Francois Fleuret

EE-559 — Deep learning

5.4. L, and L; penalties

Francois Fleuret
https://fleuret.org/ee559/
Mon Feb 18 13:34:52 UTC 2019

! )
ZelCI3N A

wwwwwwwwwwwww

FEDERALE DE LAUSANNF

We have motivated the use of a loss with a Bayesian formulation combining the
probability of the data given the model and the probability of the model

log uw(w | 2 =d) = log pg(d | W = w) + log uw (w) — log Z.

If uy is a Gaussian density with a covariance matrix proportional to the
identity, the log-prior log pyy(w) results in a quadratic penalty

2
Allwllz.
Since this penalty is convex, its sum with a convex functional is convex.

This is called the L, regularization, or “weight decay” in the artificial neural
network community.

EE-559 — Deep learning / 5.4. Ly and Ly penalties

1/10


https://fleuret.org/ee559/

Francois Fleuret

Increasing the A\ parameter moves the optimal closer to 0, and away from the
optimal for the loss alone.

Since the derivative of ||x||3 is zero at zero, the optimal will never move there if
it was not already there.

(x — 1)2 + %(X— 1)3 + x2

x—1)2 4+ L(x—1)3 +3x2
6

(x —1)2 + %(X— 1)3

EE-559 — Deep learning / 5.4. Ly and Ly penalties

(x — 1)2 + %(x— 1)3 4 2x2

(x —1)2 + %(X— 1)3 + 4x?

Convnet trained on MNIST with 1,000 samples and a L, penalty.

Francois Fleuret

Error
A Train Test
0.000 0.000 0.064
0.001 0.000 0.063
0.002 0.000 0.064
0.004 0.005 0.065
0.010 0.022 0.075
0.020 0.048 0.101
A = 0.000

0.8

Pw <x)

0.2+

0.6

0.4+

output = model(train_input[b:b+batch_size])

loss = criterion(output, train_target[b:b+batch_size])

for p in model.parameters():

loss += lambda_12 * p.pow(2).sum()

optimizer.zero_grad()
loss.backward()
optimizer.step()

Pw<X)

L
-0.2 -0.1 0 0.1 0.2

A =0.001

P(w <x)

L L L L
-0.2 -0.1 0.1 0.2

A = 0.010

EE-559 — Deep learning / 5.4. Ly and Ly penalties

P(w <)

08

06 -

04

02

08 -

06

0.4

02

-0.2

-0.1 0

A = 0.002

0.2

L
-0.2

L L
-0.1 0

A = 0.020

L
0.1

L
0.2

2/10

3/10



We can apply the exact same scheme with a Laplace prior

p(w) = (2t1))D exp (_ ”V2”1>

1 1 ZD:| |
= —sep|—=> |wil],
(2b) b

which results in a penalty term of the form

Allwllz.

This is the Ly regularization. As for the Ly, this penalty is convex, and its sum
with a convex functional is convex.

Francois Fleuret EE-559 — Deep learning / 5.4. Ly and Ly penalties 4/10

An important property of the L; penalty is that, if &£ is convex, and

w* = argmin Z(w) + \||w||1

then

97 (w*)

vd,
aWd

<A = wy;=0.

In practice it means that this penalty pushes some of the variables to zero, but
contrary to the L, penalty they actually move and remain there.

The A\ parameter controls the sparsity of the solution.

Francois Fleuret EE-559 — Deep learning / 5.4. Ly and Ly penalties 5/ 10



Francois Fleuret

Francois Fleuret

With the L; penalty, the update rule becomes
Wer1 = We — N8t — Asign(wy),

where sign is applied per-component. This is almost identical to

r_
Wi = Wt — 18t

Wep1 = wy — Asign(wy).

This update may overshoot, and result in a component of w/ strictly on one
side of 0, while the same component in w;4 is strictly on the other.

While this is not a problem in principle, since w; will fluctuate around zero, it
can be an issue if the zeroed weights are handled in a specific manner (e.g.
sparse coding to reduce memory footprint or computation).

EE-559 — Deep learning / 5.4. Ly and Ly penalties

The proximal operator takes care of preventing parameters from ‘“crossing
zero”, by adapting A when it is too large

r_
Wi = Wt — 18t

Wes1 = w] — min(\, [w/]) © sign(wy).

where min is component-wise, and ® is the Hadamard component-wise product.

EE-559 — Deep learning / 5.4. Ly and Ly penalties

6/ 10

7/10



Increasing the A\ parameter moves the optimal closer to 0, and away from the
optimal for the loss without penalty.

Francois Fleuret

(x —1)2 4+ %(X— 1)3

(=12 + $0x = 1)° + x| (x =12+ 10x— 1)° + Ix]

(x =12+ E(x—1)* + 3Ix

(x = 1)% + §(x = 1)* + 2|x|

EE-559 — Deep learning / 5.4. Ly and Ly penalties 8/ 10

Convnet trained on MNIST with 1,000 samples and a L; penalty.

Error

A Train Test
0.00000 0.000 0.064
0.00001 0.000 0.063
0.00002 0.000 0.067
0.00005 0.004 0.068
0.00010 0.087 0.128
0.00020 0.057 0.101
0.00050 0.496 0.516
A = 0.00000

A = 0.0001

Francois Fleuret

output = model(train_input[b:b+batch_size])
loss = criterion(output, train_target[b:b+batch_size])

optimizer.zero_grad()
loss.backward()
optimizer.step()

with torch.no_grad():
for p in model.parameters():
p.sub_(p.sign() * p.abs().clamp(max = lambda_11))

)
)

Pw <)
Pw <)

X = 0.00002 A = 0.00005

)
)

Pw <
P(w <

= 0.0002 A= 0.0005

EE-559 — Deep learning / 5.4. Ly and Ly penalties 9/ 10



Penalties on the weights may be useful when dealing with small models and
small data-sets and are still standard when data is scarce.

While they have a limited impact for large-scale deep learning, they may still
provide the little push needed to beat baselines.

Francois Fleuret EE-559 — Deep learning / 5.4. Ly and Ly penalties 10 / 10



