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The use of the ReLU activation function was a great improvement compared to
the historical tanh.
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This can be explained by the derivative of ReLU itself not vanishing, and by the
resulting coding being sparse (Glorot et al., 2011).
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The steeper slope in the loss surface speeds up the training.
3.1 ReLU Nonlinearity

Figure 1: A four-layer convolutional neural
network with ReLUs (solid line) reaches a 25%
training error rate on CIFAR-10 six times faster
than an equivalent network with tanh neurons
(dashed line). The learning rates for each net-
work were chosen independently to make train-
ing as fast as possible. No regularization of
any kind was employed. The magnitude of the
effect demonstrated here varies with network
architecture, but networks with ReLUs consis-
tently learn several times faster than equivalents
with saturating neurons.

The standard way to model a neuron’s output f as
a function of its input x is with f(x) = tanh(x)
or f(x) = (1 + e−x)−1. In terms of training time
with gradient descent, these saturating nonlinearities
are much slower than the non-saturating nonlinearity
f(x) = max(0, x). Following Nair and Hinton [20],
we refer to neurons with this nonlinearity as Rectified
Linear Units (ReLUs). Deep convolutional neural net-
works with ReLUs train several times faster than their
equivalents with tanh units. This is demonstrated in
Figure 1, which shows the number of iterations re-
quired to reach 25% training error on the CIFAR-10
dataset for a particular four-layer convolutional net-
work. This plot shows that we would not have been
able to experiment with such large neural networks for
this work if we had used traditional saturating neuron
models.

We are not the first to consider alternatives to tradi-
tional neuron models in CNNs. For example, Jarrett
et al. [11] claim that the nonlinearity f(x) = |tanh(x)|
works particularly well with their type of contrast nor-
malization followed by local average pooling on the
Caltech-101 dataset. However, on this dataset the pri-
mary concern is preventing overfitting, so the effect
they are observing is different from the accelerated
ability to fit the training set which we report when us-
ing ReLUs. Faster learning has a great influence on the
performance of large models trained on large datasets.

3.2 Training on Multiple GPUs

A single GTX 580 GPU has only 3GB of memory, which limits the maximum size of the networks
that can be trained on it. It turns out that 1.2 million training examples are enough to train networks
which are too big to fit on one GPU. Therefore we spread the net across two GPUs. Current GPUs
are particularly well-suited to cross-GPU parallelization, as they are able to read from and write to
one another’s memory directly, without going through host machine memory. The parallelization
scheme that we employ essentially puts half of the kernels (or neurons) on each GPU, with one
additional trick: the GPUs communicate only in certain layers. This means that, for example, the
kernels of layer 3 take input from all kernel maps in layer 2. However, kernels in layer 4 take input
only from those kernel maps in layer 3 which reside on the same GPU. Choosing the pattern of
connectivity is a problem for cross-validation, but this allows us to precisely tune the amount of
communication until it is an acceptable fraction of the amount of computation.

The resultant architecture is somewhat similar to that of the “columnar” CNN employed by Cireşan
et al. [5], except that our columns are not independent (see Figure 2). This scheme reduces our top-1
and top-5 error rates by 1.7% and 1.2%, respectively, as compared with a net with half as many
kernels in each convolutional layer trained on one GPU. The two-GPU net takes slightly less time
to train than the one-GPU net2.

2The one-GPU net actually has the same number of kernels as the two-GPU net in the final convolutional
layer. This is because most of the net’s parameters are in the first fully-connected layer, which takes the last
convolutional layer as input. So to make the two nets have approximately the same number of parameters, we
did not halve the size of the final convolutional layer (nor the fully-conneced layers which follow). Therefore
this comparison is biased in favor of the one-GPU net, since it is bigger than “half the size” of the two-GPU
net.
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(Krizhevsky et al., 2012)
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A first variant of ReLU is Leaky-ReLU (Maas et al., 2013)

R→ R
x 7→ max(ax , x)

with 0 ≤ a < 1 usually small.
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The parameter a can be optimized during training (PReLU, He et al., 2015), or
randomized for every sample (RReLU, Xu et al., 2015).
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The “maxout” layer proposed by Goodfellow et al. (2013) takes the max of
several linear units. This is not an activation function in the usual sense, since
it has trainable parameters.

h : RD → RM

x 7→
(

K
max
j=1

xTW1,j + b1,j , . . . ,
K

max
j=1

xTWM,j + bM,j

)

It can in particular encode ReLU and absolute value, but can also approximate
any convex function.
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Clevert et al. (2015) proposed the exponential linear unit (ELU), with an
exponential saturation

x 7→
{

x if x ≥ 0
α (ex − 1) otherwise.
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Another variant is the “Concatenated Rectified Linear Unit” (CReLU) proposed
by Shang et al. (2016):

R→ R2

x 7→ (max(0, x),max(0,−x)),

which doubles the number of activations but keeps the norm of the signal intact
during both the forward and the backward passes.
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