EE-559 - Deep learning

8.1. Looking at parameters

François Fleuret https://fleuret.org/ee559/ Mon Feb 18 13:36:00 UTC 2019

Understanding a network's behavior

Understanding what is happening in a deep architectures after training is complex and the tools we have at our disposal are limited.

In the case of convolutional feed-forward networks, we can look at

- the network's parameters, filters as images,
- internal activations on a single sample as images,
- · distributions of activations on a population of samples,
- derivatives of the response(s) wrt the input,
- maximum-response synthetic samples,
- adversarial samples.

François Fleuret

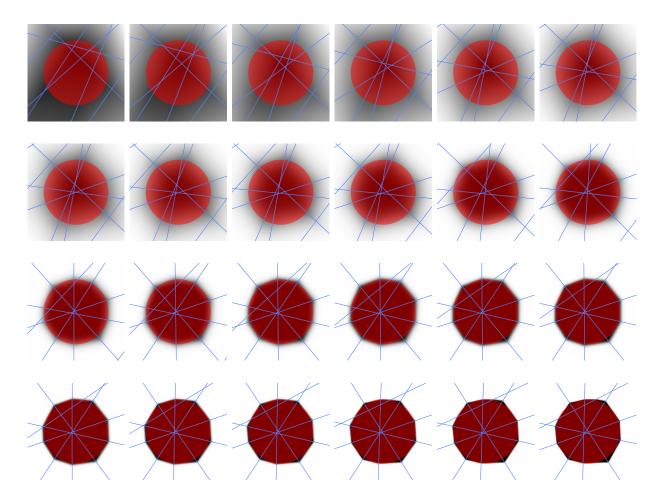
EE-559 – Deep learning / 8.1. Looking at parameters

2 / 9

Given a one-hidden layer fully connected network $\mathbb{R}^2 \to \mathbb{R}^2$

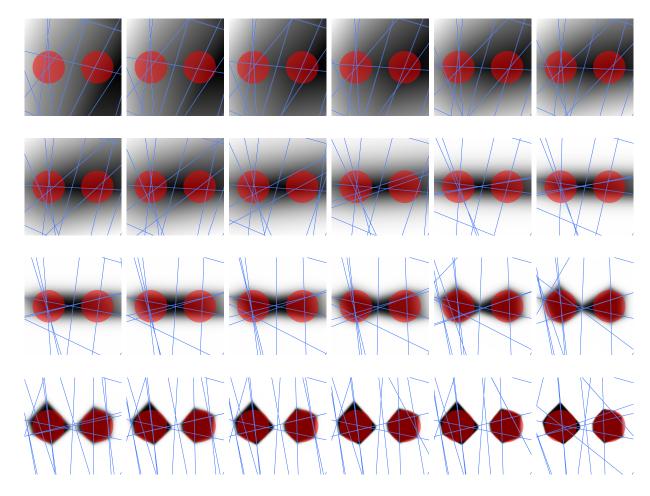
```
nb_hidden = 20
```

```
model = nn.Sequential(
    nn.Linear(2, nb_hidden),
    nn.ReLU(),
    nn.Linear(nb_hidden, 2)
)
```


we can visit the parameters (w, b) of each hidden units with

```
for k in range(model[0].weight.size(0)):
    w = model[0].weight[k]
    b = model[0].bias[k]
```

and draw for each the line


$$\{x: w \cdot x + b = 0\}.$$

During training, these separations get organized so that their combination partitions properly the signal space.

François Fleuret

 $\mathsf{EE}\xspace{-559}$ – Deep learning / 8.1. Looking at parameters

Convnet filters

François Fleuret

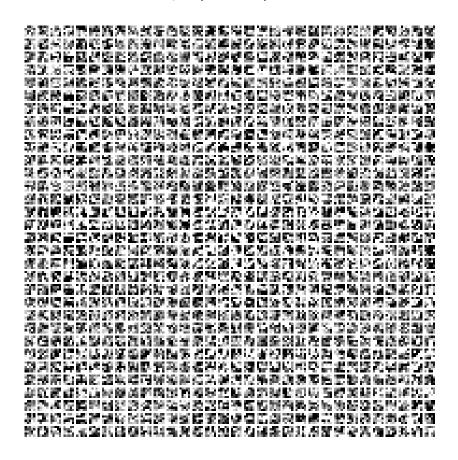
 $\mathsf{EE}\text{-}559-\mathsf{Deep}$ learning / 8.1. Looking at parameters

4 / 9

A similar analysis is complicated to conduct with real-life networks given the high dimension of the signal.

The simplest approach for convnets consists of looking at the filters as images.

While it is quite reasonable in the first layer, since the filters are indeed consistent with the image input, it is far less so in the subsequent layers.


LeNet's first convolutional layer $(1 \rightarrow 32)$, all filters

编辑性言语说到某些解释的解释的影响马口的答答说明是当正有把当里的

François Fleuret

EE-559 – Deep learning / 8.1. Looking at parameters

LeNet's second convolutional layer (32 \rightarrow 64), first 32 filters out of 64

6/9

AlexNet's first convolutional layer (3 \rightarrow 64), first 20 filters out of 64

or as RGB images

François Fleuret

 $\mathsf{EE}\text{-}559-\mathsf{Deep}$ learning / 8.1. Looking at parameters

8 / 9

AlexNet's second convolutional layer (64 \rightarrow 192). First 15 channels (out of 64) of the first 20 filters (out of 192).

85 26 2 8 S. 87 5 63 F B