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Constructing deep generative architectures requires layers to increase the signal
dimension, the contrary of what we have done so far with feed-forward networks.

Generative processes that consist of optimizing the input rely on
back-propagation to expend the signal from a low-dimension representation to

the high-dimension signal space.

The same can be done in the forward pass with transposed convolution layers
whose forward operation corresponds to a convolution layer’s backward pass.
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Consider a 1d convolution with a kernel s
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which looks a lot like a standard convolution layer, except that the kernel
coefficients are visited in reverse order.
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This is actually the standard convolution operator from signal processing. If %
denotes this operation, we have

(x* k)] = Zxa Ki—at1-
a

Coming back to the backward pass of the convolution layer, if

Y=X®K

5] = Loy

then
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In the deep-learning field, since it corresponds to transposing the weight matrix
of the equivalent fully-connected layer, it is called a transposed convolution.
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While a convolution can be seen as a series of inner products, a transposed
convolution can be seen as a weighted sum of translated kernels.
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Convolution layer

Input
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Output
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Transposed convolution layer

Input

w
1 2 -1
2 4 -2
3 6 -3
0 0 0
Output
2 7 4
W+w-—-1
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torch.nn.functional.conv_transposeld implements the operation we just
described. It takes as input a batch of multi-channel samples, and produces a
batch of multi-channel samples.

>>> x = torch.tensor([[[0., O., 1., 0., O., O., 0.111)
>>> k = torch.tensor([[[1., 2., 3.111)

>>> F.convld(x, k)

tensor([[[ 3., 2., 1., O0., 0.111)

s o

>>> F.conv_transposeld(x, k)
tensor([[[ 0., ©O0., 1., 2., 3., 0., 0., 0., 0.111)

I e |
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The class torch.nn.ConvTransposeld embeds that operation into a
torch.nn.Module.

>>> x torch.tensor([[[ 2., 3., 0., -1.111)

>>> m = nn.ConvTransposeld(l, 1, kernel_size=3)

>>> m.bias.data.zero_()

tensor([0.])

>>> m.weight.data.copy_(torch.tensor([ 1, 2, -1 1))

tensor([[[ 1., 2., -1.111)

>>> y = m(x)

>>> y

tensor ([[[ 2., 7., 4., -4., -2., 1.1]1], grad_fn=<SqueezeBackwardl>)
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Transposed convolutions also have a dilation parameter that behaves as for
convolution and expends the kernel size without increasing the number of
parameters by making it sparse.

They also have a stride and padding parameters, however, due to the relation
between convolutions and transposed convolutions:

While for convolutions stride and padding are defined in the input

map, for transposed convolutions these parameters are defined in the
output map, and the latter modulates a cropping operation.
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Transposed convolution layer (stride = 2)

Input

w
1 2 -1
2 4 -2
s
3 6 -3
s
0 0 0
Output

2 4 1 6 -3 0

s(W-1)4+w
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The composition of a convolution and a transposed convolution of same
parameters keep the signal size [roughly] unchanged.

A convolution with a stride greater than one may ignore parts of the
signal. Its composition with the corresponding transposed convolution
generates a map of the size of the observed area.

For instance, a 1d convolution of kernel size w and stride s composed with the
transposed convolution of same parameters maintains the signal size W, only if

dgeN, W=w+sq.

w
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It has been observed that transposed convolutions may create some
grid-structure artifacts, since generated pixels are not all covered similarly.

For instance with a 4 x 4 kernel and stride 3
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An alternative is to use an analytic up-scaling, implemented in the PyTorch
functional nn.functional.interpolate.

>>> x = torch.tensor([[[[ 1., 2. 1, [ 3., 4. 111D
>>> nn.functional.interpolate(x, scale_factor = 3, mode = ’bilinear’)

tensor ([[[[1.0000, 1.0000, 1.3333, 1.6667, 2.0000, 2.0000],
[1.0000, 1.0000, 1.3333, 1.6667, 2.0000, 2.0000],
[1.6667, 1.6667, 2.0000, 2.3333, 2.6667, 2.6667],
[2.3333, 2.3333, 2.6667, 3.0000, 3.3333, 3.3333],
[3.0000, 3.0000, 3.3333, 3.6667, 4.0000, 4.0000],
[3.0000, 3.0000, 3.3333, 3.6667, 4.0000, 4.0000]1]111)

>>> nn.functional.interpolate(x, scale_factor = 3, mode = ’nearest’)

tensor ([[[[1., 1., 1., 2., 2., 2.7,
(1., 1., 1., 2., 2., 2.1,
(1., 1., 1., 2., 2., 2.7,
[3., 3., 3., 4., 4., 4.7,
[3., 3., 3., 4., 4., 4.1,
[3., 3., 3., 4., 4., 4.1111)
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Such module is usually combined with a convolution to learn local corrections
to undesirable artifacts of the up-scaling.

In practice, a transposed convolution such as

tconv = nn.ConvTranspose2d(nic, noc,
kernel_size = 3, stride = 2,
padding = 1, output_padding = 1),

y = tconv(x)

can be replaced by

conv = nn.Conv2d(nic, noc, kernel_size = 3, padding = 1)

= nn.functional.interpolate(x, scale_factor = 2, mode = ’bilinear’)
conv (u)
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