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The historical approach to image segmentation was to define a measure of
similarity between pixels, and to cluster groups of similar pixels. Such
approaches account poorly for semantic content.

The deep-learning approach re-casts semantic segmentation as pixel
classification, and re-uses networks trained for image classification by making
them fully convolutional.
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Shelhamer et al. (2016) use a pre-trained classification network (e.g. VGG 16
layers) from which the final fully connected layer is removed, and the other ones
are converted to 1 X 1 convolutional filters.

They add a final 1 x 1 convolutional layers with 21 output channels (VOC 20
classes + “background”).

Since VGG16 has 5 max-pooling with 2 x 2 kernels, with proper padding, the
output is 1/2% = 1/32 the size of the input.

This map is then up-scaled with a de-convolution layer with kernel 64 x 64 and
stride 32 x 32 to get a final map of same size as the input image.

Training is achieved with full images and pixel-wise cross-entropy, starting with
a pre-trained VGG16. All layers are fine-tuned, although fixing the up-scaling
de-convolution to bilinear does as well.
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Although this Fully Connected Network (FCN) achieved almost state-of-the-art
results when published, its main weakness is the coarseness of the signal from
which the final output is produced (1/32 of the original resolution).

Shelhamer et al. proposed an additional element, that consists of using the
same prediction/up-scaling from intermediate layers of the VGG network.
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FCN-8s SDS [14] Ground Truth Image

Left column is the best network from Shelhamer et al. (2016).

Frangois Fleuret EE-559 — Deep learning / 7.4. Networks for semantic segmentation 6/8

Ground Truth Output

Results with a network trained from mask only (Shelhamer et al., 2016).
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It is noteworthy that for detection and semantic segmentation, there is an heavy
re-use of large networks trained for classification.

The models themselves, as much as the source code of the algorithm that
produced them, or the training data, are generic and re-usable assets.
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