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An alternative approach is to look at the activations themselves.

Since the convolutional layers maintain the 2d structure of the signal, the
activations can be visualized as images, where the local coding at any location
of an activation map is associated to the original content at that same location.

Given the large number of channels, we have to pick a few at random.

Since the representation is distributed across multiple channels, individual
channel have usually no clear semantic.
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A MNIST character with LeNet (leCun et al., 1998).
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An RGB image with AlexNet (Krizhevsky et al., 2012).
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ILSVRC12 with ResNet152 (He et al., 2015).
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Yosinski et al. (2015) developed analysis tools to visit a network and look at the
internal activations for a given input signal.

This allowed them in particular to find units with a clear semantic in an
AlexNet-like network trained on ImageNet.
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Figure 2. A view of the 13×13 activations of the 151st channel on
the conv5 layer of a deep neural network trained on ImageNet, a
dataset that does not contain a face class, but does contain many
images with faces. The channel responds to human and animal
faces and is robust to changes in scale, pose, lighting, and context,
which can be discerned by a user by actively changing the scene
in front of a webcam or by loading static images (e.g. of the lions)
and seeing the corresponding response of the unit. Photo of lions
via Flickr user arnolouise, licensed under CC BY-NC-SA 2.0.

• Although the last three layers are sensitive to small
input changes, much of the lower layer computation
is more robust. For example, when visualizing the

conv5 layer, one can find many invariant detectors
for faces, shoulders, text, etc. by moving oneself
or objects in front of the camera. Even though the
1000 classes contain no explicitly labeled faces or
text, the network learns to identify these concepts sim-
ply because they represent useful partial information
for making a later classification decision. One face
detector, denoted conv5151 (channel number 151 on
conv5), is shown in Figure 2 activating for human
and lion faces and in Figure 1 activating for a cat
face. Zhou et al. (2014) recently observed a similar
effect where convnets trained only to recognize dif-
ferent scene types — playgrounds, restaurant patios,
living rooms, etc. — learn object detectors (e.g. for
chairs, books, and sofas) on intermediate layers.

The reader is encouraged to try this visualization tool out
for him or herself. The code, together with pre-trained
models and images synthesized by gradient ascent, can be
downloaded at http://yosinski.com/deepvis.

3. Visualizing via Regularized Optimization
The second contribution of this work is introducing several
regularization methods to bias images found via optimiza-
tion toward more visually interpretable examples. While
each of these regularization methods helps on its own, in
combination they are even more effective. We found use-
ful combinations via a random hyperparameter search, as
discussed below.

Formally, consider an image x ∈ RC×H×W , where C = 3
color channels and the height (H) and width (W ) are both
227 pixels. When this image is presented to a neural net-
work, it causes an activation ai(x) for some unit i, where
for simplicity i is an index that runs over all units on all lay-
ers. We also define a parameterized regularization function
Rθ(x) that penalizes images in various ways.

Our network was trained on ImageNet by first subtract-
ing the per-pixel mean of examples in ImageNet before in-
putting training examples to the network. Thus, the direct
input to the network, x, can be thought of as a zero-centered
input. We may pose the optimization problem as finding an
image x∗ where

x∗ = argmax
x

(ai(x)−Rθ(x)) (1)

In practice, we use a slightly different formulation. Be-
cause we search for x∗ by starting at some x0 and taking
gradient steps, we instead define the regularization via an
operator rθ(·) that maps x to a slightly more regularized
version of itself. This latter definition is strictly more ex-
pressive, allowing regularization operators rθ that are not

5

(Yosinski et al., 2015)
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Prediction of 2d dynamics with a 18 layer residual network.

Gn Sn Rn

(Fleuret, 2016)
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(Fleuret, 2016)
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(Fleuret, 2016)
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(Fleuret, 2016)
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Layers as embeddings
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In the classification case, the network can be seen as a series of processings
aiming as disentangling classes to make them easily separable for the final
decision.

In this perspective, it makes sense to look at how the samples are distributed
spatially after each layer.
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The main issue to do so is the dimensionality of the signal. If we look at the
total number of dimensions in each layer:

• A MNIST sample in a LeNet goes from 784 to up to 18k dimensions,

• A ILSVRC12 sample in Resnet152 goes from 150k to up to 800k
dimensions.

This require a mean to project a [very] high dimension point cloud into a 2d or
3d “human-brain accessible” representation
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We have already seen PCA and k-means as two standard methods for
dimension reduction, but they poorly convey the structure of a smooth
low-dimension and non-flat manifold.

It exists a plethora of methods that aim at reflecting in low-dimension the
structure of data points in high dimension. A popular one is t-SNE developed
by van der Maaten and Hinton (2008).
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Given data-points in high dimension

D =
{
xn ∈ RD , n = 1, . . . ,N

}
the objective of data-visualization is to find a set of corresponding
low-dimension points

ℰ =
{
yn ∈ RC , n = 1, . . . ,N

}
such that the positions of the ys “reflect” that of the xs.
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The t-Distributed Stochastic Neighbor Embedding (t-SNE) proposed
by van der Maaten and Hinton (2008) optimizes with SGD the yi s so that the
distances to close neighbors of each point are preserved.

It actually matches for DKL two distance-dependent distributions: Gaussian in
the original space, and Student t-distribution in the low-dimension one.
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The scikit-learn toolbox

http://scikit-learn.org/

is built around SciPy, and provides many machine learning algorithms, in
particular embeddings, among which an implementation of t-SNE.

The only catch to use it in PyTorch is the conversions to and from numpy
arrays.

from sklearn.manifold import TSNE

# x is the array of the original high-dimension points
x_np = x.numpy()
y_np = TSNE(n_components = 2, perplexity = 50).fit_transform(x_np)
# y is the array of corresponding low-dimension points
y = torch.from_numpy(y_np)

n_components specifies the embedding dimension and perplexity states
[crudely] how many points are considered neighbors of each point.
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t-SNE unrolling of the swiss roll (with one noise dimension)
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http://scikit-learn.org/


Input Layer #1 Layer #4

Layer #7

t-SNE for LeNet on MNIST
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Input Layer #4 Layer #14

Layer #34 Layer #44 Layer #54

Layer #60 Layer #64 Layer #65

t-SNE for a home-baked resnet (no pooling, 66 layers) CIFAR10
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