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A standard result of probability theory is that if f is continuous, invertible and
[almost everywhere] differentiable, then

∀x , pf
−1(Z)(x) = pZ (f (x)) |Jf (x)| .

f

1

3

pZ

1 5pf
−1(Z)
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From this equality, if f is a parametric function such that we can compute [and
differentiate]

pZ (f (x))

and
|Jf (x)|

then, we can make the distribution of f −1(Z) fits the data by optimizing∑
n

log pf
−1(Z)(xn) =

∑
n

log
(
pZ (f (xn)) |Jf (xn)|

)
.

If we are able to do so, then we can synthesize a new X by sampling
Z ∼ N (0, 1) and computing f −1(Z).
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If Z ∼ N (0, I ),

log pZ (f (xn)) = −
1

2

(
‖f (xn)‖2 + d log 2π

)
.

And remember that if f is is a composition of functions

f = f (K) ◦ · · · ◦ f (1)

we have

Jf (x) =
K∏

k=1

Jf (k)

(
f (k−1) ◦ · · · ◦ f (1)(x)

)
,

so

log |Jf (x)| =
K∑

k=1

log
∣∣∣Jf (k)

(
f (k−1) ◦ · · · ◦ f (1)(x)

)∣∣∣ .
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If f (k) are standard layers computing f −1(z) is impossible, and computing
|Jf (x)| is intractable.

Dinh et al. (2014) introduced the coupling layers to address both issues.

The resulting Non-Volume Preserving network (NVP) is an example of a
Normalizing flow (Rezende and Mohamed, 2015).
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We use here the formalism from Dinh et al. (2016).

Given a dimension d , a Boolean vector b ∈ {0, 1}d and two mappings

s :Rd → Rd

t :Rd → Rd ,

we define a [fully connected] coupling layer as the transformation

c : Rd → Rd

x 7→ b � x + (1− b)�
(
x � exp(s(b � x)) + t(b � x)

)
where exp is component-wise, and � is the Hadamard component-wise product.
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The expression

c(x) = b � x + (1− b)�
(
x � exp(s(b � x)) + t(b � x)

)
can be understood as: forward b � x unchanged, and apply to (1− b)� x an
invertible transformation parametrized by b � x .

(0)

(1)

xb c(x)

s exp t

� +
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The consequence is that c is invertible, and if y = c(x)

x = b � y + (1− b)�
(
y − t(b � y)

)
� exp(−s(b � y)).

(0)

(1)

c(x)b x

−s exp−t

+ �

François Fleuret EE-559 – Deep learning / 9.4. Non-volume preserving networks 7 / 24



The second property of this mapping is the simplicity of its Jacobian
determinant. Since

ci (x) = bi � xi + (1− bi )�
(
xi � exp(si (b � x)) + ti (b � x)

)
we have, ∀i , j , x ,

bi = 1 ⇒ ci (x) = xi

⇒
∂ci

∂xj
= 1{i=j}

and

bi = 0 ⇒ ci (x) = xi exp(si (b � x)) + ti (b � x)

⇒
∂ci

∂xj
=
(

1{i=j} + xi
∂si (b � x)

∂xj︸ ︷︷ ︸
0 if bj=0

)
exp(si (b � x)) +

∂ti (b � x)

∂xj︸ ︷︷ ︸
0 if bj=0

⇒
∂ci

∂xj
= 1{i=j} exp(si (b � x)) + bj

(
...
)
.

Hence ∂ci
∂xj

can be non-zero only if i = j , or (1− bi )bj = 1.
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If we re-order both the rows and columns of the Jacobian to put first the
non-zeros entries of b, and then the zeros, it becomes lower triangular

Jc (x) =



1

. . . (0)
1

exp(sk (x � b))

(6= 0)
. . .

exp(sk′ (x � b))


its determinant remains unchanged, and we have

log |Jf (k) (x)| =
∑
i :bi=0

si (x � b)

=
∑
i

((1− b)� s (x � b))i .
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dim = 6

x = torch.empty(1, dim).normal_().requires_grad_()
b = torch.zeros(1, dim)
b[:,:dim//2] = 1.0

s = nn.Sequential(nn.Linear(dim, dim), nn.Tanh())
t = nn.Sequential(nn.Linear(dim, dim), nn.Tanh())

c = b * x + (1 - b) * (x * s(b * x).exp() + t(b * x))

j = torch.cat([torch.autograd.grad(c_k, x, retain_graph=True)[0] for c_k in c[0]])

print(j)

prints

tensor([[ 1.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],
[ 0.0000, 1.0000, 0.0000, 0.0000, 0.0000, 0.0000],
[ 0.0000, 0.0000, 1.0000, 0.0000, 0.0000, 0.0000],
[ 0.6073, 0.3393, 0.0282, 0.9897, 0.0000, 0.0000],
[-0.3223, -0.0081, 0.1224, 0.0000, 1.4373, 0.0000],
[ 0.0301, 0.3185, 0.0665, 0.0000, 0.0000, 1.0295]])
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To recap, with f (k), k = 1, . . . ,K coupling layers,

f = f (K) ◦ · · · ◦ f (1),

and x
(0)
n = xn and x

(k)
n = f (k)

(
x

(k−1)
n

)
, we train by maximizing

ℒ (f ) =
∑
n

(
−

1

2

(∥∥∥x(K)
n

∥∥∥2
+ d log 2π

)
+

K∑
k=1

log
∣∣∣Jf (k)

(
x

(k−1)
n

)∣∣∣) ,
with

log |Jf (k) (x)| =
∑
i

((
1− b(k)

)
� s(k)

(
x � b(k)

))
i
.

And to sample we just need to generate Z ∼ N (0, I ) and compute f −1(Z).
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A coupling layer can be implemented with

class NVPCouplingLayer(nn.Module):
def __init__(self, map_s, map_t, b):

super(NVPCouplingLayer, self).__init__()
self.map_s = map_s
self.map_t = map_t
self.b = b.clone().unsqueeze(0)

def forward(self, x_and_logdetjac):
x, logdetjac = x_and_logdetjac
s, t = self.map_s(self.b * x), self.map_t(self.b * x)
logdetjac += ((1 - self.b) * s).sum(1)
y = self.b * x + (1 - self.b) * (torch.exp(s) * x + t)
return (y, logdetjac)

def invert(self, x):
s, t = self.map_s(self.b * x), self.map_t(self.b * x)
return self.b * x + (1 - self.b) * (torch.exp(-s) * (x - t))

The forward here computes both the image of x and the update on the
accumulated determinant of the Jacobian, i.e.

(x , u) 7→ (f (x), u + |Jf (x)|) .

François Fleuret EE-559 – Deep learning / 9.4. Non-volume preserving networks 12 / 24

We can then define a complete network with one-hidden layer tanh MLPs for
the s and t mappings

class NVPNet(nn.Module):
def __init__(self, dim, hidden_dim, depth):

super(NVPNet, self).__init__()
b = torch.empty(dim)
self.layers = nn.ModuleList()
for d in range(depth):

if d%2 == 0:
i = torch.randperm(b.numel())[0:b.numel() // 2]
b.zero_()[i] = 1

else:
b = 1 - b

map_s = nn.Sequential(nn.Linear(dim, hidden_dim), nn.Tanh(),
nn.Linear(hidden_dim, dim))

map_t = nn.Sequential(nn.Linear(dim, hidden_dim), nn.Tanh(),
nn.Linear(hidden_dim, dim))

self.layers.append(NVPCouplingLayer(map_s, map_t, b))

def forward(self, x_and_logdetjac):
for m in self.layers: x_and_logdetjac = m(x_and_logdetjac)
return x_and_logdetjac

def invert(self, x):
for m in reversed(self.layers): x = m.invert(x)
return x
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And the log-proba of individual samples of a batch

def LogProba(x_and_logdetjac):
(x, logdetjac) = x_and_logdetjac
log_p = logdetjac - 0.5 * x.pow(2).add(math.log(2 * math.pi)).sum(1)
return log_p
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Training is achieved by maximizing the mean log-proba

batch_size = 100

model = NVPNet(dim = 2, hidden_dim = 2, depth = 4)
optimizer = optim.Adam(model.parameters(), lr = 1e-2)

for e in range(args.nb_epochs):

acc_loss = 0

for b in range(0, nb_train_samples, batch_size):
output = model((input[b:b+batch_size], 0))
loss = - LogProba(output).mean()
acc_loss = acc_loss + loss.item()
model.zero_grad()
loss.backward()
optimizer.step()

Finally, we can sample according to pf−1(Z) with

z = torch.empty(nb_train_samples, 2).normal_()
x = model.invert(z)
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Dinh et al. (2016) apply this approach to convolutional layers by using bs
consistent with the activation map structure, and reducing the map size while
increasing the number of channels.

Published as a conference paper at ICLR 2017
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Figure 3: Masking schemes for affine coupling layers. On the left, a spatial checkerboard pattern
mask. On the right, a channel-wise masking. The squeezing operation reduces the 4× 4× 1 tensor
(on the left) into a 2× 2× 4 tensor (on the right). Before the squeezing operation, a checkerboard
pattern is used for coupling layers while a channel-wise masking pattern is used afterward.

(see Figure 2(b)),
{
y1:d = x1:d
yd+1:D = xd+1:D � exp

(
s(x1:d)

)
+ t(x1:d)

(7)

⇔
{
x1:d = y1:d
xd+1:D =

(
yd+1:D − t(y1:d)

)
� exp

(
− s(y1:d)

)
,

(8)

meaning that sampling is as efficient as inference for this model. Note again that computing the
inverse of the coupling layer does not require computing the inverse of s or t, so these functions can
be arbitrarily complex and difficult to invert.

3.4 Masked convolution

Partitioning can be implemented using a binary mask b, and using the functional form for y,

y = b� x+ (1− b)�
(
x� exp

(
s(b� x)

)
+ t(b� x)

)
. (9)

We use two partitionings that exploit the local correlation structure of images: spatial checkerboard
patterns, and channel-wise masking (see Figure 3). The spatial checkerboard pattern mask has value
1 where the sum of spatial coordinates is odd, and 0 otherwise. The channel-wise mask b is 1 for the
first half of the channel dimensions and 0 for the second half. For the models presented here, both
s(·) and t(·) are rectified convolutional networks.

3.5 Combining coupling layers

Although coupling layers can be powerful, their forward transformation leaves some components
unchanged. This difficulty can be overcome by composing coupling layers in an alternating pattern,
such that the components that are left unchanged in one coupling layer are updated in the next (see
Figure 4(a)).

The Jacobian determinant of the resulting function remains tractable, relying on the fact that

∂(fb ◦ fa)
∂xTa

(xa) =
∂fa

∂xTa
(xa) ·

∂fb

∂xTb

(
xb = fa(xa)

)
(10)

det(A ·B) = det(A) det(B). (11)

Similarly, its inverse can be computed easily as

(fb ◦ fa)−1 = f−1a ◦ f−1b . (12)

5

(Dinh et al., 2016)
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They combine these layers by alternating masks, and branching out half of the
channels at certain points to forward them unchanged.

Published as a conference paper at ICLR 2017
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(a) In this alternating pattern, units which remain identical in one
transformation are modified in the next.
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(b) Factoring out variables.
At each step, half the vari-
ables are directly modeled as
Gaussians, while the other
half undergo further transfor-
mation.

Figure 4: Composition schemes for affine coupling layers.

3.6 Multi-scale architecture

We implement a multi-scale architecture using a squeezing operation: for each channel, it divides the
image into subsquares of shape 2× 2× c, then reshapes them into subsquares of shape 1× 1× 4c.
The squeezing operation transforms an s × s × c tensor into an s

2 × s
2 × 4c tensor (see Figure 3),

effectively trading spatial size for number of channels.

At each scale, we combine several operations into a sequence: we first apply three coupling layers
with alternating checkerboard masks, then perform a squeezing operation, and finally apply three
more coupling layers with alternating channel-wise masking. The channel-wise masking is chosen so
that the resulting partitioning is not redundant with the previous checkerboard masking (see Figure
3). For the final scale, we only apply four coupling layers with alternating checkerboard masks.

Propagating a D dimensional vector through all the coupling layers would be cumbersome, in terms
of computational and memory cost, and in terms of the number of parameters that would need to be
trained. For this reason we follow the design choice of [57] and factor out half of the dimensions at
regular intervals (see Equation 14). We can define this operation recursively (see Figure 4(b)),

h(0) = x (13)

(z(i+1), h(i+1)) = f (i+1)(h(i)) (14)

z(L) = f (L)(h(L−1)) (15)

z = (z(1), . . . , z(L)). (16)

In our experiments, we use this operation for i < L. The sequence of coupling-squeezing-coupling
operations described above is performed per layer when computing f (i) (Equation 14). At each
layer, as the spatial resolution is reduced, the number of hidden layer features in s and t is doubled.
All variables which have been factored out at different scales are concatenated to obtain the final
transformed output (Equation 16).

As a consequence, the model must Gaussianize units which are factored out at a finer scale (in an
earlier layer) before those which are factored out at a coarser scale (in a later layer). This results in the
definition of intermediary levels of representation [53, 49] corresponding to more local, fine-grained
features as shown in Appendix D.

Moreover, Gaussianizing and factoring out units in earlier layers has the practical benefit of distribut-
ing the loss function throughout the network, following the philosophy similar to guiding intermediate
layers using intermediate classifiers [40]. It also reduces significantly the amount of computation and
memory used by the model, allowing us to train larger models.

6

(Dinh et al., 2016)
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The structure for generating images consists of

• ×2 stages
• ×3 checkerboard coupling layers,
• a squeezing layer,
• ×3 channel coupling layers,
• a factor-out layer.

• ×1 stage
• ×4 checkerboard coupling layers
• a factor-out layer.

The s and t mappings get more complex in the later layers.
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A Samples

Figure 7: Samples from a model trained on Imagenet (64× 64).
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(Dinh et al., 2016)
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Figure 8: Samples from a model trained on CelebA.
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Figure 9: Samples from a model trained on LSUN (bedroom category).

15

(Dinh et al., 2016)

François Fleuret EE-559 – Deep learning / 9.4. Non-volume preserving networks 22 / 24

Figure 10: Samples from a model trained on LSUN (church outdoor category).

16

(Dinh et al., 2016)

François Fleuret EE-559 – Deep learning / 9.4. Non-volume preserving networks 23 / 24



Figure 6: Manifold generated from four examples in the dataset. Clockwise from top left: CelebA,
Imagenet (64× 64), LSUN (tower), LSUN (bedroom).

over sample quality in a limited capacity setting. As a result, our model outputs sometimes highly
improbable samples as we can notice especially on CelebA. As opposed to variational autoencoders,
the samples generated from our model look not only globally coherent but also sharp. Our hypothesis
is that as opposed to these models, real NVP does not rely on fixed form reconstruction cost like an L2

norm which tends to reward capturing low frequency components more heavily than high frequency
components. Unlike autoregressive models, sampling from our model is done very efficiently as it is
parallelized over input dimensions. On Imagenet and LSUN, our model seems to have captured well
the notion of background/foreground and lighting interactions such as luminosity and consistent light
source direction for reflectance and shadows.

We also illustrate the smooth semantically consistent meaning of our latent variables. In the latent
space, we define a manifold based on four validation examples z(1), z(2), z(3), z(4), and parametrized
by two parameters φ and φ′ by,

z = cos(φ)
(
cos(φ′)z(1) + sin(φ′)z(2)

)
+ sin(φ)

(
cos(φ′)z(3) + sin(φ′)z(4)

)
. (19)

We project the resulting manifold back into the data space by computing g(z). Results are shown
Figure 6. We observe that the model seems to have organized the latent space with a notion of meaning
that goes well beyond pixel space interpolation. More visualization are shown in the Appendix.

5 Discussion and conclusion

In this paper, we have defined a class of invertible functions with tractable Jacobian determinant,
enabling exact and tractable log-likelihood evaluation, inference, and sampling. We have shown that
this class of generative model achieves competitive performances, both in terms of sample quality
and log-likelihood. Many avenues exist to further improve the functional form of the transformations,
for instance by exploiting the latest advances in dilated convolutions [69] and residual networks
architectures [60].

This paper presented a technique bridging the gap between auto-regressive models, variational
autoencoders, and generative adversarial networks. Like auto-regressive models, it allows tractable
and exact log-likelihood evaluation for training. It allows however a much more flexible functional
form, similar to that in the generative model of variational autoencoders. This allows for fast
and exact sampling from the model distribution. Like GANs, and unlike variational autoencoders,
our technique does not require the use of a fixed form reconstruction cost, and instead defines a
cost in terms of higher level features, generating sharper images. Finally, unlike both variational
autoencoders and GANs, our technique is able to learn a semantically meaningful latent space which
is as high dimensional as the input space. This may make the algorithm particularly well suited to
semi-supervised learning tasks, as we hope to explore in future work.

9

(Dinh et al., 2016)
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