EE-559 - Deep learning

3.1. The perceptron

François Fleuret

https://fleuret.org/ee559/ Thu Feb 28 15:16:22 UTC 2019

The first mathematical model for a neuron was the Threshold Logic Unit, with Boolean inputs and outputs:

$$f(x) = \mathbf{1}_{\left\{w \sum_{i} x_{i} + b \geq 0\right\}}.$$

It can in particular implement

$$or(u,v) = \mathbf{1}_{\{u+v-0.5 \geq 0\}}$$
 $(w = 1, b = -0.5)$
 $and(u,v) = \mathbf{1}_{\{u+v-1.5 \geq 0\}}$ $(w = 1, b = -1.5)$
 $not(u) = \mathbf{1}_{\{-u+0.5 \geq 0\}}$ $(w = -1, b = 0.5)$

Hence, any Boolean function can be build with such units.

(McCulloch and Pitts, 1943)

The perceptron is very similar

$$f(x) = \begin{cases} 1 & \text{if } \sum_{i} w_i x_i + b \ge 0 \\ 0 & \text{otherwise} \end{cases}$$

but the inputs are real values and the weights can be different.

This model was originally motivated by biology, with w_i being the *synaptic* weights, and x_i and f firing rates.

It is a (very) crude biological model.

(Rosenblatt, 1957)

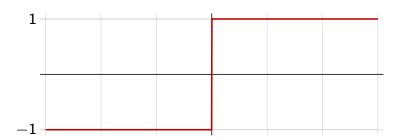
François Fleuret

EE-559 - Deep learning / 3.1. The perceptron

2 / 15

To make things simpler we take responses ± 1 . Let

$$\sigma(x) = \begin{cases} 1 & \text{if } x \ge 0 \\ -1 & \text{otherwise.} \end{cases}$$

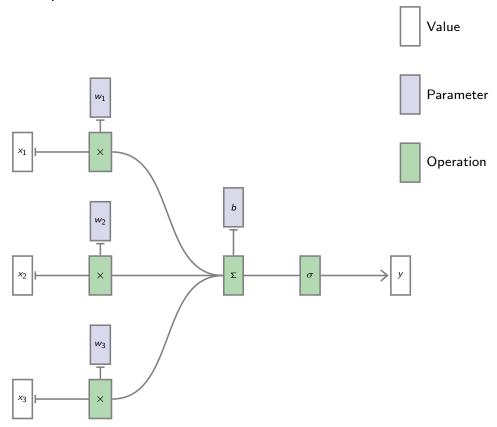


The perceptron classification rule boils down to

$$f(x) = \sigma(w \cdot x + b).$$

For neural networks, the function σ that follows a linear operator is called the **activation** function.

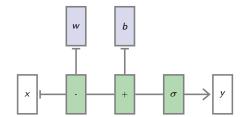
We can represent this "neuron" as follows:



François Fleuret EE-559 - Deep learning / 3.1. The perceptron 4 / 15

We can also use tensor operations, as in

$$f(x) = \sigma(w \cdot x + b).$$



Given a training set

$$(x_n, y_n) \in \mathbb{R}^D \times \{-1, 1\}, \quad n = 1, \dots, N,$$

a very simple scheme to train such a linear operator for classification is the **perceptron algorithm:**

- 1. Start with $w^0 = 0$,
- 2. while $\exists n_k$ s.t. $y_{n_k}(w^k \cdot x_{n_k}) \leq 0$, update $w^{k+1} = w^k + y_{n_k} x_{n_k}$.

The bias b can be introduced as one of the ws by adding a constant component to x equal to 1.

(Rosenblatt, 1957)

François Fleuret

```
EE-559 - Deep learning / 3.1. The perceptron
```

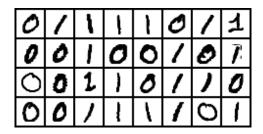
```
6 / 15
```

```
def train_perceptron(x, y, nb_epochs_max):
    w = torch.zeros(x.size(1))

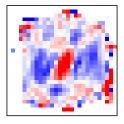
for e in range(nb_epochs_max):
    nb_changes = 0
    for i in range(x.size(0)):
        if x[i].dot(w) * y[i] <= 0:
            w = w + y[i] * x[i]
            nb_changes = nb_changes + 1
    if nb_changes == 0: break;

return w</pre>
```

This crude algorithm works often surprisingly well. With MNIST's "0"s as negative class, and "1"s as positive one.

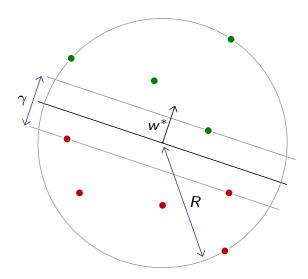


epoch 0 nb_changes 64 train_error 0.23% test_error 0.19% epoch 1 nb_changes 24 train_error 0.07% test_error 0.00% epoch 2 nb_changes 10 train_error 0.06% test_error 0.05% epoch 3 nb_changes 6 train_error 0.03% test_error 0.14% epoch 4 nb_changes 5 train_error 0.03% test_error 0.09% epoch 5 nb_changes 4 train_error 0.02% test_error 0.14% epoch 6 nb_changes 3 train_error 0.01% test_error 0.14% epoch 7 nb_changes 2 train_error 0.00% test_error 0.14% epoch 8 nb_changes 0 train_error 0.00% test_error 0.14%



François Fleuret EE-559 – Deep learning / 3.1. The perceptron 8 / 15

We can get a convergence result under two assumptions:



1. The x_n are in a sphere of radius R:

$$\exists R > 0, \ \forall n, \ \|x_n\| \leq R.$$

2. The two populations can be separated with a margin $\gamma > 0$. $\exists w^*, \|w^*\| = 1, \exists \gamma > 0, \forall n, y_n(x_n \cdot w^*) \geq \gamma/2$.

To prove the convergence, let us make the assumption that there still is a misclassified sample at iteration k, and w^{k+1} is the weight vector updated with it. We have

$$w^{k+1} \cdot w^* = \left(w^k + y_{n_k} x_{n_k}\right) \cdot w^*$$

$$= w^k \cdot w^* + y_{n_k} \left(x_{n_k} \cdot w^*\right)$$

$$\geq w^k \cdot w^* + \gamma/2$$

$$\geq (k+1)\gamma/2.$$

Since

$$||w^k|||w^*|| \geq w^k \cdot w^*,$$

we get

$$||w^{k}||^{2} \ge (w^{k} \cdot w^{*})^{2} / ||w^{*}||^{2}$$

 $\ge k^{2} \gamma^{2} / 4.$

François Fleuret

10 / 15

And

$$||w^{k+1}||^{2} = w^{k+1} \cdot w^{k+1}$$

$$= \left(w^{k} + y_{n_{k}} x_{n_{k}}\right) \cdot \left(w^{k} + y_{n_{k}} x_{n_{k}}\right)$$

$$= w^{k} \cdot w^{k} + 2 \underbrace{y_{n_{k}} w^{k} \cdot x_{n_{k}}}_{\leq 0} + \underbrace{||x_{n_{k}}||^{2}}_{\leq R^{2}}$$

$$\leq ||w^{k}||^{2} + R^{2}$$

$$\leq (k+1) R^{2}.$$

Putting these two results together, we get

$$k^2 \gamma^2 / 4 \le ||w^k||^2 \le k R^2$$

hence

$$k \leq 4R^2/\gamma^2$$
,

hence no misclassified sample can remain after $\left\lfloor 4R^2/\gamma^2 \right\rfloor$ iterations.

This result makes sense:

- The bound does not change if the population is scaled, and
- the larger the margin, the more quickly the algorithm classifies all the samples correctly.

François Fleuret

EE-559 - Deep learning / 3.1. The perceptron

12 / 15

The perceptron stops as soon as it finds a separating boundary.

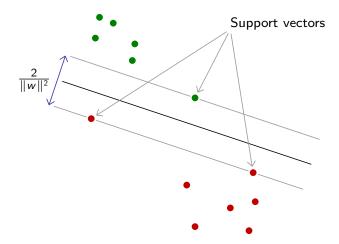
Other algorithms maximize the distance of samples to the decision boundary, which improves robustness to noise.

Support Vector Machines (SVM) achieve this by minimizing

$$\mathscr{L}(w,b) = \lambda \|w\|^2 + \frac{1}{N} \sum_n \max(0,1-y_n(w\cdot x_n+b)),$$

which is convex and has a global optimum.

$$\mathscr{L}(w,b) = \lambda ||w||^2 + \frac{1}{N} \sum_n \max(0, 1 - y_n(w \cdot x_n + b))$$



Minimizing $\max(0, 1 - y_n(w \cdot x_n + b))$ pushes the *n*th sample beyond the plane $w \cdot x + b = y_n$, and minimizing $||w||^2$ increases the distance between the $w \cdot x + b = \pm 1$.

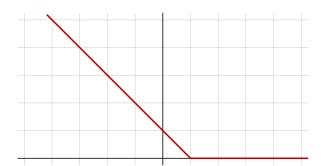
At convergence, only a small number of samples matter, the "support vectors".

François Fleuret EE-559 – Deep learning / 3.1. The perceptron 14 / 15

The term

$$\max(0, 1 - \alpha)$$

is the so called "hinge loss"



References

- W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, 5(4):115–133, 1943.
- F. Rosenblatt. The perceptron–A perceiving and recognizing automaton. Technical Report 85-460-1, Cornell Aeronautical Laboratory, 1957.