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The Linear Discriminant Analysis (LDA) algorithm provides a nice bridge
between these linear classifiers and probabilistic modeling.

Consider the following class populations

∀y ∈ {0, 1}, x ∈ RD ,

µX |Y=y (x) =
1√

(2π)D |Σ|
exp

(
−

1

2
(x −my )Σ−1(x −my )T

)
.

That is, they are Gaussian with the same covariance matrix Σ. This is the
homoscedasticity assumption.
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We have

P(Y = 1 | X = x) =
µX |Y=1(x)P(Y = 1)

µX (x)

=
µX |Y=1(x)P(Y = 1)

µX |Y=0(x)P(Y = 0) + µX |Y=1(x)P(Y = 1)

=
1

1 +
µX|Y=0(x)

µX|Y=1(x)
P(Y=0)
P(Y=1)

.

It follows that, with

σ(x) =
1

1 + e−x
,

we get

P(Y = 1 | X = x) = σ

(
log

µX |Y=1(x)

µX |Y=0(x)
+ log

P(Y = 1)

P(Y = 0)

)
.
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So with our Gaussians µX |Y=y of same Σ, we get

P(Y = 1 | X = x)

= σ

(
log

µX |Y=1(x)

µX |Y=0(x)
+ log

P(Y = 1)

P(Y = 0)︸ ︷︷ ︸
a

)

= σ
(
logµX |Y=1(x)− logµX |Y=0(x) + a

)
= σ

(
−

1

2
(x −m1)Σ−1(x −m1)T +

1

2
(x −m0)Σ−1(x −m0)T + a

)
= σ

(
−

1

2
xΣ−1xT + m1Σ−1xT −

1

2
m1Σ−1mT

1

+
1

2
xΣ−1xT −m0Σ−1xT +

1

2
m0Σ−1mT

0 + a

)
= σ

(
(m1 −m0)Σ−1︸ ︷︷ ︸

w

xT +
1

2

(
m0Σ−1mT

0 −m1Σ−1mT
1

)
+ a︸ ︷︷ ︸

b

)

= σ(w · x + b).

The homoscedasticity makes the second-order terms vanish.
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µX |Y=0 µX |Y=1 P(Y = 1 | X = x)
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Note that the (logistic) sigmoid function

σ(x) =
1

1 + e−x
,

looks like a “soft heavyside”

0

1

So the overall model
f (x ;w , b) = σ(w · x + b)

looks very similar to the perceptron.
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We can use the model from LDA

f (x ;w , b) = σ(w · x + b)

but instead of modeling the densities and derive the values of w and b, directly
compute them by maximizing their probability given the training data.

First, to simplify the next slide, note that we have

1− σ(x) = 1−
1

1 + e−x
= σ(−x),

hence if Y takes value in {−1, 1} then

∀y ∈ {−1, 1}, P(Y = y | X = x) = σ(y(w · x + b)).

François Fleuret EE-559 – Deep learning / 3.2. Probabilistic view of a linear classifier 6 / 8

We have

log µW ,B(w , b | D = d)

= log
µD (d |W = w ,B = b)µW ,B(w , b)

µD (d)

= log µD (d |W = w ,B = b) + log µW ,B(w , b)− log Z

=
∑
n

log σ(yn(w · xn + b)) + log µW ,B(w , b)− log Z ′

This is the logistic regression, whose loss aims at minimizing

− log σ(ynf (xn)).
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Although the probabilistic and Bayesian formulations may be helpful in certain
contexts, the bulk of deep learning is disconnected from such modeling.

We will come back sometime to a probabilistic interpretation, but most of the
methods will be envisioned from the signal-processing and optimization angles.
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