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The Linear Discriminant Analysis (LDA) algorithm provides a nice bridge
between these linear classifiers and probabilistic modeling.

Consider the following class populations

Vy € {0,1},x € RP,

1 1 _
px|y=y(x) = W exp <—§(X —my)X Y (x — my)T> .

That is, they are Gaussian with the same covariance matrix X. This is the
homoscedasticity assumption.
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We have

px|y=1(x)P(Y =1)
px (x)
px)y=1(x)P(Y =1)
pxy=o(X)P(Y = 0) + puxjy=1(x)P(Y =1)
1

px|y=0(x) P(Y=0)
px|y=1(x) P(Y=1)

P(Y=1]|X=x)=

1+

It follows that, with
1

TN = e

we get

_ oy px|y=1(x) P(Y =1)
P(Y =1| X—x)—a<logm—|—logm>.
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So with our Gaussians px|y—, of same ¥, we get

P(Y=1|X = x)

Mo px|y=1(x) o P(Y =1)

(I g.Lb><|Y:0(X) *! gP(Y:0)>
a

=0 (Iog,ux|y:1(X) — log MX|Y:0(X) + a)

=0 (—%(X —m)X Y x—m)T + %(X — m)X Y (x —mo)T + a)

1 1
= a( — EXZ_:LXT + mli_le — Emlz_lmlT
1 1
+ Exz_le — mOZ_le + EmoZ_lmg + a)

1
= a((ml — mO)Z_le + > (moz_lmg— — mli_lmlT) + a)

" b
=o(w-x+b).

The homoscedasticity makes the second-order terms vanish.
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KX|Y=0 x| Y=1 P(Y=1|X=x)
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Note that the (logistic) sigmoid function

1

TN =T

looks like a “soft heavyside”

So the overall model

f(x;w,b) =0o(w-x+ b)

looks very similar to the perceptron.
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We can use the model from LDA
f(x;w,b) =0c(w-x+ b)

but instead of modeling the densities and derive the values of w and b, directly
compute them by maximizing their probability given the training data.

First, to simplify the next slide, note that we have

1

= J(_X)v
hence if Y takes value in {—1,1} then

Vy e {-1,1}, P(Y =y |X=x)=o0(y(w: x+b)).
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We have

log pw,g(w, b | 2 =d)
po(d| W =w,B=b)uw,s(w,b)
po(d)
=logpug(d| W =w,B = b) + log pw g(w, b) —log Z

= loga(ya(w - xn + b)) + log pw,s(w, b) — log Z’
n

= log

This is the logistic regression, whose loss aims at minimizing

— log U(Ynf(xn))'

Frangois Fleuret EE-559 — Deep learning / 3.2. Probabilistic view of a linear classifier 7/8



Although the probabilistic and Bayesian formulations may be helpful in certain
contexts, the bulk of deep learning is disconnected from such modeling.

We will come back sometime to a probabilistic interpretation, but most of the

methods will be envisioned from the signal-processing and optimization angles.
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