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The first mathematical model for a neuron was the Threshold Logic Unit, with
Boolean inputs and outputs:

f(x) = l{wz, xi+b>0}"

It can in particular implement

or(u,v) = 1{,4v—05>0} (w=1,b=-0.5)
and(u, V) = 1{u+v—1.520} (W = 1, b= —15)
not(u) =1 ,105>0 (w=-1,b=0.5)

Hence, any Boolean function can be build with such units.

(McCulloch and Pitts, 1943)
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The perceptron is very similar

1 if ) wixi+b>0
f(x) = i
0 otherwise

but the inputs are real values and the weights can be different.

This model was originally motivated by biology, with w; being the synaptic
weights, and x; and f firing rates.

It is a (very) crude biological model.

(Rosenblatt, 1957)
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To make things simpler we take responses 1. Let

(x) = 1 if x>0
g\x) = —1 otherwise.

—1

The perceptron classification rule boils down to
f(x) =o(w-x+ b).

For neural networks, the function o that follows a linear operator is called the
activation function.
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We can represent this “neuron” as follows:
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We can also use tensor operations, as in

f(x) =o(w-x+ b).
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Given a training set
(xn,yn) € RP x {=1,1}, n=1,...,N,

a very simple scheme to train such a linear operator for classification is the
perceptron algorithm:

1. Start with w® =0,
2. while 3ng s.t. yn, (Wk -xnk) <0, update wkt! = wk + y, xp, .

The bias b can be introduced as one of the ws by adding a constant component
to x equal to 1.

(Rosenblatt, 1957)
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def train_perceptron(x, y, nb_epochs_max):
w = torch.zeros(x.size(1))

for e in range(nb_epochs_max):
nb_changes = 0
for i in range(x.size(0)):
if x[i].dot(w) * y[i] <= O:
w=w + y[i] * x[i]
nb_changes = nb_changes + 1
if nb_changes == 0: break;

return w
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This crude algorithm works often surprisingly well. With MNIST’s “0"s as

negative class, and “1"s as positive one.
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We can get a convergence result under two assumptions:

1. The x, are in a sphere of radius R:
JR >0, Vn, ||xn]| £ R.

2. The two populations can be separated with a margin v > 0.
Iw*, w* | =1, 3y >0, Vn, yn (xn - w*) > v/2.
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To prove the convergence, let us make the assumption that there still is a
is the weight vector updated with

misclassified sample at iteration k, and whktl

it. We have

Wkl % — (Wk + }/nank) W

k

w w4+ yn, (X, - W)
wk . w* +~/2
(k+1)~/2.

VvV IV

Since

Iw"llw* || > w’ - w*,

we get

k
12

Vv

[w

(w w)" w2

> k?~%/4.
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And

k102 _ k1 ket
W7 = W w

(Wk +_Ynank) : (Wk +_Vnank)
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wh . wk + 2 yn, wh " Xn ||X’7k||2
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Putting these two results together, we get
Ky? /4 < |[wh)? < kR?

hence
k < 4R? /42,

hence no misclassified sample can remain after |4R?/+?| iterations.

This result makes sense:

e The bound does not change if the population is scaled, and

e the larger the margin, the more quickly the algorithm classifies all the
samples correctly.
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The perceptron stops as soon as it finds a separating boundary.

Other algorithms maximize the distance of samples to the decision boundary,
which improves robustness to noise.

Support Vector Machines (SVM) achieve this by minimizing
1
ZF(w,b) = \|w|?+ = 0,1 — yn(w - xa + b)),
(w, b) = Alw]| +N§n:ma><( Yn(w - xn + b))

which is convex and has a global optimum.
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1
ZL(w, b) = \|w|?+ = 0,1 — yn(w-xn+b
(w, b) l|w| +N§n:max( Yn(W - xn + b))

° Support vectors

Minimizing max(0,1 — y,(w - x, + b)) pushes the nth sample beyond the plane
W - x + b = y,, and minimizing ||w||? increases the distance between the
w-x+ b=+l

At convergence, only a small number of samples matter, the “support vectors”.
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The term
max(0,1 — «)

is the so called “hinge loss”
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