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The historical approach to image segmentation was to define a measure of
similarity between pixels, and to cluster groups of similar pixels. Such
approaches account poorly for semantic content.

The deep-learning approach re-casts semantic segmentation as pixel
classification, and re-uses networks trained for image classification by making
them fully convolutional.
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Shelhamer et al. (2016) use a pre-trained classification network (e.g. VGG 16
layers) from which the final fully connected layer is removed, and the other ones
are converted to 1 × 1 convolutional filters.

They add a final 1 × 1 convolutional layers with 21 output channels (VOC 20
classes + “background”).

Since VGG16 has 5 max-pooling with 2 × 2 kernels, with proper padding, the
output is 1/25 = 1/32 the size of the input.

This map is then up-scaled with a de-convolution layer with kernel 64 × 64 and
stride 32 × 32 to get a final map of same size as the input image.

Training is achieved with full images and pixel-wise cross-entropy, starting with
a pre-trained VGG16. All layers are fine-tuned, although fixing the up-scaling
de-convolution to bilinear does as well.

François Fleuret EE-559 – Deep learning / 7.4. Networks for semantic segmentation 2 / 8

3d

1
2

, 64d

1
4

, 128d

1
8

, 256d

1
16

, 512d

1
32

, 512d

1
32

, 4096d

2× conv/relu

+ maxpool

2× conv/relu

+ maxpool

3× conv/relu

+ maxpool

3× conv/relu

+ maxpool

3× conv/relu

+ maxpool

2× fc-conv/relu

1
32

, 21d

21d

fc-conv

deconv

×32

François Fleuret EE-559 – Deep learning / 7.4. Networks for semantic segmentation 3 / 8



Although this Fully Connected Network (FCN) achieved almost state-of-the-art
results when published, its main weakness is the coarseness of the signal from
which the final output is produced (1/32 of the original resolution).

Shelhamer et al. proposed an additional element, that consists of using the
same prediction/up-scaling from intermediate layers of the VGG network.
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FCN-8s SDS [14] Ground Truth Image

Fig. 6. Fully convolutional networks improve performance on PASCAL.
The left column shows the output of our most accurate net, FCN-8s. The
second shows the output of the previous best method by Hariharan et al.
[14]. Notice the fine structures recovered (first row), ability to separate
closely interacting objects (second row), and robustness to occluders
(third row). The fifth and sixth rows show failure cases: the net sees
lifejackets in a boat as people and confuses human hair with a dog.

6 ANALYSIS

We examine the learning and inference of fully convolu-
tional networks. Masking experiments investigate the role of
context and shape by reducing the input to only foreground,
only background, or shape alone. Defining a “null” back-
ground model checks the necessity of learning a background
classifier for semantic segmentation. We detail an approxi-
mation between momentum and batch size to further tune
whole image learning. Finally, we measure bounds on task
accuracy for given output resolutions to show there is still
much to improve.

6.1 Cues

Given the large receptive field size of an FCN, it is natural
to wonder about the relative importance of foreground and
background pixels in the prediction. Is foreground appear-
ance sufficient for inference, or does the context influence
the output? Conversely, can a network learn to recognize a
class by its shape and context alone?

Masking To explore these issues we experiment with
masked versions of the standard PASCAL VOC segmenta-
tion challenge. We both mask input to networks trained on
normal PASCAL, and learn new networks on the masked
PASCAL. See Table 8 for masked results.

TABLE 8
The role of foreground, background, and shape cues. All scores are the

mean intersection over union metric excluding background. The
architecture and optimization are fixed to those of FCN-32s (Reference)

and only input masking differs.

train test

FG BG FG BG mean IU

Reference keep keep keep keep 84.8
Reference-FG keep keep keep mask 81.0
Reference-BG keep keep mask keep 19.8
FG-only keep mask keep mask 76.1
BG-only mask keep mask keep 37.8
Shape mask mask mask mask 29.1

Masking the foreground at inference time is catastrophic.
However, masking the foreground during learning yields
a network capable of recognizing object segments without
observing a single pixel of the labeled class. Masking the
background has little effect overall but does lead to class
confusion in certain cases. When the background is masked
during both learning and inference, the network unsurpris-
ingly achieves nearly perfect background accuracy; however
certain classes are more confused. All-in-all this suggests
that FCNs do incorporate context even though decisions are
driven by foreground pixels.

To separate the contribution of shape, we learn a net
restricted to the simple input of foreground/background
masks. The accuracy in this shape-only condition is lower
than when only the foreground is masked, suggesting that
the net is capable of learning context to boost recognition.
Nonetheless, it is surprisingly accurate. See Figure 7.

Background modeling It is standard in detection and
semantic segmentation to have a background model. This
model usually takes the same form as the models for the
classes of interest, but is supervised by negative instances.
In our experiments we have followed the same approach,
learning parameters to score all classes including back-
ground. Is this actually necessary, or do class models suffice?

To investigate, we define a net with a “null” background
model that gives a constant score of zero. Instead of train-
ing with the softmax loss, which induces competition by
normalizing across classes, we train with the sigmoid cross-
entropy loss, which independently normalizes each score.
For inference each pixel is assigned the highest scoring class.
In all other respects the experiment is identical to our FCN-
32s on PASCAL VOC. The null background net scores 1
point lower than the reference FCN-32s and a control FCN-
32s trained on all classes including background with the
sigmoid cross-entropy loss. To put this drop in perspective,
note that discarding the background model in this way
reduces the total number of parameters by less than 0.1%.
Nonetheless, this result suggests that learning a dedicated
background model for semantic segmentation is not vital.

6.2 Momentum and batch size
In comparing optimization schemes for FCNs, we find that
“heavy” online learning with high momentum trains more
accurate models in less wall clock time (see Section 4.2).
Here we detail a relationship between momentum and batch
size that motivates heavy learning.

Left column is the best network from Shelhamer et al. (2016).
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Fig. 7. FCNs learn to recognize by shape when deprived of other input
detail. From left to right: regular image (not seen by network), ground
truth, output, mask input.

By writing the updates computed by gradient accumu-
lation as a non-recursive sum, we will see that momentum
and batch size can be approximately traded off, which
suggests alternative training parameters. Let gt be the step
taken by minibatch SGD with momentum at time t,

gt = −η
k−1∑

i=0

∇θ`(xkt+i; θt−1) + pgt−1,

where `(x; θ) is the loss for example x and parameters θ,
p < 1 is the momentum, k is the batch size, and η is the
learning rate. Expanding this recurrence as an infinite sum
with geometric coefficients, we have

gt = −η
∞∑

s=0

k−1∑

i=0

ps∇θ`(xk(t−s)+i; θt−s).

In other words, each example is included in the sum with
coefficient pbj/kc, where the index j orders the examples
from most recently considered to least recently considered.
Approximating this expression by dropping the floor, we see
that learning with momentum p and batch size k appears
to be similar to learning with momentum p′ and batch
size k′ if p(1/k) = p′(1/k

′). Note that this is not an exact
equivalence: a smaller batch size results in more frequent
weight updates, and may make more learning progress for
the same number of gradient computations. For typical FCN
values of momentum 0.9 and a batch size of 20 images, an
approximately equivalent training regime uses momentum
0.9(1/20) ≈ 0.99 and a batch size of one, resulting in online

learning. In practice, we find that online learning works well
and yields better FCN models in less wall clock time.

6.3 Upper bounds on IU

FCNs achieve good performance on the mean IU segmen-
tation metric even with spatially coarse semantic predic-
tion. To better understand this metric and the limits of
this approach with respect to it, we compute approximate
upper bounds on performance with prediction at various
resolutions. We do this by downsampling ground truth
images and then upsampling back to simulate the best
results obtainable with a particular downsampling factor.
The following table gives the mean IU on a subset5 of
PASCAL 2011 val for various downsampling factors.

factor mean IU

128 50.9
64 73.3
32 86.1
16 92.8
8 96.4
4 98.5

Pixel-perfect prediction is clearly not necessary to
achieve mean IU well above state-of-the-art, and, con-
versely, mean IU is a not a good measure of fine-scale accu-
racy. The gaps between oracle and state-of-the-art accuracy
at every stride suggest that recognition and not resolution is
the bottleneck for this metric.

7 CONCLUSION

Fully convolutional networks are a rich class of models that
address many pixelwise tasks. FCNs for semantic segmen-
tation dramatically improve accuracy by transferring pre-
trained classifier weights, fusing different layer representa-
tions, and learning end-to-end on whole images. End-to-
end, pixel-to-pixel operation simultaneously simplifies and
speeds up learning and inference. All code for this paper is
open source in Caffe, and all models are freely available in
the Caffe Model Zoo. Further works have demonstrated the
generality of fully convolutional networks for a variety of
image-to-image tasks.
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Results with a network trained from mask only (Shelhamer et al., 2016).
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It is noteworthy that for detection and semantic segmentation, there is an heavy
re-use of large networks trained for classification.

The models themselves, as much as the source code of the algorithm that
produced them, or the training data, are generic and re-usable assets.
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