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Deep learning models combine embeddings and dimension reduction operations.

They parametrize and re-parametrize multiple times the input signal into
representations that get more and more invariant and noise free.

To get an intuition of how this is possible, we consider here two standard
algorithms:

• K -means, and

• Principal Component Analysis (PCA).

We will illustrate these methods on our two favorite data-sets.
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MNIST data-set

28× 28 grayscale images, 60k train samples, 10k test samples.
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CIFAR10 data-set

32× 32 color images, 50k train samples, 10k test samples.

(Krizhevsky, 2009, chap. 3)
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Given
xn ∈ RD , n = 1, . . . ,N,

and a fixed number of clusters K > 0, K -means tries to find K “centroids” that
span uniformly the training population.

Given a point, the index of its closest centroid is a good coding.
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Formally, [Lloyd’s algorithm for] K -means (approximately) solves

argmin
c1,...,cK∈RD

∑
n

min
k
‖xn − ck‖2.

This is achieved with a random initialization of c0
1 , . . . c

0
K followed by repeating

until convergence:

∀n, kt
n = argmin

k
‖xn − ctk‖ (1)

∀k, ct+1
k =

1

|n : kt
n = k|

∑
n:ktn=k

xn (2)

At every iteration, (1) each sample is associated to its closest centroid’s cluster,
and (2) each centroid is updated to the average of its cluster.
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We can apply that algorithm to images from MNIST (1× 28× 28) or CIFAR
(3× 32× 32) by considering them as vectors from R784 and R3072 respectively.

Centroids can similarly be visualized as images, and clustering can be done
per-class, or for all the classes mixed.
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K = 1 K = 2 K = 4 K = 8 K = 16

K = 32
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The Principal Component Analysis (PCA) aims also at extracting an
information in a L2 sense. Instead of clusters, it looks for an “affine subspace”,
i.e. a point and a basis, that spans the data.

Given data-points
xn ∈ RD , n = 1, . . . ,N

(A) compute the average and center the data

x̄ =
1

N

∑
n

xn

∀n, x
(0)
n = xn − x̄

and then for t = 1, . . . ,D,

(B) pick the direction and project the data

vt = argmax
‖v‖=1

∑
n

(
v · x(t−1)

n

)2

∀n, x
(t)
n = x

(t−1)
n −

(
vt · x(t−1)

n

)
vt .
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Although this is a simple way to envision PCA, standard implementations rely
on an eigendecomposition. With

X =

 — x1 —
...

— xN —


we have

∑
n

(v · xn)2 =

∥∥∥∥∥∥∥
 v · x1

...
v · xN


∥∥∥∥∥∥∥

2

2

=
∥∥∥vXT

∥∥∥2

2

= (vXT )(vXT )T

= v(XTX )vT .

From this we can derive that v1, v2, . . . , vD are the eigenvectors of XTX ranked
according to [the absolute values of] their eigenvalues.
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As for K -means, we can apply that algorithm to images from MNIST or CIFAR
by considering them as vectors.

For any sample x and any T , we can compute a reconstruction using T vectors
from the PCA basis, i.e.

x̄ +
T∑
t=1

(vt · x)vt .
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x̄ v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12
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These results show that even crude embeddings capture something meaningful.
Changes in pixel intensity as expected, but also deformations in the “indexing”
space (i.e. the image plan).

However, translations and deformations damage the representation badly, and
“composition” (e.g. object on background) is not handled at all.
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These strengths and shortcomings provide an intuitive motivation for “deep
neural networks”, and the rest of this course.

We would like

• to use many encoding “of these sorts” for small local structures with
limited variability,

• have different “channels” for different components,

• process at multiple scales.

Computationally, we would like to deal with large signals and large training sets,
so we need to avoid super-linear cost in one or the other.
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