
    return
  if isinstance(layer, Input):
    self.features.append(layer)
  self.layers[layer.name] = layer
  for in_layer in layer.in_layers:
    self._add_layer(in_layer)

The layers in a TensorGraph must form a directed acyclic graph (there can be no
loops in the graph). As a result, we can topologically sort these layers. Intuitively, a
topological sort “orders” the layers in the graph so that each Layer object’s in_layers
precede it in the ordered list. This topological sort is necessary to make sure all input
layers to a given layer are added to the graph before the layer itself (Example 8-11).

Example 8-11. The topsort method orders the layers in the TensorGraph

def topsort(self):

  def add_layers_to_list(layer, sorted_layers):
    if layer in sorted_layers:
      return
    for in_layer in layer.in_layers:
      add_layers_to_list(in_layer, sorted_layers)
    sorted_layers.append(layer)

  sorted_layers = []
  for l in self.features + self.labels + self.task_weights + self.outputs:
    add_layers_to_list(l, sorted_layers)
  add_layers_to_list(self.loss, sorted_layers)
  return sorted_layers

The build() method takes the responsibility of populating the tf.Graph instance by
calling layer.create_tensor for each layer in topological order (Example 8-12).

Example 8-12. The build method populates the underlying TensorFlow graph

def build(self):
  if self.built:
    return
  with self._get_tf("Graph").as_default():
    self._training_placeholder = tf.placeholder(dtype=tf.float32, shape=())
    if self.random_seed is not None:
      tf.set_random_seed(self.random_seed)
    for layer in self.topsort():
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      with tf.name_scope(layer.name):
        layer.create_tensor(training=self._training_placeholder)
    self.session = tf.Session()

    self.built = True

The method set_loss() adds a loss for training to the graph. add_output() specifies
that the layer in question might be fetched from the graph. set_optimizer() speci‐
fies the optimizer used for training (Example 8-13).

Example 8-13. These methods add necessary losses, outputs, and optimizers to the
computation graph

def set_loss(self, layer):
  self._add_layer(layer)
  self.loss = layer

def add_output(self, layer):
  self._add_layer(layer)
  self.outputs.append(layer)

def set_optimizer(self, optimizer):
  """Set the optimizer to use for fitting."""
  self.optimizer = optimizer

The method get_layer_variables() is used to fetch the learnable tf.Variable
objects created by a layer. The private method _get_tf is used to fetch the tf.Graph
and optimizer instances underpinning the TensorGraph. get_global_step is a con‐
venience method for fetching the current step in the training process (starting from 0
at construction). See Example 8-14.

Example 8-14. Fetch the learnable variables associated with each layer

def get_layer_variables(self, layer):
  """Get the list of trainable variables in a layer of the graph."""
  if not self.built:
    self.build()
  with self._get_tf("Graph").as_default():
    if layer.variable_scope == "":
      return []
    return tf.get_collection(
        tf.GraphKeys.TRAINABLE_VARIABLES, scope=layer.variable_scope)

def get_global_step(self):
  return self._get_tf("GlobalStep")

def _get_tf(self, obj):
  """Fetches underlying TensorFlow primitives.
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  Parameters
  ----------
  obj: str
    If "Graph", returns tf.Graph instance. If "Optimizer", returns the
    optimizer. If "train_op", returns the train operation. If "GlobalStep" returns
    the global step.
  Returns
  -------
  TensorFlow Object
  """

  if obj in self.tensor_objects and self.tensor_objects[obj] is not None:
    return self.tensor_objects[obj]
  if obj == "Graph":
    self.tensor_objects["Graph"] = tf.Graph()
  elif obj == "Optimizer":
    self.tensor_objects["Optimizer"] = tf.train.AdamOptimizer(
        learning_rate=self.learning_rate,
        beta1=0.9,
        beta2=0.999,
        epsilon=1e-7)
  elif obj == "GlobalStep":
    with self._get_tf("Graph").as_default():
      self.tensor_objects["GlobalStep"] = tf.Variable(0, trainable=False)
  return self._get_tf(obj)

Finally, the restore() method restores a saved TensorGraph from disk
(Example 8-15). (As you will see later, the TensorGraph is saved automatically during
training.)

Example 8-15. Restore a trained model from disk

def restore(self):
  """Reload the values of all variables from the most recent checkpoint file."""
  if not self.built:
    self.build()
  last_checkpoint = tf.train.latest_checkpoint(self.model_dir)
  if last_checkpoint is None:
    raise ValueError("No checkpoint found")
  with self._get_tf("Graph").as_default():
    saver = tf.train.Saver()
    saver.restore(self.session, last_checkpoint)

The A3C Algorithm
In this section you will learn how to implement A3C, the asynchronous reinforce‐
ment learning algorithm you saw earlier in the chapter. A3C is a significantly more
complex training algorithm than those you have seen previously. The algorithm
requires running gradient descent in multiple threads, interspersed with game rollout
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code, and updating learned weights asynchronously. As a result of this extra complex‐
ity, we will define the A3C algorithm in an object-oriented fashion. Let’s start by
defining an A3C object.

The A3C class implements the A3C algorithm (Example 8-16). A few extra bells and
whistles are added onto the basic algorithm to encourage learning, notably an
entropy term and support for generalized advantage estimation. We won’t cover all of
these details, but encourage you to follow references into the research literature (lis‐
ted in the documentation) to understand more.

Example 8-16. Define the A3C class encapsulating the asynchronous A3C training
algorithm

class A3C(object):
  """
  Implements the Asynchronous Advantage Actor-Critic (A3C) algorithm.

  The algorithm is described in Mnih et al, "Asynchronous Methods for Deep
  Reinforcement Learning" (https://arxiv.org/abs/1602.01783).  This class
  requires the policy to output two quantities: a vector giving the probability
  of taking each action, and an estimate of the value function for the current
  state.  It optimizes both outputs at once using a loss that is the sum of three
  terms:

  1. The policy loss, which seeks to maximize the discounted reward for each action.
  2. The value loss, which tries to make the value estimate match the actual
     discounted reward that was attained at each step.
  3. An entropy term to encourage exploration.

  This class only supports environments with discrete action spaces, not
  continuous ones.  The "action" argument passed to the environment is an
  integer, giving the index of the action to perform.

  This class supports Generalized Advantage Estimation as described in Schulman
  et al., "High-Dimensional Continuous Control Using Generalized Advantage
  Estimation" (https://arxiv.org/abs/1506.02438).  This is a method of trading
  off bias and variance in the advantage estimate, which can sometimes improve
  the rate of convergence.  Use the advantage_lambda parameter to adjust the
  tradeoff.
  """
  self._env = env
  self.max_rollout_length = max_rollout_length
  self.discount_factor = discount_factor
  self.advantage_lambda = advantage_lambda
  self.value_weight = value_weight
  self.entropy_weight = entropy_weight
  self._optimizer = None
  (self._graph, self._features, self._rewards, self._actions,
   self._action_prob, self._value, self._advantages) = self.build_graph(
       None, "global", model_dir)
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  with self._graph._get_tf("Graph").as_default():
    self._session = tf.Session()

The heart of the A3C class lies in the build_graph() method (Example 8-17), which
constructs a TensorGraph instance (underneath which lies a TensorFlow computation
graph) encoding the policy learned by the model. Notice how succinct this definition
is compared with others you have seen previously! There are many advantages to
using object orientation.

Example 8-17. This method builds the computation graph for the A3C algorithm. Note
that the policy network is defined here using the Layer abstractions you saw previously.

def build_graph(self, tf_graph, scope, model_dir):
  """Construct a TensorGraph containing the policy and loss calculations."""
  state_shape = self._env.state_shape
  features = []
  for s in state_shape:
    features.append(Input(shape=[None] + list(s), dtype=tf.float32))
  d1 = Flatten(in_layers=features)
  d2 = Dense(
      in_layers=[d1],
      activation_fn=tf.nn.relu,
      normalizer_fn=tf.nn.l2_normalize,
      normalizer_params={"dim": 1},
      out_channels=64)
  d3 = Dense(
      in_layers=[d2],
      activation_fn=tf.nn.relu,
      normalizer_fn=tf.nn.l2_normalize,
      normalizer_params={"dim": 1},
      out_channels=32)
  d4 = Dense(
      in_layers=[d3],
      activation_fn=tf.nn.relu,
      normalizer_fn=tf.nn.l2_normalize,
      normalizer_params={"dim": 1},
      out_channels=16)
  d4 = BatchNorm(in_layers=[d4])
  d5 = Dense(in_layers=[d4], activation_fn=None, out_channels=9)
  value = Dense(in_layers=[d4], activation_fn=None, out_channels=1)
  value = Squeeze(squeeze_dims=1, in_layers=[value])
  action_prob = SoftMax(in_layers=[d5])

  rewards = Input(shape=(None,))
  advantages = Input(shape=(None,))
  actions = Input(shape=(None, self._env.n_actions))
  loss = A3CLoss(
      self.value_weight,
      self.entropy_weight,
      in_layers=[rewards, actions, action_prob, value, advantages])
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  graph = TensorGraph(
      batch_size=self.max_rollout_length,
      graph=tf_graph,
      model_dir=model_dir)
  for f in features:
    graph._add_layer(f)
  graph.add_output(action_prob)
  graph.add_output(value)
  graph.set_loss(loss)
  graph.set_optimizer(self._optimizer)
  with graph._get_tf("Graph").as_default():
    with tf.variable_scope(scope):
      graph.build()
  return graph, features, rewards, actions, action_prob, value, advantages

There’s a lot of code in this example. Let’s break it down into multiple examples and
discuss more carefully. Example 8-18 takes the array encoding of the TicTacToeEnvir
onment and feeds it into the Input instances for the graph directly.

Example 8-18. This snippet from the build_graph() method feeds in the array encoding
of TicTacToeEnvironment

state_shape = self._env.state_shape
features = []
for s in state_shape:
  features.append(Input(shape=[None] + list(s), dtype=tf.float32))

Example 8-19 shows the code used to construct inputs for rewards from the environ‐
ment, advantages observed, and actions taken.

Example 8-19. This snippet from the build_graph() method defines Input objects for
rewards, advantages, and actions

rewards = Input(shape=(None,))
advantages = Input(shape=(None,))
actions = Input(shape=(None, self._env.n_actions))

The policy network is responsible for learning the policy. In Example 8-20, the input
board state is first flattened into an input feature vector. A series of fully connected
(or Dense) transformations are applied to the flattened board. At the very end, a Soft
max layer is used to predict action probabilities from d5 (note that out_channels is set
to 9, one for each possible move on the tic-tac-toe board).

Example 8-20. This snippet from the build_graph() method defines the policy network

d1 = Flatten(in_layers=features)
d2 = Dense(
    in_layers=[d1],
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    activation_fn=tf.nn.relu,
    normalizer_fn=tf.nn.l2_normalize,
    normalizer_params={"dim": 1},
    out_channels=64)
d3 = Dense(
    in_layers=[d2],
    activation_fn=tf.nn.relu,
    normalizer_fn=tf.nn.l2_normalize,
    normalizer_params={"dim": 1},
    out_channels=32)
d4 = Dense(
    in_layers=[d3],
    activation_fn=tf.nn.relu,
    normalizer_fn=tf.nn.l2_normalize,
    normalizer_params={"dim": 1},
    out_channels=16)
d4 = BatchNorm(in_layers=[d4])
d5 = Dense(in_layers=[d4], activation_fn=None, out_channels=9)
value = Dense(in_layers=[d4], activation_fn=None, out_channels=1)
value = Squeeze(squeeze_dims=1, in_layers=[value])
action_prob = SoftMax(in_layers=[d5])

Is Feature Engineering Dead?

In this section, we feed the raw tic-tac-toe game board into Tensor‐
Flow for training the policy. However, it’s important to note that for
more complex games than tic-tac-toe, this may not yield satisfac‐
tory results. One of the lesser known facts about AlphaGo is that
DeepMind performs sophisticated feature engineering to extract
“interesting” patterns of Go pieces upon the board to make Alpha‐
Go’s learning easier. (This fact is tucked away into the supplemental
information of DeepMind’s paper.)
The fact remains that reinforcement learning (and deep learning
methods broadly) often still need human-guided feature engineer‐
ing to extract meaningful information before learning algorithms
can learn effective policies and models. It’s likely that as more com‐
putational power becomes available through hardware advances,
this need for feature engineering will be reduced, but for the near
term, plan on manually extracting information about your systems
as needed for performance.

The A3C Loss Function
We now have the object-oriented machinery set in place to define a loss for the A3C
policy network. This loss function will itself be implemented as a Layer object (it’s a
convenient abstraction that all parts of the deep architecture are simply layers). The
A3CLoss object implements a mathematical loss consisting of the sum of three terms:
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a policy_loss, a value_loss, and an entropy term for exploration. See
Example 8-21.

Example 8-21. This Layer implements the loss function for A3C

class A3CLoss(Layer):
  """This layer computes the loss function for A3C."""

  def __init__(self, value_weight, entropy_weight, **kwargs):
    super(A3CLoss, self).__init__(**kwargs)
    self.value_weight = value_weight
    self.entropy_weight = entropy_weight

  def create_tensor(self, **kwargs):
    reward, action, prob, value, advantage = [
        layer.out_tensor for layer in self.in_layers
    ]
    prob = prob + np.finfo(np.float32).eps
    log_prob = tf.log(prob)
    policy_loss = -tf.reduce_mean(
        advantage * tf.reduce_sum(action * log_prob, axis=1))
    value_loss = tf.reduce_mean(tf.square(reward - value))
    entropy = -tf.reduce_mean(tf.reduce_sum(prob * log_prob, axis=1))
    self.out_tensor = policy_loss + self.value_weight * value_loss
    - self.entropy_weight * entropy
    return self.out_tensor

There are a lot of pieces to this definition, so let’s pull out bits of code and inspect.
The A3CLoss layer takes in reward, action, prob, value, advantage layers as
inputs. For mathematical stability, we convert probabilities to log probabilities (this is
numerically much more stable). See Example 8-22.

Example 8-22. This snippet from A3CLoss takes reward, action, prob, value, advantage
as input layers and computes a log probability

reward, action, prob, value, advantage = [
    layer.out_tensor for layer in self.in_layers
]
prob = prob + np.finfo(np.float32).eps
log_prob = tf.log(prob)

The policy loss computes the sum of all advantages observed, weighted by the log-
probability of the action taken. (Recall that the advantage is the difference in reward
resulting from taking the given action as opposed to the expected reward from the
raw policy for that state). The intuition here is that the policy_loss provides a signal
on which actions were fruitful and which were not (Example 8-23).
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Example 8-23. This snippet from A3CLoss defines the policy loss

policy_loss = -tf.reduce_mean(
    advantage * tf.reduce_sum(action * log_prob, axis=1))

The value loss computes the difference between our estimate of V (reward) and the
actual value of V observed (value). Note the use of the L2 loss here (Example 8-24).

Example 8-24. This snippet from A3CLoss defines the value loss

value_loss = tf.reduce_mean(tf.square(reward - value))

The entropy term is an addition that encourages the policy to explore further by
adding some noise. This term is effectively a form of regularization for A3C net‐
works. The final loss computed by A3CLoss is a linear combination of these compo‐
nent losses. See Example 8-25.

Example 8-25. This snippet from A3CLoss defines an entropy term added to the loss

entropy = -tf.reduce_mean(tf.reduce_sum(prob * log_prob, axis=1))

Defining Workers
Thus far, you’ve seen how the policy network is constructed, but you haven’t yet seen
how the asynchronous training procedure is implemented. Conceptually, asynchro‐
nous training consists of individual workers running gradient descent on locally
simulated game rollouts and contributing learned knowledge back to a global set of
weights periodically. Continuing our object-oriented design, let’s introduce the
Worker class.

Each Worker instance holds a copy of the model that’s trained asynchronously on a
separate thread (Example 8-26). Note that a3c.build_graph() is used to construct a
local copy of the TensorFlow computation graph for the thread in question. Take spe‐
cial note of local_vars and global_vars here. We need to make sure to train only
the variables associated with this worker’s copy of the policy and not with the global
copy of the variables (which is used to share information across worker threads). As a
result gradients uses tf.gradients to take gradients of the loss with respect to only
local_vars.
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Example 8-26. The Worker class implements the computation performed by each thread

class Worker(object):
  """A Worker object is created for each training thread."""

  def __init__(self, a3c, index):
    self.a3c = a3c
    self.index = index
    self.scope = "worker%d" % index
    self.env = copy.deepcopy(a3c._env)
    self.env.reset()
    (self.graph, self.features, self.rewards, self.actions, self.action_prob,
     self.value, self.advantages) = a3c.build_graph(
        a3c._graph._get_tf("Graph"), self.scope, None)
    with a3c._graph._get_tf("Graph").as_default():
      local_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES,
                                     self.scope)
      global_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES,
                                      "global")
      gradients = tf.gradients(self.graph.loss.out_tensor, local_vars)
      grads_and_vars = list(zip(gradients, global_vars))
      self.train_op = a3c._graph._get_tf("Optimizer").apply_gradients(
          grads_and_vars)
      self.update_local_variables = tf.group(
          * [tf.assign(v1, v2) for v1, v2 in zip(local_vars, global_vars)])
      self.global_step = self.graph.get_global_step()

Worker rollouts

Each Worker is responsible for simulating game rollouts locally. The create_roll
out() method uses session.run to fetch action probabilities from the TensorFlow
graph (Example 8-27). It then samples an action from this policy using np.ran
dom.choice, weighted by the per-class probabilities. The reward for the action taken
is computed from TicTacToeEnvironment via a call to self.env.step(action).

Example 8-27. The create_rollout method simulates a game rollout locally

def create_rollout(self):
  """Generate a rollout."""
  n_actions = self.env.n_actions
  session = self.a3c._session
  states = []
  actions = []
  rewards = []
  values = []

  # Generate the rollout.
  for i in range(self.a3c.max_rollout_length):
    if self.env.terminated:
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      break
    state = self.env.state
    states.append(state)
    feed_dict = self.create_feed_dict(state)
    results = session.run(
        [self.action_prob.out_tensor, self.value.out_tensor],
        feed_dict=feed_dict)
    probabilities, value = results[:2]
    action = np.random.choice(np.arange(n_actions), p=probabilities[0])
    actions.append(action)
    values.append(float(value))
    rewards.append(self.env.step(action))

  # Compute an estimate of the reward for the rest of the episode.
  if not self.env.terminated:
    feed_dict = self.create_feed_dict(self.env.state)
    final_value = self.a3c.discount_factor * float(
        session.run(self.value.out_tensor, feed_dict))
  else:
    final_value = 0.0
  values.append(final_value)
  if self.env.terminated:
    self.env.reset()
  return states, actions, np.array(rewards), np.array(values)

The process_rollouts() method does preprocessing needed to compute discounted
rewards, values, actions, and advantages (Example 8-28).

Example 8-28. The process_rollout method computes rewards, values, actions, and
advantages and then takes a gradient descent step against the loss

def process_rollout(self, states, actions, rewards, values, step_count):
  """Train the network based on a rollout."""

  # Compute the discounted rewards and advantages.
  if len(states) == 0:
    # Rollout creation sometimes fails in multithreaded environment.
    # Don't process if malformed
    print("Rollout creation failed. Skipping")
    return

  discounted_rewards = rewards.copy()
  discounted_rewards[-1] += values[-1]
  advantages = rewards - values[:-1] + self.a3c.discount_factor * np.array(
      values[1:])
  for j in range(len(rewards) - 1, 0, -1):
    discounted_rewards[j-1] += self.a3c.discount_factor * discounted_rewards[j]
    advantages[j-1] += (
        self.a3c.discount_factor * self.a3c.advantage_lambda * advantages[j])
   # Convert the actions to one-hot.
  n_actions = self.env.n_actions
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  actions_matrix = []
  for action in actions:
    a = np.zeros(n_actions)
    a[action] = 1.0
    actions_matrix.append(a)

  # Rearrange the states into the proper set of arrays.
  state_arrays = [[] for i in range(len(self.features))]
  for state in states:
    for j in range(len(state)):
      state_arrays[j].append(state[j])

  # Build the feed dict and apply gradients.
  feed_dict = {}
  for f, s in zip(self.features, state_arrays):
    feed_dict[f.out_tensor] = s
  feed_dict[self.rewards.out_tensor] = discounted_rewards
  feed_dict[self.actions.out_tensor] = actions_matrix
  feed_dict[self.advantages.out_tensor] = advantages
  feed_dict[self.global_step] = step_count
  self.a3c._session.run(self.train_op, feed_dict=feed_dict)

The Worker.run() method performs the training step for the Worker, relying on pro
cess_rollouts() to issue the actual call to self.a3c._session.run() under the
hood (Example 8-29).

Example 8-29. The run() method is the top level invocation for Worker

def run(self, step_count, total_steps):
  with self.graph._get_tf("Graph").as_default():
    while step_count[0] < total_steps:
      self.a3c._session.run(self.update_local_variables)
      states, actions, rewards, values = self.create_rollout()
      self.process_rollout(states, actions, rewards, values, step_count[0])
      step_count[0] += len(actions)

Training the Policy
The A3C.fit() method brings together all the disparate pieces introduced to train the
model. The fit() method takes the responsibility for spawning Worker threads using
the Python threading library. Since each Worker takes responsibility for training
itself, the fit() method simply is responsible for periodically checkpointing the
trained model to disk. See Example 8-30.
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Example 8-30. The fit() method brings everything together and runs the A3C training
algorithm

def fit(self,
        total_steps,
        max_checkpoints_to_keep=5,
        checkpoint_interval=600,
        restore=False):
  """Train the policy.

  Parameters
  ----------
  total_steps: int
    the total number of time steps to perform on the environment, across all
    rollouts on all threads
  max_checkpoints_to_keep: int
    the maximum number of checkpoint files to keep.  When this number is
    reached, older files are deleted.
  checkpoint_interval: float
    the time interval at which to save checkpoints, measured in seconds
  restore: bool
    if True, restore the model from the most recent checkpoint and continue
    training from there.  If False, retrain the model from scratch.
  """
  with self._graph._get_tf("Graph").as_default():
    step_count = [0]
    workers = []
    threads = []
    for i in range(multiprocessing.cpu_count()):
      workers.append(Worker(self, i))
    self._session.run(tf.global_variables_initializer())
    if restore:
      self.restore()
    for worker in workers:
      thread = threading.Thread(
          name=worker.scope,
          target=lambda: worker.run(step_count, total_steps))
      threads.append(thread)
      thread.start()
    variables = tf.get_collection(
        tf.GraphKeys.GLOBAL_VARIABLES, scope="global")
    saver = tf.train.Saver(variables, max_to_keep=max_checkpoints_to_keep)
    checkpoint_index = 0
    while True:
      threads = [t for t in threads if t.isAlive()]
      if len(threads) > 0:
        threads[0].join(checkpoint_interval)
      checkpoint_index += 1
      saver.save(
          self._session, self._graph.save_file, global_step=checkpoint_index)
      if len(threads) == 0:
        break
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Challenge for the Reader
We strongly encourage you to try training tic-tac-toe models for yourself! Note that
this example is more involved than other examples in the book, and will require
greater computational power. We recommend a machine with at least a few CPU
cores. This requirement isn’t too onerous; a good laptop should suffice. Try using a
tool like htop to check that the code is indeed multithreaded. See how good a model
you can train! You should be able to beat the random baseline most of the time, but
this basic implementation won’t give you a model that always wins. We recommend
exploring the RL literature and expanding upon the base implementation to see how
well you can do.

Review
In this chapter, we introduced you to the core concepts of reinforcement learning
(RL). We walked you through some recent successes of RL methods on ATARI,
upside-down helicopter flight, and computer Go. We then taught you about the
mathematical framework of Markov decision processes. We brought it together with
a detailed case study walking you through the construction of a tic-tac-toe agent. This
algorithm uses a sophisticated training method, A3C, that makes use of multiple CPU
cores to speed up training. In Chapter 9, you’ll learn more about training models with
multiple GPUs.
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CHAPTER 9

Training Large Deep Networks

Thus far, you have seen how to train small models that can be completely trained on a
good laptop computer. All of these models can be run fruitfully on GPU-equipped
hardware with notable speed boosts (with the notable exception of reinforcement
learning models for reasons discussed in the previous chapter). However, training
larger models still requires considerable sophistication. In this chapter, we will dis‐
cuss various types of hardware that can be used to train deep networks, including
graphics processing units (GPUs), tensor processing units (TPUs), and neuromorphic
chips. We will also briefly cover the principles of distributed training for larger deep
learning models. We end the chapter with an in-depth case study, adapated from one
of the TensorFlow tutorials, demonstrating how to train a CIFAR-10 convolutional
neural network on a server with multiple GPUs. We recommend that you attempt to
try running this code yourself, but readily acknowledge that gaining access to a multi-
GPU server is trickier than finding a good laptop. Luckily, access to multi-GPU
servers on the cloud is becoming possible and is likely the best solution for industrial
users of TensorFlow seeking to train large models.

Custom Hardware for Deep Networks
As you’ve seen throughout the book, deep network training requires chains of tenso‐
rial operations performed repeatedly on minibatches of data. Tensorial operations are
commonly transformed into matrix multiplication operations by software, so rapid
training of deep networks fundamentally depends on the ability to perform matrix
multiplication operations rapidly. While CPUs are perfectly capable of implementing
matrix multiplications, the generality of CPU hardware means much effort will be
wasted on overhead unneeded for mathematical operations.
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Hardware engineers have noted this fact for years, and there exist a variety of alterna‐
tive hardware for working with deep networks. Such hardware can be broadly divi‐
ded into inference only or training and inference. Inference-only hardware cannot be
used to train new deep networks, but can be used to deploy trained models in pro‐
duction, allowing for potentially orders-of-magnitude increases in performance.
Training and inference hardware allows for models to be trained natively. Currently,
Nvidia’s GPU hardware holds a dominant position in the training and inference mar‐
ket due to significant investment in software and outreach by Nvidia’s teams, but a
number of other competitors are snapping at the GPU’s heels. In this section, we will
briefly cover some of these newer hardware alternatives. With the exception of GPUs
and CPUs, most of these alternative forms of hardware are not yet widely available, so
much of this section is forward looking.

CPU Training
Although CPU training is by no means state of the art for training deep networks, it
often does quite well for smaller models (as you’ve seen firsthand in this book). For
reinforcement learning problems, a multicore CPU machine can even outperform
GPU training.

CPUs also see wide usage for inference-only applications of deep networks. Most
companies have invested heavily in developing cloud servers built primarily on Intel
server boxes. It’s very likely that the first generation of deep networks deployed
widely (outside tech companies) will be primarily deployed into production on such
Intel servers. While such CPU-based deployment isn’t sufficient for heavy-duty
deployment of learning models, it is often plenty for first customer needs. Figure 9-1
illustrates a standard Intel CPU.
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Figure 9-1. A CPU from Intel. CPUs are still the dominant form of computer hardware
and are present in all modern laptops, desktops, servers, and phones. Most software is
written to execute on CPUs. Numerical computations (such as neural network training)
can be executed on CPUs, but might be slower than on customized hardware optimized
for numerical methods.

GPU Training
GPUs were first developed to perform computations needed by the graphics commu‐
nity. In a fortuitous coincidence, it turned out that the primitives used to define
graphics shaders could be repurposed to perform deep learning. At their mathemati‐
cal hearts, both graphics and machine learning rely critically on matrix multiplica‐
tions. Empirically, GPU matrix multiplications offer speedups of an order of
magnitude or two over CPU implementations. How do GPUs succeed at this feat?
The trick is that GPUs make use of thousands of identical threads. Clever hackers
have succeeded in decomposing matrix multiplications into massively parallel opera‐
tions that can offer dramatic speedups. Figure 9-2 illustrates a GPU architecture.

Although there are a number of GPU vendors, Nvidia currently dominates the GPU
market. Much of the power of Nvidia’s GPUs stems from its custom library CUDA
(compute unified device architecture), which offers primitives that make it easier to
write GPU programs. Nvidia offers a CUDA extension, CUDNN, for speeding up
deep networks (Figure 9-2). TensorFlow has built-in CUDNN support, so you can
make use of CUDNN to speed up your networks as well through TensorFlow.
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Figure 9-2. A GPU architecture from Nvidia. GPUs possess many more cores than CPUs
and are well suited to performing numerical linear algebra, of the sort useful in both
graphics and machine learning computations. GPUs have emerged as the dominant
hardware platform for training deep networks.
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How Important Are Transistor Sizes?

For years, the semiconductor industry has tracked progression of
chip speeds by watching transistor sizes. As transistors got smaller,
more of them could be packed onto a standard chip, and algo‐
rithms could run faster. At the time of writing of this book, Intel is
currently operating on 10-nanometer transistors, and working on
transitioning down to 7 nanometers. The rate of shrinkage of tran‐
sistor sizes has slowed significantly in recent years, since formida‐
ble heat dissipation issues arise at these scales.
Nvidia’s GPUs partially buck this trend. They tend to use transistor
sizes a generation or two behind Intel’s best, and focus on solving
architectural and software bottlenecks instead of transistor engi‐
neering. So far, Nvidia’s strategy has paid dividends and the com‐
pany has achieved market domination in the machine learning
chip space.
It’s not yet clear how far architectural and software optimizations
can go. Will GPU optimizations soon run into the same Moore’s
law roadblocks as CPUs? Or will clever architectural innovations
enable years of faster GPUs? Only time can tell.

Tensor Processing Units
The tensor processing unit (TPU) is a custom ASIC (application specific integrated
circuit) designed by Google to speed up deep learning workloads designed in Tensor‐
Flow. Unlike the GPU, the TPU is stripped down and implements only the bare mini‐
mum on-die needed to perform necessary matrix multiplications. Unlike the GPU,
the TPU is dependent on an adjoining CPU to do much of its preprocessing work for
it. This slimmed-down approach enables the TPU to achieve higher speeds than the
GPU at lower energy costs.

The first version of the TPU only allowed for inference on trained models, but the
most recent version (TPU2) allows for training of (certain) deep networks as well.
However, Google has not released many details about the TPU, and access is limited
to Google collaborators, with plans to enable TPU access via the Google cloud. Nvidia
is taking notes from the TPU, and it’s quite likely that future releases of Nvidia GPUs
will come to resemble the TPU, so downstream users will likely benefit from Google’s
innovations regardless of whether Google or Nvidia wins the consumer deep learning
market. Figure 9-3 illustrates the TPU architecture design.
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Figure 9-3. A tensor processing unit (TPU) architecture from Google. TPUs are special‐
ized chips designed by Google to speed up deep learning workloads. The TPU is a
coprocessor and not a standalone piece of hardware.

What Are ASICs?

Both CPUs and GPUs are general-purpose chips. CPUs generally
support instruction sets in assembly and are designed to be univer‐
sal. Care is taken to enable a wide range of applications. GPUs are
less universal, but still allow for a wide range of algorithms to be
implemented via languages such as CUDA.
Application specific integrated circuits (ASICs) attempt to do away
with the generality in favor of focusing on the needs of a particular
application. Historically, ASICs have only achieved limited market
penetration. The drumbeat of Moore’s law meant that general-
purpose CPUs stayed only a breath or two behind custom ASICs,
so the hardware design overhead was often not worth the effort.
This state of affairs has started shifting in the last few years. The
slowdown of transistor shrinkage has expanded ASIC usage. For
example, Bitcoin mining depends entirely on custom ASICs that
implement specialized cryptography operations.
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Field Programmable Gate Arrays
Field programmable gate arrays (FPGAs) are a type of “field programmable” ASIC.
Standard FPGAs can often be reconfigured via hardware description languages such
as Verilog to implement new ASIC designs dynamically. While FPGAs are generally
less efficient than custom ASICs, they can offer significant speed improvements over
CPU implementations. Microsoft in particular has used FPGAs to perform deep
learning inference and claims to have achieved significant speedups with their
deployment. However, the approach has not yet caught on widely outside Microsoft.

Neuromorphic Chips
The “neurons” in deep networks mathematically model the 1940s understanding of
neuronal biology. Needless to say, biological understanding of neuronal behavior has
progressed dramatically since then. For one, it’s now known that the nonlinear activa‐
tions used in deep networks aren’t accurate models of neuronal nonlinearity. The
“spike trains” is a better model (see Figure 9-4), where neurons activate in short-lived
bursts (spikes) but fall to background most of the time.

Figure 9-4. Neurons often activate in short-lived bursts called spike trains (A). Neuro‐
morphic chips attempt to model spiking behavior in computing hardware. Biological
neurons are complex entities (B), so these models are still only approximate.

Hardware engineers have spent significant effort exploring whether it’s possible to
create chip designs based on spike trains rather than on existing circuit technologies
(CPUs, GPUs, ASICs). These designers argue that today’s chip designs suffer from
fundamental power limitations; the brain consumes many orders of magnitude less
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power than computer chips and smart designs should aim to learn from the brain’s
architecture.

A number of projects have built large spike train chips attempting to expand upon
this core thesis. IBM’s TrueNorth project has succeeded in building spike train pro‐
cessors with millions of “neurons” and demonstrated that this hardware can perform
basic image recognition with significantly lower power requirements than existing
chip designs. However, despite these successes, it is not clear how to translate modern
deep architectures onto spike train chips. Without the ability to “compile” Tensor‐
Flow models onto spike train hardware, it’s unlikely that such projects will see wide‐
spread adoption in the near future.

Distributed Deep Network Training
In the previous section, we surveyed a variety of hardware options for training deep
networks. However, most organizations will likely only have access to CPUs and per‐
haps GPUs. Luckily, it’s possible to perform distributed training of deep networks,
where multiple CPUs or GPUs are used to train models faster and more effectively.
Figure 9-5 illustrates the two major paradigms for training deep networks with multi‐
ple CPUs/GPUs, namely data parallel and model parallel training. You will learn
about these methods in more detail in the next two sections.

Figure 9-5. Data parallelism and model parallelism are the two main modes of dis‐
tributed training of deep architectures. Data parallel training splits large datasets across
multiple computing nodes, while model parallel training splits large models across multi‐
ple nodes. The next two sections will cover these two methods in greater depth.
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Data Parallelism
Data parallelism is the most common type of multinode deep network training. Data
parallel models split large datasets onto different machines. Most nodes are workers
and have access to a fraction of the total data used to train the network. Each worker
node has a complete copy of the model being trained. One node is designated as the
supervisor that gathers updated weights from the workers at regular intervals and
pushes averaged versions of the weights out to worker nodes. Note that you’ve already
seen a data parallel example in this book; the A3C implementation presented in
Chapter 8 is a simple example of data parallel deep network training.

As a historical note, Google’s predecessor to TensorFlow, DistBelief, was based on
data parallel training on CPU servers. This system was capable of achieving dis‐
tributed CPU speeds (using 32–128 nodes) that matched or exceeded GPU training
speeds. Figure 9-6 illustrates the data parallel training method implemented by
DistBelief. However, the success of systems like DistBelief tends to depend on the
presence of high throughput network interconnects that can allow for rapid model
parameter sharing. Many organizations lack the network infrastructure that enables
effective multinode data parallel CPU training. However, as the A3C example demon‐
strates, it is possible to perform data parallel training on a single node, using different
CPU cores. For modern servers, it is also possible to perform data parallel training
using multiple GPUs stocked within a single server, as we will show you later.

Figure 9-6. The Downpour stochastic gradient descent (SGD) method maintains multi‐
ple replicas of the model and trains them on different subsets of a dataset. The learned
weights from these shards are periodically synced to global weights stored on a parame‐
ter server.
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Model Parallelism
The human brain provides the only known example of a generally intelligent piece of
hardware, so there have naturally been comparisons drawn between the complexity
of deep networks and the complexity of the brain. Simple arguments state the brain
has roughly 100 billion neurons; would constructing deep networks with that many
“neurons” suffice to achieve general intelligence? Unfortunately, such arguments miss
the point that biological neurons are significantly more complex than “mathematical
neurons.” As a result, simple comparisons yield little value. Nonetheless, building
larger deep networks has been a major research focus over the last few years.

The major difficulty with training very large deep networks is that GPUs tend to have
limited memory (dozens of gigabytes typically). Even with careful encodings, neural
networks with more than a few hundred million parameters are not feasible to train
on single GPUs due to memory requirements. Model parallel training algorithms
attempt to sidestep this limitation by storing large deep networks on the memories of
multiple GPUs. A few teams have successfully implemented these ideas on arrays of
GPUs to train deep networks with billions of parameters. Unfortunately, these models
have not thus far shown performance improvements justifying the extra difficulty.
For now, it seems that the increase in experimental ease from using smaller models
outweighs the gains from model parallelism.

Hardware Memory Interconnects

Enabling model parallelism requires having very high bandwidth
connections between compute nodes since each gradient update by
necessity requires internode communication. Note that while data
parallelism requires strong interconnects, sync operations need
only be performed sporadically after multiple local gradient
updates.
A few groups have used InfiniBand interconnects (InfiniBand is a
high-throughput, low-latency networking standard), or Nvidia’s
proprietary NVLINK interconnects to attempt to build such large
models. However, the results from such experiments have been
mixed thus far, and the hardware requirements for such systems
tend to be expensive.
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Data Parallel Training with Multiple GPUs on Cifar10
In this section, we will give you an in-depth walkthrough of how to train a data-
parallel convolutional network on the Cifar10 benchmark set. Cifar10 consists of
60,000 images of size 32 × 32. The Cifar10 dataset is often used to benchmark convo‐
lutional architectures. Figure 9-7 displays sample images from the Cifar10 dataset.

Figure 9-7. The Cifar10 dataset consists of 60,000 images drawn from 10 classes. Some
sample images from various classes are displayed here.

The architecture we will use in this section loads separate copies of the model archi‐
tecture on different GPUs and periodically syncs learned weights across cores, as
Figure 9-8 illustrates.
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Figure 9-8. The data parallel architecture you will train in this chapter.

Downloading and Loading the DATA
The read_cifar10() method reads and parses the Cifar10 raw data files. Example 9-1
uses tf.FixedLengthRecordReader to read raw data from the Cifar10 files.

Example 9-1. This function reads and parses data from Cifar10 raw data files

def read_cifar10(filename_queue):
  """Reads and parses examples from CIFAR10 data files.

  Recommendation: if you want N-way read parallelism, call this function
  N times.  This will give you N independent Readers reading different
  files & positions within those files, which will give better mixing of
  examples.

  Args:
    filename_queue: A queue of strings with the filenames to read from.

  Returns:
    An object representing a single example, with the following fields:
      height: number of rows in the result (32)
      width: number of columns in the result (32)
      depth: number of color channels in the result (3)
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      key: a scalar string Tensor describing the filename & record number
        for this example.
      label: an int32 Tensor with the label in the range 0..9.
      uint8image:: a [height, width, depth] uint8 Tensor with the image data
  """

  class CIFAR10Record(object):
    pass
  result = CIFAR10Record()

  # Dimensions of the images in the CIFAR-10 dataset.
  # See http://www.cs.toronto.edu/~kriz/cifar.html for a description of the
  # input format.
  label_bytes = 1  # 2 for CIFAR-100
  result.height = 32
  result.width = 32
  result.depth = 3
  image_bytes = result.height * result.width * result.depth
  # Every record consists of a label followed by the image, with a
  # fixed number of bytes for each.
  record_bytes = label_bytes + image_bytes

  # Read a record, getting filenames from the filename_queue.  No
  # header or footer in the CIFAR-10 format, so we leave header_bytes
  # and footer_bytes at their default of 0.
  reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
  result.key, value = reader.read(filename_queue)

  # Convert from a string to a vector of uint8 that is record_bytes long.
  record_bytes = tf.decode_raw(value, tf.uint8)

  # Read a record, getting filenames from the filename_queue.  No
  # header or footer in the CIFAR-10 format, so we leave header_bytes
  # and footer_bytes at their default of 0.
  reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
  result.key, value = reader.read(filename_queue)

  # Convert from a string to a vector of uint8 that is record_bytes long.
  record_bytes = tf.decode_raw(value, tf.uint8)

  # The first bytes represent the label, which we convert from uint8->int32.
  result.label = tf.cast(
      tf.strided_slice(record_bytes, [0], [label_bytes]), tf.int32)

  # The remaining bytes after the label represent the image, which we reshape
  # from [depth * height * width] to [depth, height, width].
  depth_major = tf.reshape(
      tf.strided_slice(record_bytes, [label_bytes],
                       [label_bytes + image_bytes]),
      [result.depth, result.height, result.width])
  # Convert from [depth, height, width] to [height, width, depth].
  result.uint8image = tf.transpose(depth_major, [1, 2, 0])
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  return result

Deep Dive on the Architecture
The architecture for the network is a standard multilayer convnet, similar to a more
complicated version of the LeNet5 architecture you saw in Chapter 6. The infer
ence() method constructs the architecture (Example 9-2). This convolutional archi‐
tecture follows a relatively standard architecture, with convolutional layers
interspersed with local normalization layers.

Example 9-2. This function builds the Cifar10 architecture

def inference(images):
  """Build the CIFAR10 model.

  Args:
    images: Images returned from distorted_inputs() or inputs().

  Returns:
    Logits.
  """
  # We instantiate all variables using tf.get_variable() instead of
  # tf.Variable() in order to share variables across multiple GPU training runs.
  # If we only ran this model on a single GPU, we could simplify this function
  # by replacing all instances of tf.get_variable() with tf.Variable().
  #
  # conv1
  with tf.variable_scope('conv1') as scope:
    kernel = _variable_with_weight_decay('weights',
                                         shape=[5, 5, 3, 64],
                                         stddev=5e-2,
                                         wd=0.0)
    conv = tf.nn.conv2d(images, kernel, [1, 1, 1, 1], padding='SAME')
    biases = _variable_on_cpu('biases', [64], tf.constant_initializer(0.0))
    pre_activation = tf.nn.bias_add(conv, biases)
    conv1 = tf.nn.relu(pre_activation, name=scope.name)
    _activation_summary(conv1)

  # pool1
  pool1 = tf.nn.max_pool(conv1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1],
                         padding='SAME', name='pool1')
  # norm1
  norm1 = tf.nn.lrn(pool1, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75,
                    name='norm1')

  # conv2
  with tf.variable_scope('conv2') as scope:
    kernel = _variable_with_weight_decay('weights',
                                         shape=[5, 5, 64, 64],
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                                         stddev=5e-2,
                                         wd=0.0)
    conv = tf.nn.conv2d(norm1, kernel, [1, 1, 1, 1], padding='SAME')
    biases = _variable_on_cpu('biases', [64], tf.constant_initializer(0.1))
    pre_activation = tf.nn.bias_add(conv, biases)
    conv2 = tf.nn.relu(pre_activation, name=scope.name)
    _activation_summary(conv2)

  # norm2
  norm2 = tf.nn.lrn(conv2, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75,
                    name='norm2')
  # pool2
  pool2 = tf.nn.max_pool(norm2, ksize=[1, 3, 3, 1],
                         strides=[1, 2, 2, 1], padding='SAME', name='pool2')

  # local3
  with tf.variable_scope('local3') as scope:
    # Move everything into depth so we can perform a single matrix multiply.
    reshape = tf.reshape(pool2, [FLAGS.batch_size, -1])
    dim = reshape.get_shape()[1].value
    weights = _variable_with_weight_decay('weights', shape=[dim, 384],
                                          stddev=0.04, wd=0.004)
    biases = _variable_on_cpu('biases', [384], tf.constant_initializer(0.1))
    local3 = tf.nn.relu(tf.matmul(reshape, weights) + biases, name=scope.name)
    _activation_summary(local3)

  # local4
  with tf.variable_scope('local4') as scope:
    weights = _variable_with_weight_decay('weights', shape=[384, 192],
                                          stddev=0.04, wd=0.004)
    biases = _variable_on_cpu('biases', [192], tf.constant_initializer(0.1))
    local4 = tf.nn.relu(tf.matmul(local3, weights) + biases, name=scope.name)
    _activation_summary(local4)

  # linear layer(WX + b),
  # We don't apply softmax here because
  # tf.nn.sparse_softmax_cross_entropy_with_logits accepts the unscaled logits
  # and performs the softmax internally for efficiency.
  with tf.variable_scope('softmax_linear') as scope:
    weights = _variable_with_weight_decay('weights', [192, cifar10.NUM_CLASSES],
                                          stddev=1/192.0, wd=0.0)
    biases = _variable_on_cpu('biases', [cifar10.NUM_CLASSES],
                              tf.constant_initializer(0.0))
    softmax_linear = tf.add(tf.matmul(local4, weights), biases, name=scope.name)
    _activation_summary(softmax_linear)

  return softmax_linear

Data Parallel Training with Multiple GPUs on Cifar10 | 219



Missing Object Orientation?

Contrast the model code presented in this architecture with the
policy code from the previous architecture. Note how the introduc‐
tion of the Layer object allows for dramatically simplified code
with concomitant improvements in readability. This sharp
improvement in readability is part of the reason most developers
prefer to use an object-oriented overlay on top of TensorFlow in
practice.
That said, in this chapter, we use raw TensorFlow, since making
classes like TensorGraph work with multiple GPUs would require
significant additional overhead. In general, raw TensorFlow code
offers maximum flexibility, but object orientation offers conve‐
nience. Pick the abstraction necessary for the problem at hand.

Training on Multiple GPUs
We instantiate a separate version of the model and architecture on each GPU. We
then use the CPU to average the weights for the separate GPU nodes (Example 9-3).

Example 9-3. This function trains the Cifar10 model

def train():
  """Train CIFAR10 for a number of steps."""
  with tf.Graph().as_default(), tf.device('/cpu:0'):
    # Create a variable to count the number of train() calls. This equals the
    # number of batches processed * FLAGS.num_gpus.
    global_step = tf.get_variable(
        'global_step', [],
        initializer=tf.constant_initializer(0), trainable=False)

    # Calculate the learning rate schedule.
    num_batches_per_epoch = (cifar10.NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN /
                             FLAGS.batch_size)
    decay_steps = int(num_batches_per_epoch * cifar10.NUM_EPOCHS_PER_DECAY)

    # Decay the learning rate exponentially based on the number of steps.
    lr = tf.train.exponential_decay(cifar10.INITIAL_LEARNING_RATE,
                                    global_step,
                                    decay_steps,
                                    cifar10.LEARNING_RATE_DECAY_FACTOR,
                                    staircase=True)

    # Create an optimizer that performs gradient descent.
    opt = tf.train.GradientDescentOptimizer(lr)

    # Get images and labels for CIFAR-10.
    images, labels = cifar10.distorted_inputs()
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    batch_queue = tf.contrib.slim.prefetch_queue.prefetch_queue(
          [images, labels], capacity=2 * FLAGS.num_gpus)

The code in Example 9-4 performs the essential multi-GPU training. Note how dif‐
ferent batches are dequeued for each GPU, but weight sharing via tf.get_vari
able_score().reuse_variables() enables training to happen correctly.

Example 9-4. This snippet implements multi-GPU training

    # Calculate the gradients for each model tower.
    tower_grads = []
    with tf.variable_scope(tf.get_variable_scope()):
      for i in xrange(FLAGS.num_gpus):
        with tf.device('/gpu:%d' % i):
          with tf.name_scope('%s_%d' % (cifar10.TOWER_NAME, i)) as scope:
            # Dequeues one batch for the GPU
            image_batch, label_batch = batch_queue.dequeue()
            # Calculate the loss for one tower of the CIFAR model. This function
            # constructs the entire CIFAR model but shares the variables across
            # all towers.
            loss = tower_loss(scope, image_batch, label_batch)

            # Reuse variables for the next tower.
            tf.get_variable_scope().reuse_variables()

            # Retain the summaries from the final tower.
            summaries = tf.get_collection(tf.GraphKeys.SUMMARIES, scope)

            # Calculate the gradients for the batch of data on this CIFAR tower.
            grads = opt.compute_gradients(loss)

            # Keep track of the gradients across all towers.
            tower_grads.append(grads)

    # We must calculate the mean of each gradient. Note that this is the
    # synchronization point across all towers.
    grads = average_gradients(tower_grads)

We end by applying the joint training operation and writing summary checkpoints as
needed in Example 9-5.

Example 9-5. This snippet groups updates from the various GPUs and writes summary
checkpoints as needed

    # Add a summary to track the learning rate.
    summaries.append(tf.summary.scalar('learning_rate', lr))

    # Add histograms for gradients.
    for grad, var in grads:
      if grad is not None:
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        summaries.append(tf.summary.histogram(var.op.name + '/gradients', grad))

    # Apply the gradients to adjust the shared variables.
    apply_gradient_op = opt.apply_gradients(grads, global_step=global_step)

    # Add histograms for trainable variables.
    for var in tf.trainable_variables():
      summaries.append(tf.summary.histogram(var.op.name, var))

    # Track the moving averages of all trainable variables.
    variable_averages = tf.train.ExponentialMovingAverage(
        cifar10.MOVING_AVERAGE_DECAY, global_step)
    variables_averages_op = variable_averages.apply(tf.trainable_variables())

    # Group all updates into a single train op.
    train_op = tf.group(apply_gradient_op, variables_averages_op)

    # Create a saver.
    saver = tf.train.Saver(tf.global_variables())

    # Build the summary operation from the last tower summaries.
    summary_op = tf.summary.merge(summaries)

    # Build an initialization operation to run below.
    init = tf.global_variables_initializer()

    # Start running operations on the Graph. allow_soft_placement must be set to
    # True to build towers on GPU, as some of the ops do not have GPU
    # implementations.
    sess = tf.Session(config=tf.ConfigProto(
        allow_soft_placement=True,
        log_device_placement=FLAGS.log_device_placement))
    sess.run(init)

    # Start the queue runners.
    tf.train.start_queue_runners(sess=sess)

    summary_writer = tf.summary.FileWriter(FLAGS.train_dir, sess.graph)

    for step in xrange(FLAGS.max_steps):
      start_time = time.time()
      _, loss_value = sess.run([train_op, loss])
      duration = time.time() - start_time

      assert not np.isnan(loss_value), 'Model diverged with loss = NaN'

      if step % 10 == 0:
        num_examples_per_step = FLAGS.batch_size * FLAGS.num_gpus
        examples_per_sec = num_examples_per_step / duration
        sec_per_batch = duration / FLAGS.num_gpus

        format_str = ('%s: step %d, loss = %.2f (%.1f examples/sec; %.3f '
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                      'sec/batch)')
        print (format_str % (datetime.now(), step, loss_value,
                             examples_per_sec, sec_per_batch))

      if step % 100 == 0:
        summary_str = sess.run(summary_op)
        summary_writer.add_summary(summary_str, step)
      # Save the model checkpoint periodically.

      if step % 1000 == 0 or (step + 1) == FLAGS.max_steps:
        checkpoint_path = os.path.join(FLAGS.train_dir, 'model.ckpt')
        saver.save(sess, checkpoint_path, global_step=step)

Challenge for the Reader
You now have all the pieces required to train this model in practice. Try running it on
a suitable GPU server! You may want to use tools such as nvidia-smi to ensure that
all GPUs are actually being used.

Review
In this chapter, you learned about various types of hardware commonly used to train
deep architectures. You also learned about data parallel and model parallel designs for
training deep architectures on multiple CPUs or GPUs. We ended the chapter by
walking through a case study on how to implement data parallel training of convolu‐
tional networks in TensorFlow.

In Chapter 10, we will discuss the future of deep learning and how you can use the
skills you’ve learned in this book effectively and ethically.
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CHAPTER 10

The Future of Deep Learning

In this book, we have covered the foundations of modern deep learning. We’ve dis‐
cussed a wide variety of algorithms, and delved deeply into a number of sophisticated
case studies. Readers who’ve been working through the examples covered in this book
are now well prepared to use deep learning on the job, and to start reading the large
research literature on deep learning methods.

It’s worth emphasizing how unique this skill set is. Deep learning has had tremendous
impact in the technology industry already, but deep learning is beginning to dramati‐
cally alter the state of essentially all nontech industries and to even shift the global
geopolitical balance. Your understanding of this epochal technology will open many
doors you may not have envisioned. In this final chapter, we will briefly survey some
of the important applications of deep learning outside the software industry.

We will also use this chapter to help you answer the question of how to use your new
knowledge effectively and ethically. Deep learning is a technology of such power that
it’s important for practitioners to think about how to use their skills properly. There
have already been numerous misuses of deep learning, so it behooves new practition‐
ers to pause before building sophisticated deep learning systems to ask whether the
systems they are building are ethically sound. We will attempt to provide a brief dis‐
cussion of ethical best practices, but caution the area of software ethics is complex
enough that brief discussions are unlikely to do it full justice.

Finally, we will examine where deep learning is going. Is deep learning the first step
toward building artificially general intelligences, computational entities that have the
full range of abilities of humans? There exist a wide range of expert opinions, which
we survey.
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Deep Learning Outside the Tech Industry
Technological companies such as Google, Facebook, Microsoft, and others have made
heavy investments in deep learning infrastructure. Most of these companies were
already familiar with machine learning systems, likely from past experiences with
machine learning such as with ad prediction systems or search engines. As a result,
shifting to deep learning from older machine learning systems took only a small con‐
ceptual shift. Also, the success of past machine learning applications has made tech
management quite open to the argument that deep learning could be more widely
applied within companies. For these reasons, software companies are likely to remain
the most prominent users of deep learning for the near future. If you intend to find a
job using deep learning within the next couple years, it’s likely that you will end up at
a tech company.

However, at the same time, there is a broader shift brewing in which deep learning is
beginning to infiltrate industries that historically have not used much machine learn‐
ing. Unlike simpler machine learning methods, deep learning reduces the need for
sophisticated feature preprocessing and allows for direct input of perceptual, textual,
and molecular data. As a result, a number of industries are taking note, and large-
scale efforts to overhaul these industries have already begun in many innovative start‐
ups. We will now briefly discuss some of the changes happening in nearby industries
and note that many new job opportunities for deep learning experts may become
available in the near future.

Applications Are Synergistic

You will soon learn about a number of deep learning applications
in different industries. The striking fact about these applications is
that all of them use the same fundamental deep learning algo‐
rithms. Techniques you’ve seen such as fully connected networks,
convolutional networks, recurrent networks, and reinforcement
learning are broadly applicable to any of these fields. In particular,
that means core improvements in convolutional network design
will yield fruit in pharmaceutical, agricultural, and robotics appli‐
cations. In reverse, deep learning innovations discovered by roboti‐
cists will filter back and strengthen the foundations of deep
learning. This virtuous cycle of fundamentals driving application
driving fundamentals means that deep learning is a force that’s here
to stay.

Deep Learning in the Pharmaceutical Industry
Deep learning is showing signs of taking off in a big way in drug discovery. Drug dis‐
covery is broken down into multiple phases. There’s the preclinical discovery phase,
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where the effects of potential drugs are tested indirectly in test tubes and in animals,
followed by the clinical phase where therapeutics are tested directly in human volun‐
teers. Medicine that passes both nonhuman and human testing is approved for sale to
consumers.

Researchers have begun to construct models that optimize each part of the drug dis‐
covery process. For example, molecular deep learning has been applied to problems
such as predicting the potential toxicity of putative medications and to chemical
problems involved in the synthesis and design of drug-like molecules. Other
researchers and companies are using deep convolutional networks to design new
experiments that closely track cellular behavior on massive scales to obtain stronger
understanding of novel biology. These applications have had some impact on the
pharmaceutical world, but nothing dramatic yet since it isn’t possible to build one
drug discovery model that “designs” a novel drug. However, as more data gathering
efforts continue and more biological and chemical deep learning models are
designed, this state of affairs could change drastically in the next few years.

Deep Learning in Law
The legal industry relies heavily on precedent in the legal literature to make argu‐
ments about the legality or illegality of new cases. Traditionally, legions of paralegal
researchers have been employed by large law firms to perform the needed lookups
into the legal literature. In more recent years, legal search engines have become stan‐
dard fare for most sophisticated firms.

Such search algorithms are still relatively immature, and it’s likely that deep learning
systems for neurolinguistic processing (NLP) can offer significant improvements. For
example, a number of startups are working on building deep NLP systems that offer
better querying of legal precedent. Other startups are working on predictive methods
that use machine learning to predict the outcome of litigation, while a few are even
experimenting with methods for automated generation of legal arguments.

In general, these sophisticated applications of deep models will take time to mature,
but the groundswell of legal AI innovation likely heralds a dramatic shift in the legal
profession.

Deep Learning for Robotics
The robotics industry has traditionally avoided deploying machine learning since it’s
not easy to prove that machine-learned systems are safe to deploy. This lack of safety
guarantees can become a major liability when building systems that need to be safe
for deployment around human operators.

In recent years, though, it’s become clear that deep reinforcement learning systems,
combined with low data learning techniques, can offer dramatic improvements in
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robotic manipulation tasks. Google has demonstrated that reinforcement learning
can be deployed to learn robotic object control, using a factory of robotic arms to
enable large-scale training on real robots (see Figure 10-1). It’s likely that such
enhanced learning techniques for robots will begin filtering into the larger robotics
industry over the next few years.

Figure 10-1. Google maintains a number of robotic arms that it uses to test deep rein‐
forcement learning methods for robotic control. This fundamental research will likely
find its way to the factory floor in the next few years.

Deep Learning in Agriculture
Industrial farming is already heavily mechanized, with sophisticated tractors
deployed to plant and even pick crops. Advances in robotics and in computer vision
are accelerating this trend toward automation. Convolutional networks have already
been employed to identify weeds for removal with less pesticide. Other companies
have experimented with self-driving tractors, automated fruit picking, and algorith‐
mic crop yield optimization. These are mainly research projects for the time being,
but these efforts will likely blossom into major deployments over the next decade.

Using Deep Learning Ethically
Most of this book has focused on the effective use of deep learning. We’ve covered
many techniques for building deep models that generalize well on different data
types. However, it’s also worth spending spending some time thinking about the soci‐
etal effects of the systems we build as engineers. Deep learning systems unleash a host
of potentially unsettling applications.

228 | Chapter 10: The Future of Deep Learning



For one, convolutional networks will enable the widespread deployment of face
detection technologies. China has taken a lead in real-world deployment of such sys‐
tems (Figure 10-2).

Figure 10-2. The Chinese government has broadly deployed face detection algorithms
based on convolutional networks. The ability of these systems to track individuals will
likely mean that anonymity in public settings will be a thing of the past in China.

Note that omnipresent facial detection will mean that public anonymity will belong to
the past. Any actions taken in the public sphere will be logged and tracked by corpo‐
rations and governments. This vision of the future should sound unsettling to anyone
concerned with the ethical implications of deep learning.
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The broader lesson here is that when algorithms can understand visual and percep‐
tual information, nearly all aspects of human life will fall under algorithmic sway.
This is a macroscopic trend, and it’s not clear that any one engineer will have the
power to prevent this future from coming into existence. Nonetheless, engineers
retain the ability to vote with their feet. Your skills are valuable and in demand; don’t
work for companies following unethical practices and building potentially dangerous
systems.

Bias in AI

Machine learning and deep learning provide the capabilities to
learn interesting models from data without too much effort. This
solidly mathematical process can provide the mirage of objectivity.
However, it is strongly worth noting that all sorts of bias can creep
into such analyses. Biases in the underlying data, drawn from his‐
torical, prejudiced records, can induce models to learn fundamen‐
tally unfair models. Google infamously once learned that a flawed
visual prediction model had labeled black consumers as gorillas,
likely due to biased training data that lacked adequate representa‐
tion of people of color. While this system was rapidly corrected
once brought to Google’s notice, such failures are deeply troubling
and are emblematic of more fundamental problems of exclusion in
the technology industry.
As AI is increasingly used in applications such as prisoner parole
granting and loan approval processes, it becomes increasingly
important for us to ensure that our models aren’t making racist
assumptions or learning biases already present in historical data. If
you are working on sensitive data, making predictions that may
alter the course of human lives, check twice and check thrice to
make sure that your systems aren’t falling prey to biases.

Is Artificial General Intelligence Imminent?
There are widespread discussions about whether artificial general intelligence (AGI)
will soon come into existence. Experts disagree strongly over whether AGI is worth
seriously planning for. Our view is that while there’s no harm in doing research on
“AI value alignment” and “safe reward function” design, the artificial intelligence sys‐
tems of today and the foreseeable future are unlikely to rapidly achieve sentience. As
you will have learned first hand, most deep learning systems are simply sophisticated
numerical engines, prone to many finicky numerical stability issues. It will likely take
decades of fundamental advances before general intelligence becomes an issue. At the
same time, as we’ve discussed in the previous section, artificial intelligence is already
having dramatic impact on human societies and industries. It is absolutely worth
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worrying about the effects of AI without the need to conjure superintelligent
bogeymen.

The Superintelligent Fallacy

The book Superintelligence by Nick Bostrom (Oxford University
Press) has had a profound impact upon the discourse surrounding
AI. The basic premise of the book is that an intelligence explosion
could occur when models become capable of recursively improving
themselves. In itself, the premise of the book isn’t that radical. If
AGI were to come into existence, there’s no reason to suppose that
it couldn’t succeed in improving itself rapidly.
At the same time, deep learning expert Andrew Ng has gone on the
record stating that worrying about superintelligence is like worry‐
ing about overpopulation on Mars. One day, humanity is likely to
reach Mars. When enough people land on Mars, overcrowding will
likely exist and may even be a very serious problem. None of this
changes the fact that Mars today is an empty wasteland. So too is
the state of the literature on creating generally intelligent AI!
Now, this last statement is hyperbolic. Solid progress in reinforce‐
ment learning and generative modeling holds much promise for
creating more intelligent agents. But, stressing over the possibilities
for superintelligent entities detracts from the very real challenges of
automation coming our way. Of course, this doesn’t even mention
other serious challenges facing us, such as global warming.

Where to Go from Here?
If you’ve read along carefully in this book and have spent effort working with our
code samples in the associated GitHub repo, congrats! You have now mastered the
fundamentals of practical machine learning. You will be able to train effective
machine learning systems in practice.

However, machine learning is a very rapidly evolving field. The explosive growth of
the field has meant that dozens of worthwhile new models are discovered each year.
Practicing machine learners should constantly remain on the lookout for new mod‐
els. When looking at new models, a helpful trick for evaluating their usefulness is to
try to think about how you can apply the model to problems you or your organiza‐
tion cares about. This test provides a good way to organize the large influx of models
from the research community, and will give you a tool to prioritize your learning on
the techniques that really matter to you.

As a responsible machine learner, make sure to think about what your data science
models are being used for. Ask yourself whether your work on machine learning is
being used to improve human welfare. If the answer is no, then realize that with your
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skills, you have the ability to find a job where you can use your machine learning
superpowers for good, not evil.

Finally, we hope that you’ll have lots of fun. Deep learning is an incredibly vibrant
area of human inquiry filled with exciting new discoveries, brilliant people, and the
possibility of profound impact. It’s been our pleasure to share our excitement and
passion for the field with you, and we hope you’ll pay forward our efforts by sharing
your knowledge of deep learning with the world around you.
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