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You want to hire someone, and you evaluate candidates by asking them ten
technical yes/no questions.

Would you feel confident if you interviewed one candidate and he makes a
perfect score?

What about interviewing ten candidates and picking the best? What about
interviewing one thousand?
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With
Qy ~ %(0.5), n=1,...,1000, k =1,...,10,

independent standing for “candidate n answere question k correctly”, we have

1
Vn, P(Vk,Ql =1) = ——
n, Pk Qi =1) = 1552

and

P(3n,Vk, Q = 1) ~ 0.62.

So there is 62% chance that among 1,000 candidates answering completely at
random, one will score perfectly.

Selecting a candidate based on a statistical estimator biases the said
estimator for that candidate. And you need a greater number of “competence
checks” if you have a larger pool of candidates.
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Over and under-fitting, capacity. K-nearest-neighbors
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A simple classification procedure is the “K-nearest neighbors.”

Given
(xn,yn) €ERP x {1,...,C}, n=1,...,N

to predict the y associated to a new x, take the y, of the closest x;:
n*(x) = argmin|/x, — x||
n

f*(X) = Ynx(x)-

This recipe corresponds to K = 1, and makes the empirical training error zero.
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Under mild assumptions of regularities of p1x y, for N — oo the asymptotic
error rate of the 1-NN is less than twice the (optimal!) Bayes’ Error rate.

It can be made more stable by looking at the K > 1 closest training points, and
taking the majority vote.

If we let also K — oo “not too fast”, the error rate is the (optimal!) Bayes’
Error rate.
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Training set

Prediction (K=1)
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Votes (K=51)
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Over and under-fitting, capacity, polynomials
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Given a polynomial model

D
Vx,ap,...,ap €ER, f(x;a) = Zadxd.
d=0

and training points (xn,yn) € R2, n=1,..., N, the quadratic loss is

L(a) =) (f(xnia) = yn)’

n
0 D 2
l X7 ... X aQ vi
D
x,(\), S T ap YN

Hence, minimizing this loss is a standard quadratic problem, for which we have
efficient algorithms.
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def fit_polynomial(D, x, y):
X = torch.empty(x.size(0), D + 1)
for d in range(D + 1):
X[:, d] = x.pow(d)

# gels expects a matrix for target
Y = y.view(-1, 1)

# LAPACK’s GEneralized Least-Square
alpha, _ = torch.gels(Y, X)

return alphal[:D+1, 0]
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D, N =4, 100

x = torch.linspace(-math.pi, math.pi, N)
y = x.sin()

alpha = fit_polynomial(D, x, y)

X = torch.empty(N, D + 1)
for d in range(D + 1):

X[:, d] = x.pow(d)
yhat = X.mv(alpha)

for k in range(N):
print(x[k].item(), y[k].item(), yhat([k].item())
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We can use that model to illustrate how the prediction changes when we

increase the degree or the regularization.
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We can visualize the influence of the noise by generating multiple training sets
D1, ..., Dpm with different noise, and training one model on each.
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We can reformulate this control of the degree with a penalty

L(@) =) (Flxnia) = yn)* + ) la(ag)
d

n
where

ly(a) = 0 fd<Dora=0
dle) = 400 otherwise.

Such a penalty kills any term of degree > D.

This motivates the use of more subtle variants. For instance, to keep all this
quadratic

@)= (Foxnia) =y +p 3 .
n d
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We define the capacity of a set of predictors as its ability to model an arbitrary
functional. This is a vague definition, difficult to make formal.

A mathematically precise notion is the Vapnik—Chervonenkis dimension of a set
of functions, which, in the Binary classification case, is the cardinality of the
largest set that can be labeled arbitrarily (Vapnik, 1995).

It is a very powerful concept, but is poorly adapted to neural networks. We will
not say more about it in this course.
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Although the capacity is hard to define precisely, it is quite clear in practice how
to modulate it for a given class of models.

In particular one can control over-fitting either by

e Reducing the space # (less functionals, constrained or degraded
optimization), or

o Making the choice of 7* less dependent on data (penalty on coefficients,
margin maximization, ensemble methods).
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