
EE-559 – Deep learning

6.4. Batch normalization

François Fleuret

https://fleuret.org/ee559/

Mon Feb 18 13:35:21 UTC 2019

ÉCOLE POLYTECHNIQUE
FÉDÉRALE DE LAUSANNE

We saw that maintaining proper statistics of the activations and derivatives was
a critical issue to allow the training of deep architectures.

It was the main motivation behind Xavier’s weight initialization rule.

A different approach consists of explicitly forcing the activation statistics during
the forward pass by re-normalizing them.

Batch normalization proposed by Ioffe and Szegedy (2015) was the first
method introducing this idea.

François Fleuret EE-559 – Deep learning / 6.4. Batch normalization 1 / 15

https://fleuret.org/ee559/

“Training Deep Neural Networks is complicated by the fact that the distri-
bution of each layer’s inputs changes during training, as the parameters
of the previous layers change. This slows down the training by requiring
lower learning rates and careful parameter initialization /.../”

(Ioffe and Szegedy, 2015)

Batch normalization can be done anywhere in a deep architecture, and forces
the activations’ first and second order moments, so that the following layers do
not need to adapt to their drift.

François Fleuret EE-559 – Deep learning / 6.4. Batch normalization 2 / 15

During training batch normalization shifts and rescales according to the mean
and variance estimated on the batch.

B Processing a batch jointly is unusual. Operations used in deep models
can virtually always be formalized per-sample.

During test, it simply shifts and rescales according to the empirical moments
estimated during training.

François Fleuret EE-559 – Deep learning / 6.4. Batch normalization 3 / 15

If xb ∈ RD , b = 1, . . . ,B are the samples in the batch, we first compute the
empirical per-component mean and variance on the batch

m̂batch =
1

B

B∑
b=1

xb

v̂batch =
1

B

B∑
b=1

(xb − m̂batch)2

from which we compute normalized zb ∈ RD , and outputs yb ∈ RD

∀b = 1, . . . ,B, zb =
xb − m̂batch√
v̂batch + ε

yb = γ � zb + β.

where � is the Hadamard component-wise product, and γ ∈ RD and β ∈ RD

are parameters to optimize.

François Fleuret EE-559 – Deep learning / 6.4. Batch normalization 4 / 15

During inference, batch normalization shifts and rescales independently each
component of the input x according to statistics estimated during training:

y = γ �
x − m̂
√
v̂ + ε

+ β.

Hence, during inference, batch normalization performs a component-wise
affine transformation.

B As for dropout, the model behaves differently during train and test.

François Fleuret EE-559 – Deep learning / 6.4. Batch normalization 5 / 15

As dropout, batch normalization is implemented as separate modules that
process input components separately.

>>> bn = nn.BatchNorm1d(3)
>>> with torch.no_grad():
... bn.bias.copy_(torch.tensor([2., 4., 8.]))
... bn.weight.copy_(torch.tensor([1., 2., 3.]))
...
Parameter containing:
tensor([2., 4., 8.], requires_grad=True)
Parameter containing:
tensor([1., 2., 3.], requires_grad=True)
>>> x = torch.empty(1000, 3).normal_()
>>> x = x * torch.tensor([2., 5., 10.]) + torch.tensor([-10., 25., 3.])
>>> x.mean(0)
tensor([-9.9669, 25.0213, 2.4361])
>>> x.std(0)
tensor([1.9063, 5.0764, 9.7474])
>>> y = bn(x)
>>> y.mean(0)
tensor([2.0000, 4.0000, 8.0000], grad_fn=<MeanBackward2>)
>>> y.std(0)
tensor([1.0005, 2.0010, 3.0015], grad_fn=<StdBackward1>)

François Fleuret EE-559 – Deep learning / 6.4. Batch normalization 6 / 15

As for any other module, we have to compute the derivatives of the loss ℒ with
respect to the inputs values and the parameters.

For clarity, since components are processed independently, in what follows
we consider a single dimension and do not index it.

François Fleuret EE-559 – Deep learning / 6.4. Batch normalization 7 / 15

We have

m̂batch =
1

B

B∑
b=1

xb

v̂batch =
1

B

B∑
b=1

(xb − m̂batch)2

∀b = 1, . . . ,B, zb =
xb − m̂batch√
v̂batch + ε

yb = γzb + β.

From which

∂ℒ

∂γ
=

∑
b

∂ℒ

∂yb

∂yb

∂γ
=

∑
b

∂ℒ

∂yb
zb

∂ℒ

∂β
=

∑
b

∂ℒ

∂yb

∂yb

∂β
=

∑
b

∂ℒ

∂yb
.

François Fleuret EE-559 – Deep learning / 6.4. Batch normalization 8 / 15

Since each input in the batch impacts all the outputs of the batch, the
derivative of the loss with respect to an input is quite complicated.

∀b = 1, . . . ,B,
∂ℒ

∂zb
= γ

∂ℒ

∂yb

∂ℒ

∂v̂batch
= −

1

2
(v̂batch + ε)−3/2

B∑
b=1

∂ℒ

∂zb
(xb − m̂batch)

∂ℒ

∂m̂batch
= −

1
√
v̂batch + ε

B∑
b=1

∂ℒ

∂zb

∀b = 1, . . . ,B,
∂ℒ

∂xb
=
∂ℒ

∂zb

1
√
v̂batch + ε

+
2

B

∂ℒ

∂v̂batch
(xb − m̂batch) +

1

B

∂ℒ

∂m̂batch

In standard implementation, m̂ and v̂ for test are estimated with a moving
average during train, so that it can be implemented as a module which does not
need an additional pass through the samples during training.

François Fleuret EE-559 – Deep learning / 6.4. Batch normalization 9 / 15

Results on ImageNet’s LSVRC2012:

5M 10M 15M 20M 25M 30M
0.4

0.5

0.6

0.7

0.8

Inception
BN−Baseline
BN−x5
BN−x30
BN−x5−Sigmoid
Steps to match Inception

Figure 2: Single crop validation accuracy of Inception
and its batch-normalized variants, vs. the number of
training steps.

Model Steps to 72.2% Max accuracy
Inception 31.0 · 106 72.2%

BN-Baseline 13.3 · 106 72.7%
BN-x5 2.1 · 106 73.0%
BN-x30 2.7 · 106 74.8%

BN-x5-Sigmoid 69.8%

Figure 3: For Inception and the batch-normalized
variants, the number of training steps required to
reach the maximum accuracy of Inception (72.2%),
and the maximum accuracy achieved by the net-
work.

4.2.2 Single-Network Classification

We evaluated the following networks, all trained on the
LSVRC2012 training data, and tested on the validation
data:

Inception: the network described at the beginning of
Section 4.2, trained with the initial learning rate of 0.0015.

BN-Baseline: Same as Inception with Batch Normal-
ization before each nonlinearity.

BN-x5: Inception with Batch Normalization and the
modifications in Sec. 4.2.1. The initial learning rate was
increased by a factor of 5, to 0.0075. The same learning
rate increase with original Inception caused the model pa-
rameters to reach machine infinity.

BN-x30: Like BN-x5, but with the initial learning rate
0.045 (30 times that of Inception).

BN-x5-Sigmoid: Like BN-x5, but with sigmoid non-
linearity g(t) = 1

1+exp(−x) instead of ReLU. We also at-
tempted to train the original Inception with sigmoid, but
the model remained at the accuracy equivalent to chance.

In Figure 2, we show the validation accuracy of the
networks, as a function of the number of training steps.
Inception reached the accuracy of 72.2% after31 · 106
training steps. The Figure 3 shows, for each network,
the number of training steps required to reach the same
72.2% accuracy, as well as the maximum validation accu-
racy reached by the network and the number of steps to
reach it.

By only using Batch Normalization (BN-Baseline), we
match the accuracy of Inception in less than half the num-
ber of training steps. By applying the modifications in
Sec. 4.2.1, we significantly increase the training speed of
the network.BN-x5 needs 14 times fewer steps than In-
ception to reach the 72.2% accuracy. Interestingly, in-
creasing the learning rate further (BN-x30) causes the
model to train somewhatslower initially, but allows it to
reach a higher final accuracy. It reaches 74.8% after6·106
steps, i.e. 5 times fewer steps than required by Inception
to reach 72.2%.

We also verified that the reduction in internal covari-
ate shift allows deep networks with Batch Normalization

to be trained when sigmoid is used as the nonlinearity,
despite the well-known difficulty of training such net-
works. Indeed,BN-x5-Sigmoidachieves the accuracy of
69.8%. Without Batch Normalization, Inception with sig-
moid never achieves better than1/1000 accuracy.

4.2.3 Ensemble Classification

The current reported best results on the ImageNet Large
Scale Visual Recognition Competition are reached by the
Deep Image ensemble of traditional models (Wu et al.,
2015) and the ensemble model of (He et al., 2015). The
latter reports the top-5 error of 4.94%, as evaluated by the
ILSVRC server. Here we report a top-5 validation error of
4.9%, and test error of 4.82% (according to the ILSVRC
server). This improves upon the previous best result, and
exceeds the estimated accuracy of human raters according
to (Russakovsky et al., 2014).

For our ensemble, we used 6 networks. Each was based
onBN-x30, modified via some of the following: increased
initial weights in the convolutional layers; using Dropout
(with the Dropout probability of 5% or 10%, vs. 40%
for the original Inception); and using non-convolutional,
per-activation Batch Normalization with last hidden lay-
ers of the model. Each network achieved its maximum
accuracy after about6 · 106 training steps. The ensemble
prediction was based on the arithmetic average of class
probabilities predicted by the constituent networks. The
details of ensemble and multicrop inference are similar to
(Szegedy et al., 2014).

We demonstrate in Fig. 4 that batch normalization al-
lows us to set new state-of-the-art by a healthy margin on
the ImageNet classification challenge benchmarks.

5 Conclusion

We have presented a novel mechanism for dramatically
accelerating the training of deep networks. It is based on
the premise that covariate shift, which is known to com-
plicate the training of machine learning systems, also ap-

7

(Ioffe and Szegedy, 2015)

The authors state that with batch normalization

• samples have to be shuffled carefully,

• the learning rate can be greater,

• dropout and local normalization are not necessary,

• L2 regularization influence should be reduced.

François Fleuret EE-559 – Deep learning / 6.4. Batch normalization 10 / 15

Deep MLP on a 2d “disc” toy example, with naive Gaussian weight
initialization, cross-entropy, standard SGD, η = 0.1.

def create_model(with_batchnorm, nc = 32, depth = 16):
modules = []

modules.append(nn.Linear(2, nc))
if with_batchnorm: modules.append(nn.BatchNorm1d(nc))
modules.append(nn.ReLU())

for d in range(depth):
modules.append(nn.Linear(nc, nc))
if with_batchnorm: modules.append(nn.BatchNorm1d(nc))
modules.append(nn.ReLU())

modules.append(nn.Linear(nc, 2))

return nn.Sequential(*modules)

We try different standard deviations for the weights

with torch.no_grad():
for p in model.parameters(): p.normal_(0, std)

François Fleuret EE-559 – Deep learning / 6.4. Batch normalization 11 / 15

 0

 10

 20

 30

 40

 50

 60

 70

 0.001 0.01 0.1 1 10

Te
st

 e
rr

or

Weight std

Baseline
With batch normalization

François Fleuret EE-559 – Deep learning / 6.4. Batch normalization 12 / 15

The position of batch normalization relative to the non-linearity is not clear.

“We add the BN transform immediately before the nonlinearity, by normalizing
x = Wu + b. We could have also normalized the layer inputs u, but since
u is likely the output of another nonlinearity, the shape of its distribution
is likely to change during training, and constraining its first and second
moments would not eliminate the covariate shift. In contrast, Wu + b
is more likely to have a symmetric, non-sparse distribution, that is ’more
Gaussian’ (Hyvärinen and Oja, 2000); normalizing it is likely to produce
activations with a stable distribution. ”

(Ioffe and Szegedy, 2015)

. . . Linear BN ReLU . . .

However, this argument goes both ways: activations after the non-linearity are
less “naturally normalized” and benefit more from batch normalization.
Experiments are generally in favor of this solution, which is the current default.

. . . Linear ReLU BN . . .

François Fleuret EE-559 – Deep learning / 6.4. Batch normalization 13 / 15

As for dropout, using properly batch normalization on a convolutional map
requires parameter-sharing.

The module torch.BatchNorm2d (respectively torch.BatchNorm3d) processes
samples as multi-channels 2d maps (respectively multi-channels 3d maps) and
normalizes each channel separately, with a γ and a β for each.

François Fleuret EE-559 – Deep learning / 6.4. Batch normalization 14 / 15

Another normalization in the same spirit is the layer normalization proposed
by Ba et al. (2016).

Given a single sample x ∈ RD , it normalizes the components of x , hence
normalizing activations across the layer instead of doing it across the batch

µ =
1

D

D∑
d=1

xd

σ =

√√√√ 1

D

D∑
d=1

(xd − µ)2

∀d , yd =
xd − µ
σ

Although it gives slightly worst improvements than BN it has the advantage of
behaving similarly in train and test, and processing samples individually.

François Fleuret EE-559 – Deep learning / 6.4. Batch normalization 15 / 15

References

J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer normalization. CoRR, abs/1607.06450, 2016.

A. Hyvärinen and E. Oja. Independent component analysis: Algorithms and applications.
Neural Networks, 13(4-5):411–430, 2000.

S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International Conference on Machine Learning
(ICML), 2015.

