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The “Highway networks” by Srivastava et al. (2015) use the idea of gating
developed for recurrent units. It replaces a standard non-linear layer

y = H(x; Wh)
with a layer that includes a “gated” pass-through
y = T(x; Wr)H(x; Wy) + (1 — T(x; Wr))x

where T(x; Wt) € [0, 1] modulates how much the signal should be transformed.
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This technique allowed them to train networks with up to 100 layers.
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The residual networks proposed by He et al. (2015) simplify the idea and use a
building block with a pass-through identity mapping.

/

Thanks to this structure, the parameters are optimized to learn a residual, that
is the difference between the value before the block and the one needed after.
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We can implement such a network for MNIST, composed of:

e A first convolution layer convO with kernels 1 X 1 to convert the tensor
from 1 x 28 x 28 to nb_channels x28 X 28,

e a series of ResBlocks, each composed of two convolution layers and two
batch normalization layers, that maintains the tensor size unchanged,

e an average poling layer avg that produces an output of size
nb_channels X1 X 1,

e a fully connected layer fc to make the final prediction.
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sBlock(nn.Module) :
__init__(self, nb_channels, kernel_size):
super (ResBlock, self).__init__()

self.convl = nn.Conv2d(nb_channels, nb_channels, kernel_size,
padding = (kernel_size-1)//2)
self.bnl = nn.BatchNorm2d(nb_channels)

self.conv2 = nn.Conv2d(nb_channels, nb_channels, kernel_size,
padding = (kernel_size-1)//2)
self.bn2 = nn.BatchNorm2d(nb_channels)

forward(self, x):

= self.bnl(self.convil(x))
= F.relu(y)

= self.bn2(self.conv2(y))
+= X

F.relu(y)

return y
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class ResNet(nn.Module):

def

def

__init__(self, nb_channels, kernel_size, nb_blocks):
super (ResNet, self).__init__()

self.convO0 = nn.Conv2d(1, nb_channels, kernel_size = 1)

self.resblocks = nn.Sequential(
# A bit of fancy Python
* (ResBlock(nb_channels, kernel_size) for

)

self.avg = nn.AvgPool2d(kernel_size = 28)
self.fc = nn.Linear(nb_channels, 10)

forward(self, x):

= F.relu(self.conv0(x))
self.resblocks(x)
F.relu(self.avg(x))
x.view(x.size(0), -1)
= self.fc(x)

return x
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in range(nb_blocks))
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With 25 residual blocks, 16 channels, and convolution kernels of size 3 x 3, we
get the following structure, with 117,802 parameters.

ResNet (
(conv0): Conv2d(1, 16, kernel_size=(1, 1), stride=(1, 1))
(resblocks): Sequential(
(0): ResBlock(
(convl): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(bn1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(bn2) : BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
/.../
(24): ResBlock(
(convl): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(bn1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running stats=True)
(conv2): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(bn2) : BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(avg): AvgPool2d(kernel_size=28, stride=28, padding=0)
(fc): Linear(in_features=16, out_features=10, bias=True)

)
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A technical point for a more general use of a residual architecture is to deal with
convolution layers that change the activation map sizes or numbers of channels.

He et al. (2015) only consider:

e reducing the activation map size by a factor 2,

e increasing the number of channels.
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To reduce the activation map size by a factor 2, the identity pass-trough
extracts 1/4 of the activations over a regular grid (i.e. with a stride of 2),
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To increase the number of channels from C to C’, they propose to either:

o pad the original value with C’ — C zeros, which amounts to adding as
many zeroed channels, or

e use C’ convolutions with a 1 x 1 x C filter, which corresponds to applying
. / .
the same fully-connected linear model R¢ — RE’ at every location.
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Finally, He et al.’s residual networks are fully convolutional, which means they

have no fully connected layers. We will come back to this.

Their one-before last layer is a per-channel global average pooling that outputs
a 1d tensor, fed into a single fully-connected layer.
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(He et al., 2015)
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Performance on ImageNet.

error (%)
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Figure 4. Training on ImageNet. Thin curves denote training error, and bold curves denote validation error of the center crops. Left: plain

networks of 18 and 34 layers. Right: ResNets of 18 and 34 layers. In this plot, the residual networks have no extra parameter compared to
their plain counterparts.

(He et al., 2015)
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Veit et al. (2016) interpret a residual network as an ensemble, which explains in
part its stability.

E.g., with three blocks we have

x1 = x0 + f1(x0)
xo = x1 + fa(x1)
x3 = x2 + f3(x2)

hence there are four “paths”:
x3 = x2 + f3(x2)
=x1 + H(x1) + f3(x1 + f2(x1))
= I)ﬁ)lJrlﬂ(Xo)lJrlfz(Xo + f1(%0)) + B (x0 + fi(x0) + £2(x0 + fi(0))) -

Veit et al. show that (1) performance reduction correlates with the number of

paths removed from the ensemble, not with the number of blocks removed, (2)
only gradients through shallow paths matter during train.
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An extension of the residual network, is the stochastic depth network.

“Stochastic depth aims to shrink the depth of a network during training,
while keeping it unchanged during testing. We can achieve this goal by
randomly dropping entire ResBlocks during training and bypassing their
transformations through skip connections.”

(Huang et al., 2016)
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Shattered Gradient
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Balduzzi et al. (2017) points out that depth “shatters” the relation between the
input and the gradient wrt the input, and that Resnets mitigate this effect.

W/WJW | WWWW \MW\

(a) 1-layer feedforward. (b) 24-layer feedforward. (c) 50-layer resnet. (d) Brown noise. (e) White noise.

(Balduzzi et al., 2017)

Gradients
Noise

Since linear networks avoid this problem, they suggest to combine CReLU with
a Looks Linear initialization that makes the network linear initially.
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Let o(x) = max(0, x), and
¢ : RP — R?P
the CReLU non-linearity, i.e.
®(x)29-1 = 0(xq)
VXERD,qzl,...,D,{ q9 a’
®(x)2q = 0(—xq)
and a weight matrix W € RD’'X2D gych that
Vji=1,...,D',q=1,....,D, Wjaq_1=—Wpq=W,,.
So two neighboring columns of ®(x) are the o(-) and o(—-) of a column of x,
and two neighboring columns of W are a column of W and its opposite.
17 /20
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From this we get, Vi=1,...,B, j=1,...,D’:
(Vo x)) Z W D (x)

Wj 291 (x)2g—1 + Wj 24P(x)2q
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Wj,qo(xq) = Wj,q0(—Xq)

Wi, qXq

Ms 1M

I
—~ Qq
It

)

Hence .
Vx, Wo(x) = Wx

and doing this in every layer results in a linear network.
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Figure 6: CIFAR-10 test accuracy. Comparison of test ac-
curacy between networks of different depths with and with-
out LL initialization.

(Balduzzi et al., 2017)
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We can summarize the techniques which have enabled the training of very deep
architectures:

e rectifiers to prevent the gradient from vanishing during the backward pass,
e dropout to force a distributed representation,
e batch normalization to dynamically maintain the statistics of activations,

e identity pass-through to keep a structured gradient and distribute
representation,

e smart initialization to put the gradient in a good regime.
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