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Learning algorithms, in particular deep-learning ones, require the tuning of many
meta-parameters.

These parameters have a strong impact on the performance, resulting in a
“meta” over-fitting through experiments.

We must be extra careful with performance estimation.

Running 100 times the same experiment on MNIST, with randomized weights,
we get:

Worst Median Best
1.3% 1.0% 0.82%
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The ideal development cycle is

Write code Train Test Paper

or in practice something like

Write code Train Test Paper

There may be over-fitting, but it does not bias the final performance evaluation.
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Unfortunately, it often looks like

Write code Train Test Paper

B This should be avoided at all costs. The standard strategy is to have a
separate validation set for the tuning.

Write code Train Validation Test Paper
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When data is scarce, one can use cross-validation: average through multiple
random splits of the data in a train and a validation sets.

There is no unbiased estimator of the variance of cross-validation valid under all
distributions (Bengio and Grandvalet, 2004).
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Some data-sets (MNIST!) have been used by thousands of researchers, over
millions of experiments, in hundreds of papers.

The global overall process looks more like

Write code Train Test Paper
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“Cheating” in machine learning, from bad to “are you kidding?”:

• “Early evaluation stopping”,

• meta-parameter (over-)tuning,

• data-set selection,

• algorithm data-set specific clauses,

• seed selection.

Top-tier conferences are demanding regarding experiments, and are biased
against “complicated” pipelines.

The community pushes toward accessible implementations, reference data-sets,
leader boards, and constant upgrades of benchmarks.
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