
EE-559 – Deep learning

4.4. Convolutions

François Fleuret

https://fleuret.org/ee559/

Mon Feb 18 13:34:32 UTC 2019

ÉCOLE POLYTECHNIQUE
FÉDÉRALE DE LAUSANNE

If they were handled as normal “unstructured” vectors, large-dimension signals
such as sound samples or images would require models of intractable size.

For instance a linear layer taking a 256× 256 RGB image as input, and
producing an image of same size would require

(256× 256× 3)2 ' 3.87e+10

parameters, with the corresponding memory footprint ('150Gb !), and excess
of capacity.

François Fleuret EE-559 – Deep learning / 4.4. Convolutions 1 / 23

https://fleuret.org/ee559/

Moreover, this requirement is inconsistent with the intuition that such large
signals have some “invariance in translation”. A representation meaningful at
a certain location can / should be used everywhere.

A convolution layer embodies this idea. It applies the same linear
transformation locally, everywhere, and preserves the signal structure.

François Fleuret EE-559 – Deep learning / 4.4. Convolutions 2 / 23

Output

W − w + 1

1 2 0 -1

w

9

1 2 0 -1

w

0

1 2 0 -1

w

1

1 2 0 -1

w

3

1 2 0 -1

w

-5

1 2 0 -1

w

-3

1 2 0 -1

w

6

1 4 -1 0 2 -2 1 3 3 1

Input

W

Kernel

w

1 2 0 -1

François Fleuret EE-559 – Deep learning / 4.4. Convolutions 3 / 23

Formally, in 1d, given
x = (x1, . . . , xW)

and a “convolution kernel” (or “filter”) of width w

u = (u1, . . . , uw)

the convolution x ~ u is a vector of size W − w + 1, with

(x ~ u)i =
w∑
j=1

xi−1+j uj

= (xi , . . . , xi+w−1) · u

for instance

(1, 2, 3, 4) ~ (3, 2) = (3 + 4, 6 + 6, 9 + 8) = (7, 12, 17).

B This differs from the usual convolution since the kernel and the signal
are both visited in increasing index order.

François Fleuret EE-559 – Deep learning / 4.4. Convolutions 4 / 23

Convolution can implement in particular differential operators, e.g.

(0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4) ~ (−1, 1) = (0, 0, 0, 1, 1, 1, 1, 0, 0, 0).

~ =

or crude “template matcher”, e.g.

~ =

Both of these computation examples are indeed “invariant by translation”.

François Fleuret EE-559 – Deep learning / 4.4. Convolutions 5 / 23

It generalizes naturally to a multi-dimensional input, although specification can
become complicated.

Its most usual form for “convolutional networks” processes a 3d tensor as input
(i.e. a multi-channel 2d signal) to output a 2d tensor. The kernel is not swiped
across channels, just across rows and columns.

In this case, if the input tensor is of size C × H ×W , and the kernel is
C × h × w , the output is (H − h + 1)× (W − w + 1).

B We say “2d signal” even though it has C channels, since it is a feature
vector indexed by a 2d location without structure on the feature indexes.

In a standard convolution layer, D such convolutions are combined to generate
a D × (H − h + 1)× (W − w + 1) output.

François Fleuret EE-559 – Deep learning / 4.4. Convolutions 6 / 23

Input

Output

Kernel

Kernels

D H − h + 1

W − w + 1

1

D

H

W

C

h

w

C

François Fleuret EE-559 – Deep learning / 4.4. Convolutions 7 / 23

Note that a convolution preserves the signal support structure.

A 1d signal is converted into a 1d signal, a 2d signal into a 2d, and neighboring
parts of the input signal influence neighboring parts of the output signal.

A 3d convolution can be used if the channel index has some metric meaning,
such as time for a series of grayscale video frames. Otherwise swiping across
channels makes no sense.

François Fleuret EE-559 – Deep learning / 4.4. Convolutions 8 / 23

We usually refer to one of the channels generated by a convolution layer as an
activation map.

The sub-area of an input map that influences a component of the output as the
receptive field of the latter.

In the context of convolutional networks, a standard linear layer is called a fully
connected layer since every input influences every output.

François Fleuret EE-559 – Deep learning / 4.4. Convolutions 9 / 23

torch.nn.functional.conv2d(input, weight, bias=None,
stride=1, padding=0, dilation=1, groups=1)

Implements a 2d convolution, where weight contains the kernels, and is
D × C × h × w , bias is of dimension D, input is of dimension

N × C × H ×W

and the result is of dimension

N × D × (H − h + 1)× (W − w + 1).

>>> weight = torch.empty(5, 4, 2, 3).normal_()
>>> bias = torch.empty(5).normal_()
>>> input = torch.empty(117, 4, 10, 3).normal_()
>>> output = torch.nn.functional.conv2d(input, weight, bias)
>>> output.size()
torch.Size([117, 5, 9, 1])

Similar functions implement 1d and 3d convolutions.

François Fleuret EE-559 – Deep learning / 4.4. Convolutions 10 / 23

x = mnist_train.train_data[12].float().view(1, 1, 28, 28)

weight = torch.empty(5, 1, 3, 3)

weight[0, 0] = torch.tensor([[0., 0., 0.],
[0., 1., 0.],
[0., 0., 0.]])

weight[1, 0] = torch.tensor([[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.]])

weight[2, 0] = torch.tensor([[-1., 0., 1.],
[-1., 0., 1.],
[-1., 0., 1.]])

weight[3, 0] = torch.tensor([[-1., -1., -1.],
[0., 0., 0.],
[1., 1., 1.]])

weight[4, 0] = torch.tensor([[0., -1., 0.],
[-1., 4., -1.],
[0., -1., 0.]])

y = torch.nn.functional.conv2d(x, weight)

François Fleuret EE-559 – Deep learning / 4.4. Convolutions 11 / 23

~

=

~

=

~

=

~

=

~

=

François Fleuret EE-559 – Deep learning / 4.4. Convolutions 12 / 23

class torch.nn.Conv2d(in_channels, out_channels,
kernel_size, stride=1, padding=0, dilation=1,
groups=1, bias=True)

Wraps the convolution into a Module, with the kernels and biases as Parameter

properly randomized at creation.

The kernel size is either a pair (h,w) or a single value k interpreted as (k, k).

>>> f = nn.Conv2d(in_channels = 4, out_channels = 5, kernel_size = (2, 3))
>>> for n, p in f.named_parameters(): print(n, p.size())
...
weight torch.Size([5, 4, 2, 3])
bias torch.Size([5])
>>> x = torch.empty(117, 4, 10, 3).normal_()
>>> y = f(x)
>>> y.size()
torch.Size([117, 5, 9, 1])

François Fleuret EE-559 – Deep learning / 4.4. Convolutions 13 / 23

Padding and stride

François Fleuret EE-559 – Deep learning / 4.4. Convolutions 14 / 23

Convolutions have two additional standard parameters:

• The padding specifies the size of a zeroed frame added around the input,

• the stride specifies a step size when moving the kernel across the signal.

François Fleuret EE-559 – Deep learning / 4.4. Convolutions 15 / 23

Here with C × 3× 5 as input, a padding of (2, 1), a stride of (2, 2), and a
kernel of size C × 3× 3, the output is 1× 3× 3.

2

1

2

2

Input

Input

2

2

2

1

Output

François Fleuret EE-559 – Deep learning / 4.4. Convolutions 16 / 23

B A convolution with a stride greater than 1 may not cover the input map
completely, hence may ignore some of the input values.

François Fleuret EE-559 – Deep learning / 4.4. Convolutions 17 / 23

Dilated convolution

François Fleuret EE-559 – Deep learning / 4.4. Convolutions 18 / 23

Convolution operations admit one more standard parameter that we have not
discussed yet: The dilation, which modulates the expansion of the filter
support (Yu and Koltun, 2015).

It is 1 for standard convolutions, but can be greater, in which case the resulting
operation can be envisioned as a convolution with a regularly sparsified filter.

This notion comes from signal processing, where it is referred to as algorithme à
trous, hence the term sometime used of “convolution à trous”.

François Fleuret EE-559 – Deep learning / 4.4. Convolutions 19 / 23

Input

Output

Dilation = 1

François Fleuret EE-559 – Deep learning / 4.4. Convolutions 20 / 23

Input

Output

Dilation = 2

François Fleuret EE-559 – Deep learning / 4.4. Convolutions 21 / 23

A convolution with a 1d kernel of size k and dilation d can be interpreted as a
convolution with a filter of size 1 + (k − 1)d with only k non-zero coefficients.

For with k = 3 and d = 4, the difference between the input map size and the
output map size is 1 + (3− 1)4− 1 = 8.

>>> x = torch.empty(1, 1, 20, 30).normal_()
>>> l = nn.Conv2d(1, 1, kernel_size = 3, dilation = 4)
>>> l(x).size()
torch.Size([1, 1, 12, 22])

François Fleuret EE-559 – Deep learning / 4.4. Convolutions 22 / 23

Having a dilation greater than one increases the units’ receptive field size
without increasing the number of parameters.

Convolutions with stride or dilation strictly greater than one reduce the
activation map size, for instance to make a final classification decision.

Such networks have the advantage of simplicity:

• non-linear operations are only in the activation function,

• joint operations that combine multiple activations to produce one are only
in linear layers.

François Fleuret EE-559 – Deep learning / 4.4. Convolutions 23 / 23

References

F. Yu and V. Koltun. Multi-scale context aggregation by dilated convolutions. CoRR,
abs/1511.07122v3, 2015.

	Padding and stride
	Dilated convolution

