EE-559 — Deep learning

8.3. Visualizing the processing in the input

Francois Fleuret
https://fleuret.org/ee559/
Mon Feb 18 13:36:09 UTC 2019

ZelCI3a0 AL

vvvvvvvvvvvv

FEDERALE DE LAUSANNF

Occlusion sensitivity

Frangois Fleuret EE-559 — Deep learning / 8.3. Visualizing the processing in the input 1/26

https://fleuret.org/ee559/

Another approach to understanding the functioning of a network is to look at
the behavior of the network “around” an image.

For instance, we can get a simple estimate of the importance of a part of the
input image by computing the difference between:

1. the value of the maximally responding output unit on the image, and
2. the value of the same unit with that part occluded.

This is computationally intensive since it requires as many forward passes as
there are locations of the occlusion mask, ideally the number of pixels.

Francois Fleuret EE-559 — Deep learning / 8.3. Visualizing the processing in the input 2/26

Original images

Frangois Fleuret EE-559 — Deep learning / 8.3. Visualizing the processing in the input 3/26

Francois Fleuret

Francois Fleuret

Original images

Occlusion sensitivity, mask 32 x 32, stride of 2, VGG19

i

: e ,

L S
b |
-

EE-559 — Deep learning / 8.3. Visualizing the processing in the input

Saliency maps

EE-559 — Deep learning / 8.3. Visualizing the processing in the input

4/26

5/ 26

An alternative is to compute the gradient of the maximally responding output
unit with respect to the input (Erhan et al., 2009; Simonyan et al., 2013), e.g.

V|Xf(x; w)

where f is the activation of the output unit with maximum response, and | x
stresses that the gradient is computed with respect to the input x and not as
usual with respect to the parameters w.

Frangois Fleuret EE-559 — Deep learning / 8.3. Visualizing the processing in the input 6 /26

This can be implemented by specifying that we need the gradient with respect
to the input. We use here the correct unit, not the maximum response one.

Using torch.autograd.grad to compute the gradient wrt the input image
instead of torch.autograd.backward has the advantage of not changing the
model’s parameter gradients.

input = Variable(img, requires_grad = True)
output = model (input)

loss = nllloss(output, target)

grad_input, = torch.autograd.grad(loss, input)

Note that since torch.autograd.grad computes the gradient of a function
with possibly multiple inputs, the returned result is a tuple.

Frangois Fleuret EE-559 — Deep learning / 8.3. Visualizing the processing in the input 7/26

The resulting maps are quite noisy. For instance with AlexNet:

Francois Fleuret EE-559 — Deep learning / 8.3. Visualizing the processing in the input 8 /26

This is due to the local irregularity of the network’s response as a function of
the input.

S, [0z (z + 1)
g

02 04 06 08 10

Figure 2. The partial derivative of .S, with respect to the RGB val-
ues of a single pixel as a fraction of the maximum entry in the
gradient vector, max; % (t), (middle plot) as one slowly moves
away from a baseline image x (left plot) to a fixed location x + €
(right plot). € is one random sample from A/(0, 0.012). The fi-
nal image (z + ¢€) is indistinguishable to a human from the origin
image x.

(Smilkov et al., 2017)

Francois Fleuret EE-559 — Deep learning / 8.3. Visualizing the processing in the input 9/26

Smilkov et al. (2017) proposed to smooth the gradient with respect to the input
image by averaging over slightly perturbed versions of the latter.

N

~ 1

Vi (x;w) = m Z Vixfy(x + €n; w)
n=1

where €1, ..., ey are i.i.d of distribution ./ (0, 0°1), and o is a fraction of the
gap A between the maximum and the minimum of the pixel values.

Frangois Fleuret EE-559 — Deep learning / 8.3. Visualizing the processing in the input 10 / 26

A simple version of this “SmoothGrad” approach can be implemented as follows

nb_smooth = 100
std = std_fraction * (img.max() - img.min())
acc_grad = img.new_zeros(img.size())

for q in range(nb_smooth): # This should be done with mini-batches
noisy_input = img + img.new(img.size()) .normal_(0, std)
noisy_input.requires_grad_()
output = model(noisy_input)
loss = nllloss(output, target)
grad_input, = torch.autograd.grad(loss, noisy_input)
acc_grad += grad_input

acc_grad = acc_grad.abs().sum(1) # sum across channels

Frangois Fleuret EE-559 — Deep learning / 8.3. Visualizing the processing in the input 11 /26

Original images

SmoothGrad, VGG19, ¢ = %

&
ol
‘ b %
3L ¢
- i
Francois Fleuret EE-559 — Deep learning / 8.3. Visualizing the processing in the input 12 / 26

Deconvolution and guided back-propagation

Francois Fleuret EE-559 — Deep learning / 8.3. Visualizing the processing in the input 13 /26

Francois Fleuret

Francois Fleuret

Zeiler and Fergus (2014) proposed to invert the processing flow of a
convolutional network by constructing a corresponding deconvolutional
network to compute the “activating pattern” of a sample.

As they point out, the resulting processing is identical to a standard backward
pass, except when going through the RelLU layers.

EE-559 — Deep learning / 8.3. Visualizing the processing in the input

Remember that if s is one of the input to a ReLU layer, and x the
corresponding output, we have for the forward pass

x = max(0, s),

and for the backward
ot ot

s = >0y x

EE-559 — Deep learning / 8.3. Visualizing the processing in the input

14 / 26

15 / 26

Zeiler and Fergus’s deconvolution can be seen as a backward pass where we
propagate back through RelLU layers the quantity

o 0 ory 1 ot
AP ox) — 18>0} x’
instead of the usual
ot ot
s = lis>0) x

This quantity is positive for units whose output has a positive contribution to
the response, kills the others, and is not modulated by the pre-layer activation s.

Frangois Fleuret EE-559 — Deep learning / 8.3. Visualizing the processing in the input 16 / 26

Springenberg et al. (2014) improved upon the deconvolution with the guided
back-propagation, which aims at the best of both worlds: Discarding structures
which would not contribute positively to the final response, and discarding
structures which are not already present.

It back-propagates through the RelLU layers the quantity

or
Lis>oplior o) 5o

which keeps only units which have a positive contribution and activation.

Frangois Fleuret EE-559 — Deep learning / 8.3. Visualizing the processing in the input 17 / 26

So these three visualization methods differ only in the quantities propagated
through RelLU layers during the back-pass:
o back-propagation (Erhan et al., 2009; Simonyan et al., 2013):

ot
liss0y Fx’

o deconvolution (Zeiler and Fergus, 2014):

ot

1 el
{%>0} ox’

o guided back-propagation (Springenberg et al., 2014):

or
Ls>opliac oy 5

Frangois Fleuret EE-559 — Deep learning / 8.3. Visualizing the processing in the input 18 /26

These procedures can be implemented simply in PyTorch by changing the
nn.ReLU’'s backward pass.

The class nn.Module provides methods to register “hook” functions that are
called during the forward or the backward pass, and can implement a different
computation for the latter.

Frangois Fleuret EE-559 — Deep learning / 8.3. Visualizing the processing in the input 19 /26

Francois Fleuret

Francois Fleuret

For instance

>>> x = torch.tensor([1.23, -4.56 1)
>>> m = nn.ReLU()
>>> m(x)

tensor ([1.2300, 0.0000])

>>> def my_hook(m, input, output):
print(str(m) + ’> got ’ + str(input[0].size()))

>>> handle = m.register_forward_hook(my_hook)
>>> m(x)

ReLU() got torch.Size([2])

tensor ([1.2300, 0.0000])

>>> handle.remove()
>>> m(x)
tensor ([1.2300, 0.0000])

EE-559 — Deep learning / 8.3. Visualizing the processing in the input

Using hooks, we can implement the deconvolution as follows:

def relu_backward_deconv_hook(module, grad_input, grad_output):

return fn.relu(grad_output[0]),

def equip_model_deconv(model):
for m in model.modules():
if isinstance(m, nn.ReLU):

m.register_backward_hook(relu_backward_deconv_hook)

EE-559 — Deep learning / 8.3. Visualizing the processing in the input

20 / 26

21 /26

Francois Fleuret

Francois Fleuret

def grad_vi
to_tens
img = t
img = 0

model.t

ew(model, image_name) :
or = transforms.ToTensor ()

o_tensor (PIL.Image.open(image_name))
.5 + 0.5 * (img - img.mean()) / img.std()
o(device)

img = img.to(device)

input =
output
result,

result
return

model = mod
model.eval(
model = mod
equip_model
result = gr
utils.save_

The code is the same for the guided back-propagation, except the hooks

themselves:

def relu_fo
module.

def relu_ba

return fn.relu(grad_output[0]) * fn.relu(module.input_kept).sign(),

def equip_m

img.view(1l, img.size(0), img.size(l), img.size(2)).requires_grad_()

= model (input)
= torch.autograd.grad(output.max(), input)

= result / result.max() + 0.5
result

els.vggl6(pretrained = True)
)

el.features

_deconv(model)

ad_view(model, ’blacklab.jpg’)
image (result, ’blacklab-vggl6-deconv.png’)

EE-559 — Deep learning / 8.3. Visualizing the processing in the input

rward_gbackprop_hook(module, input, output):
input_kept = input[0]

ckward_gbackprop_hook(module, grad_input, grad_output):

odel_gbackprop(model) :

for m in model.modules():

if

isinstance(m, nn.RelLU):
m.register_forward_hook(relu_forward_gbackprop_hook)
m.register_backward_hook(relu_backward_gbackprop_hook)

EE-559 — Deep learning / 8.3. Visualizing the processing in the input

22 /26

23 /26

Original

-

Gradient

Deconvolution

Guided-backprop

Francois Fleuret EE-559 — Deep learning / 8.3. Visualizing the processing in the input 24 /26

Experiments with an AlexNet-like network. Original images 4+ deconvolution (or
filters) for the top-9 activations for channels picked randomly.

(Zeiler and Fergus, 2014)

Francois Fleuret EE-559 — Deep learning / 8.3. Visualizing the processing in the input 25 /26

(Zeiler and Fergus, 2014)

Francois Fleuret EE-559 — Deep learning / 8.3. Visualizing the processing in the input 26 / 26

References

D. Erhan, Y. Bengio, A. Courville, and P. Vincent. Visualizing higher-layer features of a
deep network. Technical Report 1341, Departement IRO, Université de Montréal, 2009.

K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside convolutional networks:
Visualising image classification models and saliency maps. CoRR, abs/1312.6034, 2013.

D. Smilkov, N. Thorat, B. Kim, F. Viegas, and M. Wattenberg. Smoothgrad: removing
noise by adding noise. CoRR, abs/1706.03825, 2017.

J. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller. Striving for simplicity: The all
convolutional net. CoRR, abs/1412.6806, 2014.

M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In
European Conference on Computer Vision (ECCV), 2014.

	Occlusion sensitivity
	Saliency maps
	Deconvolution and guided back-propagation

