
EE-559 – Deep learning

5.2. Stochastic gradient descent

François Fleuret

https://fleuret.org/ee559/

Mon Feb 18 13:34:40 UTC 2019

ÉCOLE POLYTECHNIQUE
FÉDÉRALE DE LAUSANNE

To minimize a loss of the form

ℒ (w) =
N∑

n=1

l(f (xn;w), yn)︸ ︷︷ ︸
ln(w)

the standard gradient-descent algorithm update has the form

wt+1 = wt − η∇ℒ (wt).

François Fleuret EE-559 – Deep learning / 5.2. Stochastic gradient descent 1 / 17

https://fleuret.org/ee559/

A straight-forward implementation would be

for e in range(nb_epochs):
output = model(train_input)
loss = criterion(output, train_target)

model.zero_grad()
loss.backward()
with torch.no_grad():

for p in model.parameters(): p -= eta * p.grad

However, the memory footprint is proportional to the full set size. This can be
mitigated by summing the gradient through “mini-batches”:

for e in range(nb_epochs):
model.zero_grad()

for b in range(0, train_input.size(0), batch_size):
output = model(train_input[b:b+batch_size])
loss = criterion(output, train_target[b:b+batch_size])
loss.backward()

with torch.no_grad():
for p in model.parameters(): p -= eta * p.grad

François Fleuret EE-559 – Deep learning / 5.2. Stochastic gradient descent 2 / 17

While it makes sense in principle to compute the gradient exactly, in practice:

• It takes time to compute (more exactly all our time!).

• It is an empirical estimation of an hidden quantity, and any partial sum is
also an unbiased estimate, although of greater variance.

• It is computed incrementally

∇ℒ (wt) =
N∑

n=1

∇ln(wt),

and when we compute ln, we have already computed l1, . . . , ln−1, and
we could have a better estimate of w∗ than wt .

François Fleuret EE-559 – Deep learning / 5.2. Stochastic gradient descent 3 / 17

To illustrate how partial sums are good estimates, consider an ideal case where
the training set is the same set of M � N samples replicated K times. Then

ℒ (w) =
N∑

n=1

l(f (xn;w), yn)

=
K∑

k=1

M∑
m=1

l(f (xm;w), ym)

= K
M∑

m=1

l(f (xm;w), ym).

So instead of summing over all the samples and moving by η, we can visit only
M = N/K samples and move by Kη, which would cut the computation by K .

Although this is an ideal case, there is redundancy in practice that results in
similar behaviors.

François Fleuret EE-559 – Deep learning / 5.2. Stochastic gradient descent 4 / 17

The stochastic gradient descent consists of updating the parameters wt after
every sample

wt+1 = wt − η∇ln(t)(wt).

However this does not benefit from the speed-up of batch-processing.

The mini-batch stochastic gradient descent is the standard procedure for deep
learning. It consists of visiting the samples in “mini-batches”, each of a few
tens of samples, and updating the parameters each time.

wt+1 = wt − η
B∑

b=1

∇ln(t,b)(wt).

The order n(t, b) to visit the samples can either be sequential, or uniform
sampling, usually without replacement.

The stochastic behavior of this procedure helps evade local minima.

François Fleuret EE-559 – Deep learning / 5.2. Stochastic gradient descent 5 / 17

So our exact gradient descent with mini-batches

for e in range(nb_epochs):
model.zero_grad()

for b in range(0, train_input.size(0), batch_size):
output = model(train_input[b:b+batch_size])
loss = criterion(output, train_target[b:b+batch_size])
loss.backward()

with torch.no_grad():
for p in model.parameters(): p -= eta * p.grad

can be modified into the mini-batch stochastic gradient descent as follows:

for e in range(nb_epochs):
for b in range(0, train_input.size(0), batch_size):

output = model(train_input[b:b+batch_size])
loss = criterion(output, train_target[b:b+batch_size])

model.zero_grad()
loss.backward()
with torch.no_grad():

for p in model.parameters(): p -= eta * p.grad

François Fleuret EE-559 – Deep learning / 5.2. Stochastic gradient descent 6 / 17

101

102

103

 0 60000 120000 180000 240000 300000

B
e

st
 t

ra
in

 lo
ss

Nb. samples seen

Mini-batch size and loss reduction (MNIST)

60k
10k

1k
100

10
1

François Fleuret EE-559 – Deep learning / 5.2. Stochastic gradient descent 7 / 17

Limitation of the gradient descent

François Fleuret EE-559 – Deep learning / 5.2. Stochastic gradient descent 8 / 17

The gradient descent method makes a strong assumption about the magnitude
of the “local curvature” to fix the step size, and about its isotropy so that the
same step size makes sense in all directions.

-3
-2

-1
 0

 1
 2

 3 -3
-2

-1
 0

 1
 2

 3

-50
 0

 50
 100
 150
 200
 250
 300
 350

-3

-2

-1

 0

 1

 2

 3

-3 -2 -1 0 1 2 3
-3

-2

-1

 0

 1

 2

 3

-3 -2 -1 0 1 2 3

η = 1.0e − 2 η = 1.0e − 2

-3

-2

-1

 0

 1

 2

 3

-3 -2 -1 0 1 2 3
-3

-2

-1

 0

 1

 2

 3

-3 -2 -1 0 1 2 3
-3

-2

-1

 0

 1

 2

 3

-3 -2 -1 0 1 2 3

η = 4.0e − 2 η = 5.0e − 2 η = 5.3e − 2

François Fleuret EE-559 – Deep learning / 5.2. Stochastic gradient descent 9 / 17

Some optimization methods leverage higher-order moments, in particular second
order to use a more accurate local model of the functional to optimize.

However for a fixed computational budget, the complexity of these methods
reduces the total number of iterations, and the eventual optimization is worst.

Deep-learning generally relies on a smarter use of the gradient, using statistics
over its past values to make a “smarter step” with the current one.

François Fleuret EE-559 – Deep learning / 5.2. Stochastic gradient descent 10 / 17

Momentum and moment estimation

François Fleuret EE-559 – Deep learning / 5.2. Stochastic gradient descent 11 / 17

The “vanilla” mini-batch stochastic gradient descent (SGD) consists of

wt+1 = wt − ηgt ,

where

gt =
B∑

b=1

∇ln(t,b)(wt)

is the gradient summed over a mini-batch.

François Fleuret EE-559 – Deep learning / 5.2. Stochastic gradient descent 12 / 17

The first improvement is the use of a “momentum” to add inertia in the choice
of the step direction

ut = γut−1 + ηgt

wt+1 = wt − ut .

(Rumelhart et al., 1986)

With γ = 0, this is the same as vanilla SGD.

With γ > 0, this update has three nice properties:

• it can “go through” local barriers,

• it accelerates if the gradient does not change much:

(u = γu + ηg)⇒
(
u =

η

1− γ
g

)
,

• it dampens oscillations in narrow valleys.

François Fleuret EE-559 – Deep learning / 5.2. Stochastic gradient descent 13 / 17

-3

-2

-1

 0

 1

 2

 3

-3 -2 -1 0 1 2 3
-3

-2

-1

 0

 1

 2

 3

-3 -2 -1 0 1 2 3

η = 5.0e − 2, γ = 0 η = 5.0e − 2, γ = 0.5

François Fleuret EE-559 – Deep learning / 5.2. Stochastic gradient descent 14 / 17

Another class of methods exploits the statistics over the previous steps to
compensate for the anisotropy of the mapping.

The Adam algorithm uses moving averages of each coordinate and its square to
rescale each coordinate separately.

The update rule is, on each coordinate separately

mt = β1mt−1 + (1− β1)gt

m̂t =
mt

1− β1

vt = β2vt−1 + (1− β2)g2
t

v̂t =
vt

1− β2

wt+1 = wt −
η

√
v̂t + ε

m̂t

(Kingma and Ba, 2014)

This can be seen as a combination of momentum, with m̂t , and a
per-coordinate re-scaling with v̂t .

François Fleuret EE-559 – Deep learning / 5.2. Stochastic gradient descent 15 / 17

-3

-2

-1

 0

 1

 2

 3

-3 -2 -1 0 1 2 3
-3

-2

-1

 0

 1

 2

 3

-3 -2 -1 0 1 2 3

η = 5.0e − 2

Adam,
β1 = 0.9, β2 = 0.999,

ε = 1e − 8, η = 1.0e − 1

François Fleuret EE-559 – Deep learning / 5.2. Stochastic gradient descent 16 / 17

These two core strategies have been used in multiple incarnations:

• Nesterov’s accelerated gradient,

• Adagrad,

• Adadelta,

• RMSprop,

• AdaMax,

• Nadam ...

François Fleuret EE-559 – Deep learning / 5.2. Stochastic gradient descent 17 / 17

References

D. Kingma and J. Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2014.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by
back-propagating errors. Nature, 323(9):533–536, 1986.

	Limitation of the gradient descent
	Momentum and moment estimation

