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The simplest strategy to move from image classification to object detection is
to classify local regions, at multiple scales and locations.

Parsing at fixed scale Final list of detections

This “sliding window" approach evaluates a classifier multiple times, and its
computational cost increases with the prediction accuracy.
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This was mitigated in overfeat (Sermanet et al., 2013) by adding a regression

part to predict the object’s bounding box.
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In the single-object case, the convolutional layers are frozen, and the

localization layers are trained with a #> loss.
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Figure 7:Examples of bounding boxes produced by the regression netwo, before being com-
bined into final predictions. The examples shown here aresatgle scale. Predictions may b
more optimal at other scales depending on the objects. Hes, of the bounding boxes which ar
initially organized as a grid, converge to a single locatiod scale. This indicates that the netwo
is very confident in the location of the object, as opposectngspread out randomly. The top le
image shows that it can also correctly identify multipledtion if several objects are present. Tt
various aspect ratios of the predicted bounding boxes shivaighe network is able to cope witt

various object poses.

(Sermanet et al., 2013)

Combining the multiple boxes is done with an ad hoc greedy algorithm.
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This architecture can be applied directly to detection by adding a class
“Background” to the object classes.

Negative samples are taken in each scene either at random or by selecting the
ones with the worst miss-classification.

Surprisingly, using class-specific localization layers did not provide better results
than having a single one shared across classes (Sermanet et al., 2013).
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Other approaches evolved from AlexNet, relying on region proposals:

e Generate thousands of proposal bounding boxes with a non-CNN
“objectness” approach such as Selective search (Uijlings et al., 2013),

o feed to an AlexNet-like network sub-images cropped and warped from the
input image (“R-CNN", Girshick et al., 2013), or from the convolutional
feature maps to share computation (“Fast R-CNN", Girshick, 2015).

These methods suffer from the cost of the region proposal computation, which
is non-convolutional and non-GPUified.

They were improved by Ren et al. (2015) in “Faster R-CNN" by replacing the
region proposal algorithm with a convolutional processing similar to Overfeat.
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The most famous algorithm from this lineage is “You Only Look Once” (YOLO,
Redmon et al. 2015).

It comes back to a classical architecture with a series of convolutional layers
followed by a few fully connected layers. It is sometime described as “one shot”
since a single information pathway suffices.

YOLOQ's network is not a pre-existing one. It uses leaky RelLU, and its
convolutional layers make use of the 1 x 1 bottleneck filters (Lin et al., 2013) to
control the memory footprint and computational cost.
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SxS grid on inut

Class probability map

(Redmon et al., 2015)
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The output corresponds to splitting the image into a regular S x S grid, with
S =7, and for each cell, to predict a 30d vector:

e B = 2 bounding boxes coordinates and confidence,

e C = 20 class probabilities, corresponding to the classes of Pascal VOC.
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So the network predicts class scores and bounding-box regressions, and although
the output comes from fully connected layers, it has a 2D structure.

It allows in particular YOLO to leverage the absolute location in the image to

improve performance (e.g. vehicles tend to be at the bottom, umbrella at the
top), which may or may not be desirable.
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During training, YOLO makes the assumption that any of the S? cells contains
at most [the center of] a single object. We define for every image, cell index
i=1,...,52 predicted box index j=1,...,B and class index c=1,...,C

lfbj is 1 if there is an object in cell i and 0 otherwise,

. lftjj is 1 if there is an object in cell i and predicted box j is the most fitting
one, 0 otherwise.

e pjc is 1if there is an object of class c in cell i, and 0 otherwise,

e Xj,Yi, wj, hj the annotated object bounding box (defined only if lf’bj =1,
and relative in location and scale to the cell),

e ¢;j IOU between the predicted box and the ground truth target.
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The training procedure first computes on each image the value of the lflj’.js and

ci.j» and then does one step to minimize
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where p; ¢, X i, Vi j, Wi j, hj j, € j are the network’s outputs.

(slightly re-written from Redmon et al. 2015)
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Training YOLO relies on many engineering choices that illustrate well how
involved is deep-learning “in practice”:

e Pre-train the 20 first convolutional layers on ImageNet classification,
e use 448 x 448 input for detection, instead of 224 x 224,

e use Leaky RelLU for all layers,

e dropout after the first fully connected layer,

e normalize bounding boxes parameters in [0, 1],

e use a quadratic loss not only for the bounding box coordinates, but also for
the confidence and the class scores,

e reduce the weight of large bounding boxes by using the square roots of the
size in the loss,

e reduce the importance of empty cells by weighting less the
confidence-related loss on them,

e use momentum 0.9, decay be — 4,

e data augmentation with scaling, translation, and HSV transformation.

A critical technical point is the design of the loss function that articulates both
a classification and a regression objectives.
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The Single Shot Multi-box Detector (SSD, Liu et al., 2015) improves upon
YOLO with a fully-convolutional architectures and multi-scale maps.
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(Liu et al., 2015)
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To summarize roughly how “one shot” deep detection can be achieved:

e networks trained on image classification capture localization information,

e regression layers can be attached to classification-trained networks,

e object localization does not have to be class-specific,

e multiple detection are estimated at each location to account for different

aspect ratios and scales.
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Object detection networks

AlexNet
(Krizhevsky et al., 2012)

Box Region proposal
regression + crop in image
Overfeat R-CNN
(Sermanet et al., 2013) (Girshick et al., 2013)
Crop in
feature maps
N4
Fast R-CNN

(Girshick, 2015)

Convolutional
region proposal
\4
Faster R-CNN
(Ren et al., 2015)

No crop

\4
YOLO
(Redmon et al., 2015)

Multi-scale
convolutions
+ multi boxes

Fully convolutional
+ multi-scale maps

SSD
(Liu et al., 2015)

EE-559 — Deep learning / 7.3. Networks for object detection

14 /15

15/ 15



References

R. Girshick. Fast R-CNN. CoRR, abs/1504.08083, 2015.

R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate
object detection and semantic segmentation. CoRR, abs/1311.2524, 2013.

A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convolutional
neural networks. In Neural Information Processing Systems (NIPS), 2012.

M. Lin, Q. Chen, and S. Yan. Network in network. CoRR, abs/1312.4400, 2013.

W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. E. Reed, C. Fu, and A. C. Berg. SSD:
single shot multibox detector. CoRR, abs/1512.02325, 2015.

J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi. You only look once: Unified,
real-time object detection. CoRR, abs/1506.02640, 2015.

S. Ren, K. He, R. B. Girshick, and J. Sun. Faster R-CNN: towards real-time object
detection with region proposal networks. CoRR, abs/1506.01497, 2015.

P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun. Overfeat:
Integrated recognition, localization and detection using convolutional networks. CoRR,
abs/1312.6229, 2013.

J. Uijlings, K. van de Sande, T. Gevers, and A. Smeulders. Selective search for object
recognition. International Journal of Computer Vision, 104(2):154-171, 2013.



