EE-559 — Deep learning

3.1. The perceptron

Francois Fleuret
https://fleuret.org/ee559/
Thu Feb 28 15:16:22 UTC 2019

ZelCI3N A

wwwwwwwwwwwww

FEDERALE DE LAUSANNF

The first mathematical model for a neuron was the Threshold Logic Unit, with
Boolean inputs and outputs:

f(x) = l{wz, xi+b>0}"

It can in particular implement

or(u,v) = 1{,4v—05>0} (w=1,b=-0.5)
and(u, V) = 1{u+v—1.520} (W = 1, b= —15)
not(u) =1 ,105>0 (w=-1,b=0.5)

Hence, any Boolean function can be build with such units.

(McCulloch and Pitts, 1943)

Francois Fleuret EE-559 — Deep learning / 3.1. The perceptron 1/15

https://fleuret.org/ee559/

The perceptron is very similar

1 if) wixi+b>0
f(x) = i
0 otherwise

but the inputs are real values and the weights can be different.

This model was originally motivated by biology, with w; being the synaptic
weights, and x; and f firing rates.

It is a (very) crude biological model.

(Rosenblatt, 1957)

Francois Fleuret EE-559 — Deep learning / 3.1. The perceptron

To make things simpler we take responses 1. Let

(x) = 1 if x>0
g\x) = —1 otherwise.

—1

The perceptron classification rule boils down to
f(x) =o(w-x+ b).

For neural networks, the function o that follows a linear operator is called the
activation function.

Francois Fleuret EE-559 — Deep learning / 3.1. The perceptron

2/15

3/15

Francois Fleuret

Francois Fleuret

We can represent this “neuron” as follows:

wi
T
l— :
w
T
: i
w3
T
l— X

WV

L —(= |

[o]

EE-559 — Deep learning / 3.1. The perceptron

We can also use tensor operations, as in

f(x) =o(w-x+ b).

1

1

’

EE-559 — Deep learning / 3.1. The perceptron

Value

Parameter

Operation

4/15

5/15

Given a training set
(xn,yn) € RP x {=1,1}, n=1,...,N,

a very simple scheme to train such a linear operator for classification is the
perceptron algorithm:

1. Start with w® =0,
2. while 3ng s.t. yn, (Wk -xnk) <0, update wkt! = wk + y, xp, .

The bias b can be introduced as one of the ws by adding a constant component
to x equal to 1.

(Rosenblatt, 1957)

EE-559 — Deep learning / 3.1. The perceptron

def train_perceptron(x, y, nb_epochs_max):
w = torch.zeros(x.size(1))

for e in range(nb_epochs_max):
nb_changes = 0
for i in range(x.size(0)):
if x[i].dot(w) * y[i] <= O:
w=w + y[i] * x[i]
nb_changes = nb_changes + 1
if nb_changes == 0: break;

return w

EE-559 — Deep learning / 3.1. The perceptron

6/15

7/15

Francois Fleuret

Francois Fleuret

This crude algorithm works often surprisingly well. With MNIST’s “0"s as

negative class, and “1"s as positive one.

epoch
epoch
epoch
epoch
epoch
epoch
epoch
epoch
epoch

o/

TN

0|0

|

Olo

\
I
1

0|0

/

l
o
|
!

l
)
%)

\

- [~

/
o
/
O

— [

0 nb_changes
1 nb_changes
2 nb_changes
3 nb_changes
4 nb_changes
5 nb_changes
6 nb_changes
7 nb_changes
8 nb_changes

64 train_error 0.23% test_error 0.197
24 train_error 0.07% test_error 0.00%
10 train_error 0.06} test_error 0.05%
0.14Y%
0.09%
0.
0
0
0

6

5
4
3
2
0

train_error
train_error
train_error
train_error
train_error
train_error

0.
0.
0.
0.
0.
0.

03%
03%
02%
01%
00%
00%

test_error
test_error
test_error
test_error
test_error
test_error

o

EE-559 — Deep learning / 3.1. The perceptron

149

. 147,
. 147,
. 147,

We can get a convergence result under two assumptions:

1. The x, are in a sphere of radius R:
JR >0, Vn, ||xn]| £ R.

2. The two populations can be separated with a margin v > 0.
Iw*, w* | =1, 3y >0, Vn, yn (xn - w*) > v/2.

EE-559 — Deep learning / 3.1. The perceptron

8/15

9/15

To prove the convergence, let us make the assumption that there still is a
is the weight vector updated with

misclassified sample at iteration k, and whktl

it. We have

Wkl % — (Wk + }/nank) W

k

w w4+ yn, (X, - W)
wk . w* +~/2
(k+1)~/2.

VvV IV

Since

Iw"llw* || > w’ - w*,

we get

k
12

Vv

[w

(w w)" w2

> k?~%/4.

Francois Fleuret EE-559 — Deep learning / 3.1. The perceptron

And

k102 _ k1 ket
W7 = W w

(Wk +_Ynank) : (Wk +_Vnank)
k

<0 <R?

IA

Iw¥|1> + R?
(k+1) R%.

VAN

Francois Fleuret EE-559 — Deep learning / 3.1. The perceptron

wh . wk + 2 yn, wh " Xn ||X’7k||2
—_—— >

10/ 15

11/15

Putting these two results together, we get
Ky? /4 < |[wh)? < kR?

hence
k < 4R? /42,

hence no misclassified sample can remain after |4R?/+?| iterations.

This result makes sense:

e The bound does not change if the population is scaled, and

e the larger the margin, the more quickly the algorithm classifies all the
samples correctly.

Francois Fleuret EE-559 — Deep learning / 3.1. The perceptron 12 /15

The perceptron stops as soon as it finds a separating boundary.

Other algorithms maximize the distance of samples to the decision boundary,
which improves robustness to noise.

Support Vector Machines (SVM) achieve this by minimizing
1
ZF(w,b) = \|w|?+ = 0,1 — yn(w - xa + b)),
(w, b) = Alw]| +N§n:ma><(Yn(w - xn + b))

which is convex and has a global optimum.

Francois Fleuret EE-559 — Deep learning / 3.1. The perceptron 13 /15

1
ZL(w, b) = \|w|?+ = 0,1 — yn(w-xn+b
(w, b) l|w| +N§n:max(Yn(W - xn + b))

° Support vectors

Minimizing max(0,1 — y,(w - x, + b)) pushes the nth sample beyond the plane
W - x + b = y,, and minimizing ||w||? increases the distance between the
w-x+ b=+l

At convergence, only a small number of samples matter, the “support vectors”.

Francois Fleuret EE-559 — Deep learning / 3.1. The perceptron 14 /15

The term
max(0,1 — «)

is the so called “hinge loss”

Francois Fleuret EE-559 — Deep learning / 3.1. The perceptron 15 /15

References

W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous activity.
The bulletin of mathematical biophysics, 5(4):115-133, 1943.

F. Rosenblatt. The perceptron—A perceiving and recognizing automaton. Technical Report
85-460-1, Cornell Aeronautical Laboratory, 1957.

