EE-559 — Deep learning

3.6. Back-propagation

Francois Fleuret
https://fleuret.org/ee559/
Fri Mar 1 09:42:35 UTC 2019

ZelCI3N A

wwwwwwwwwwww

FEDERALE DE LAUSANNF

We want to train an MLP by minimizing a loss over the training set

Z(w,b) =Y £(F(xn; w, b), yn)-

To use gradient descent, we need the expression of the gradient of the
per-sample loss ¢, = £(f(xn; w, b), yn) with respect to the parameters, e.g.

82/0[1 6f"l

and ——

ow" op
i,j i

’,

Frangois Fleuret EE-559 — Deep learning / 3.6. Back-propagation 1/11

https://fleuret.org/ee559/

For clarity, we consider a single training sample x, and introduce s(l), e ,s(L)
as the summations before activation functions.

(L) p(L)
—

1 1 2 2
MO AR S NINE) BN ¢ B A B

Formally we set x(0) = x,

s() = wx(=1) L p(N)
Vi=1,...,L,
x0) = & (s) |

and we set the output of the network as f(x; w, b) = x(1),

This is the forward pass.

Frangois Fleuret EE-559 — Deep learning / 3.6. Back-propagation 2/11

The core principle of the back-propagation algorithm is the “chain rule” from
differential calculus:

(gof) = (g’ of)f.

The linear approximation of a composition of mappings is the product of their
individual linear approximations.

This generalizes to longer compositions and higher dimensions
Jtyofy_10--of (X) = Jg (%) Ip (fi(x)) I (R2(F1(X))) - - - Jpy (Fn—1(- - - (X))

where J¢(x) is the Jacobian of f at x, that is the matrix of the linear
approximation of f in the neighborhood of x.

Frangois Fleuret EE-559 — Deep learning / 3.6. Back-propagation 3/11

("), 1)

NN NN ()

Since sl.(l) influences Z only through xl.(/) with
X[(/) = U(SI(I))7
we have 0
or _ o¢ Ox; _ ot o (S.(/))
851.(1) 8XI-(I) 851.(/) 8X,.(/) I
And since xj(l_l) influences # only through the s,.(/) with
/ N (-1 /
0= 3w 4 8
i
we have 0
ot o Os; or
_ = _— — W. .
8Xj(/—l) Z asi(/) (9Xj(l_1) Z 851.(1) i
Frangois Fleuret EE-559 — Deep learning / 3.6. Back-propagation 4 /11
OO o
X =1) , b s s() s ()

Since w') and b influences ¢ only through s") with

i i i

0= S)

we have

or or 85,-(1) or (I-1)

_— = X y
8W,.(L-) 85,-(/) 8WI-(73-) 851.(/) /
ot ot

op) s’

Frangois Fleuret EE-559 — Deep learning / 3.6. Back-propagation 5/11

Francois Fleuret

Francois Fleuret

886) from the definition of #, and recursively
X.

propagate backward the derivatives of the loss w.r.t the activations with

ot _ ot U,(Sg/))
s ax() ’

To summarize: we can compute

and or or
_ } : (1
GXJ.(I_l) ; 851.(1) I’J

And then compute the derivatives w.r.t the parameters with

and

EE-559 — Deep learning / 3.6. Back-propagation 6 /11

To write all this in tensorial form, if 1 : RN — RM we will use the standard
Jacobian notation

Yy 9y
o _| T
2 T
OYm Yy
ox1 oxpn

and if ¢ : RV*M _ R we will use the compact notation, also tensorial

9y oY
8W1’1 e 6W17M
o
oY 9y
8WN71 e 8WN,M

A standard notation (that we do not use here) is

o) =%t [ggm) =%t [5m) =%0¢ [5um] = %or

EE-559 — Deep learning / 3.6. Back-propagation 7/11

wh _or 0

—
3‘@
3“\

I

U= | X

[]
[]

[ax?/il)] < T : [aas{/)] < © : [a%)]
Francois Fleuret EE-559 — Deep learning / 3.6. Back-propagation 8 /11
Forward pass
Compute the activations.
s() = w(Nx(=1) 4 p()
X(O):X, Vi=1,...,L,
x) = & (5(/))
Backward pass
Compute the derivatives of the loss wrt the activations.
{%] from the definition of 7 Y LY
—|=|=5| 0 (s(l))
5 T os 9s() ox()
. 4 _ 4
il <L, |:8x(/)] = (w(*D) |:8s(/+1)i|
Compute the derivatives of the loss wrt the parameters.
or or T or | | or
] =[] (<) 35 =[50
ow(l) os() ob Os
Gradient step
Update the parameters.
or or
() (! _ — () N _ 2
w' — w n[{aw(,)ﬂ b'/ «— b n{ab(/)}

Francois Fleuret EE-559 — Deep learning / 3.6. Back-propagation 9/11

In spite of its hairy formalization, the backward pass is a simple algorithm:
apply the chain rule again and again.

As for the forward pass, it can be expressed in tensorial form. Heavy
computation is concentrated in linear operations, and all the non-linearities go
into component-wise operations.

Frangois Fleuret EE-559 — Deep learning / 3.6. Back-propagation 10/ 11

Regarding computation, since the costly operation for the forward pass is

s — WD U=1) L (D)

and for the backward

" of T[o
_ (1+1)
8x(’)} - (W) {as(m)}

% ot T
_ (1-1)
Iaw(/)ﬂ - {as(/)} (X) :

the rule of thumb is that the backward pass is twice more expensive than the
forward one.

and

Frangois Fleuret EE-559 — Deep learning / 3.6. Back-propagation 11 /11

