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For image classification for instance, there has been a trend toward deeper
architectures to improve performance.

Network Nb. layers

LeNet5 (leCun et al., 1998) 5

AlexNet (Krizhevsky et al., 2012) 8

VGG (Simonyan and Zisserman, 2014) 11–19

GoogleLeNet (Szegedy et al., 2015) 22

Inception v4 (Szegedy et al., 2016) 76

Resnet (He et al., 2015) 34–152

Resnet (He et al., 2016) 1001

Resnet (Huang et al., 2016) 1202

“Notably, we did not depart from the classical ConvNet architecture of LeCun
et al. (1989), but improved it by substantially increasing the depth.”

(Simonyan and Zisserman, 2014)

A theoretical analysis provides an intuition of how a network’s output
“irregularity” grows linearly with its width and exponentially with its depth.
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Let ℱ be the set of piece-wise linear mappings on [0, 1], and ∀f ∈ ℱ , let κ(f )
be the minimum number of linear pieces needed to represent f .

Let σ be the ReLU function

σ : R→ R
x 7→ max(0, x).

If we compose σ and f ∈ ℱ , any linear piece that does not cross 0 remains a
single piece or disappears, and one that does cross 0 breaks into two, hence

∀f ∈ ℱ , κ(σ(f )) ≤ 2κ(f ) ,

and we also have

∀(f , g) ∈ ℱ 2, κ(f + g) ≤ κ(f ) + κ(g) .
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Consider a MLP with ReLU, a single input unit, and a single output unit.
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and we get the following bound for any ReLU MLP

κ(y) ≤ 2D
D∏

d=1

Wd .
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Although this seems quite a pessimist bound, we can hand-design a network
that [almost] reaches it:
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So for any D, there is a network with D hidden layers and 2D hidden units
which computes an f : [0, 1]→ [0, 1] of period 1/2D

. . .

1
2D

. . .
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Given g ∈ ℱ , it crosses 1
2

at most κ(g) times, which means that on at least

2D − κ(g) segments of length 1/2D , it is on one side of 1
2

, and
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And we multiply f by 16 to get our final result.
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So, considering ReLU MLPs with a single input/output:

There exists a network f with D∗ layers, and 2D∗ internal units, such that, for
any network g with D layers of sizes {W1, . . . ,WD}:

‖f − g‖1 ≥ 1−
2D

2D∗

D∏
d=1

Wd .

In particular, with g a single hidden layer network

‖f − g‖1 ≥ 1− 2
W1

2D∗ .

To approximate f properly, the width W1 of g ’s hidden layer has to increase
exponentially with f ’s depth D∗.

This is a simplified variant of results by Telgarsky (2015, 2016).
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So we have good reasons to increase depth, but we saw that an important issue
then is to control the amplitude of the gradient, which is tightly related to
controlling activations.

In particular we have to ensure that

• the gradient does not “vanish” (Bengio et al., 1994; Hochreiter et al.,
2001),

• gradient amplitude is homogeneous so that all parts of the network train at
the same rate (Glorot and Bengio, 2010),

• the gradient does not vary too unpredictably when the weights
change (Balduzzi et al., 2017).
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Modern techniques change the functional itself instead of trying to improve
training “from the outside” through penalty terms or better optimizers.

Our main concern is to make the gradient descent work, even at the cost of
engineering substantially the class of functions.

An additional issue for training very large architectures is the computational
cost, which often turns out to be the main practical problem.
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