
EE-559 – Deep learning

11.1. Recurrent Neural Networks

François Fleuret

https://fleuret.org/ee559/

Sun Feb 24 20:33:31 UTC 2019

ÉCOLE POLYTECHNIQUE
FÉDÉRALE DE LAUSANNE

Inference from sequences

François Fleuret EE-559 – Deep learning / 11.1. Recurrent Neural Networks 1 / 21

https://fleuret.org/ee559/

Many real-world problems require to process a signal with a sequence structure.

Sequence classification:

• sentiment analysis,

• activity/action recognition,

• DNA sequence classification,

• action selection.

Sequence synthesis:

• text synthesis,

• music synthesis,

• motion synthesis.

Sequence-to-sequence translation:

• speech recognition,

• text translation,

• part-of-speech tagging.

François Fleuret EE-559 – Deep learning / 11.1. Recurrent Neural Networks 2 / 21

Given a set X , if S(X) be the set of sequences of elements from X :

S(X) =
∞⋃
t=1

X t .

We can define formally:

Sequence classification: f : S(X)→ {1, . . . ,C}

Sequence synthesis: f : RD → S(X)

Sequence-to-sequence translation: f : S(X)→ S(Y)

In the rest of the slides we consider only time-indexed signal, although it
generalizes to arbitrary sequences.

François Fleuret EE-559 – Deep learning / 11.1. Recurrent Neural Networks 3 / 21

Temporal Convolutions

François Fleuret EE-559 – Deep learning / 11.1. Recurrent Neural Networks 4 / 21

The simplest approach to sequence processing is to use Temporal
Convolutional Networks (Waibel et al., 1989; Bai et al., 2018).

Such a model is a standard 1d convolutional network, that processes an input of
the maximum possible length.

François Fleuret EE-559 – Deep learning / 11.1. Recurrent Neural Networks 5 / 21

Input

Hidden

Hidden

Output

T

Increasing exponentially the filter sizes makes the required number of layers
grow in log of the time window T taken into account.

Thanks to dilated convolutions, the model size is O(log T). The memory
footprint and computation are O(T log T).

François Fleuret EE-559 – Deep learning / 11.1. Recurrent Neural Networks 6 / 21

An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling

Table 1. Evaluation of TCNs and recurrent architectures on synthetic stress tests, polyphonic music modeling, character-level language
modeling, and word-level language modeling. The generic TCN architecture outperforms canonical recurrent networks across a
comprehensive suite of tasks and datasets. Current state-of-the-art results are listed in the supplement. h means that higher is better.
` means that lower is better.

Sequence Modeling Task Model Size (≈)
Models

LSTM GRU RNN TCN

Seq. MNIST (accuracyh) 70K 87.2 96.2 21.5 99.0
Permuted MNIST (accuracy) 70K 85.7 87.3 25.3 97.2
Adding problem T=600 (loss`) 70K 0.164 5.3e-5 0.177 5.8e-5
Copy memory T=1000 (loss) 16K 0.0204 0.0197 0.0202 3.5e-5
Music JSB Chorales (loss) 300K 8.45 8.43 8.91 8.10
Music Nottingham (loss) 1M 3.29 3.46 4.05 3.07
Word-level PTB (perplexity`) 13M 78.93 92.48 114.50 89.21
Word-level Wiki-103 (perplexity) - 48.4 - - 45.19
Word-level LAMBADA (perplexity) - 4186 - 14725 1279
Char-level PTB (bpc`) 3M 1.41 1.42 1.52 1.35
Char-level text8 (bpc) 5M 1.52 1.56 1.69 1.45

about 268K. The dataset contains 28K Wikipedia articles
(about 103 million words) for training, 60 articles (about
218K words) for validation, and 60 articles (246K words)
for testing. This is a more representative and realistic dataset
than PTB, with a much larger vocabulary that includes many
rare words, and has been used in Merity et al. (2016); Grave
et al. (2017); Dauphin et al. (2017).

LAMBADA. Introduced by Paperno et al. (2016), LAM-
BADA is a dataset comprising 10K passages extracted from
novels, with an average of 4.6 sentences as context, and 1 tar-
get sentence the last word of which is to be predicted. This
dataset was built so that a person can easily guess the miss-
ing word when given the context sentences, but not when
given only the target sentence without the context sentences.
Most of the existing models fail on LAMBADA (Paperno
et al., 2016; Grave et al., 2017). In general, better results
on LAMBADA indicate that a model is better at capturing
information from longer and broader context. The training
data for LAMBADA is the full text of 2,662 novels with
more than 200M words. The vocabulary size is about 93K.

text8. We also used the text8 dataset for character-level
language modeling (Mikolov et al., 2012). text8 is about
20 times larger than PTB, with about 100M characters from
Wikipedia (90M for training, 5M for validation, and 5M for
testing). The corpus contains 27 unique alphabets.

5. Experiments
We compare the generic TCN architecture described in Sec-
tion 3 to canonical recurrent architectures, namely LSTM,
GRU, and vanilla RNN, with standard regularizations. All
experiments reported in this section used exactly the same

TCN architecture, just varying the depth of the network n
and occasionally the kernel size k so that the receptive field
covers enough context for predictions. We use an expo-
nential dilation d = 2i for layer i in the network, and the
Adam optimizer (Kingma & Ba, 2015) with learning rate
0.002 for TCN, unless otherwise noted. We also empiri-
cally find that gradient clipping helped convergence, and we
pick the maximum norm for clipping from [0.3, 1]. When
training recurrent models, we use grid search to find a good
set of hyperparameters (in particular, optimizer, recurrent
drop p ∈ [0.05, 0.5], learning rate, gradient clipping, and
initial forget-gate bias), while keeping the network around
the same size as TCN. No other architectural elaborations,
such as gating mechanisms or skip connections, were added
to either TCNs or RNNs. Additional details and controlled
experiments are provided in the supplementary material.

5.1. Synopsis of Results

A synopsis of the results is shown in Table 1. Note that
on several of these tasks, the generic, canonical recurrent
architectures we study (e.g., LSTM, GRU) are not the state-
of-the-art. (See the supplement for more details.) With this
caveat, the results strongly suggest that the generic TCN
architecture with minimal tuning outperforms canonical re-
current architectures across a broad variety of sequence
modeling tasks that are commonly used to benchmark the
performance of recurrent architectures themselves. We now
analyze these results in more detail.

5.2. Synthetic Stress Tests

The adding problem. Convergence results for the adding
problem, for problem sizes T = 200 and 600, are shown

(Bai et al., 2018)

François Fleuret EE-559 – Deep learning / 11.1. Recurrent Neural Networks 7 / 21

RNN and backprop through time

François Fleuret EE-559 – Deep learning / 11.1. Recurrent Neural Networks 8 / 21

The most classical approach to processing sequences of variable size is to use a
recurrent model which maintains a recurrent state updated at each time step.

With X = RD , given an input sequence x ∈ S
(
RD
)
, and an initial recurrent

state h0 ∈ RQ , the model computes the sequence of recurrent states iteratively

∀t = 1, . . . ,T (x), ht = Φ(xt , ht−1),

where
Φw : RD × RQ → RQ .

A prediction can be computed at any time step from the recurrent state

yt = Ψ(ht)

with
Ψw : RQ → RC .

François Fleuret EE-559 – Deep learning / 11.1. Recurrent Neural Networks 9 / 21

h0 Φ

x1

h1 Φ

x2

. . . Φ hT−1

xT−1

hTΦ

xT

Ψ

yT

Ψ

yT−1

Ψ

y1

w

Even though the number of steps T depends on x, this is a standard graph
of tensor operations, and autograd can deal with it as usual. This is referred to
as “backpropagation through time” (Werbos, 1988).

François Fleuret EE-559 – Deep learning / 11.1. Recurrent Neural Networks 10 / 21

We consider the following simple binary sequence classification problem:

• Class 1: the sequence is the concatenation of two identical halves,

• Class 0: otherwise.

E.g.

x y
(1, 2, 3, 4, 5, 6) 0
(3, 9, 9, 3) 0
(7, 4, 5, 7, 5, 4) 0
(7, 7) 1
(1, 2, 3, 1, 2, 3) 1
(5, 1, 1, 2, 5, 1, 1, 2) 1

François Fleuret EE-559 – Deep learning / 11.1. Recurrent Neural Networks 11 / 21

In what follows we use the three standard activation functions:

• The rectified linear unit:

ReLU(x) = max(x , 0)

• The hyperbolic tangent:

tanh(x) =
ex − e−x

ex + e−x

• The sigmoid:

sigm(x) =
1

1 + e−x

François Fleuret EE-559 – Deep learning / 11.1. Recurrent Neural Networks 12 / 21

We can build an “Elman network” (Elman, 1990), with h0 = 0, the update

ht = ReLU
(
W(x h)xt + W(h h)ht−1 + b(h)

)
(recurrent state)

and the final prediction

yT = W(h y)hT + b(y).

class RecNet(nn.Module):
def __init__(self, dim_input, dim_recurrent, dim_output):

super(RecNet, self).__init__()
self.fc_x2h = nn.Linear(dim_input, dim_recurrent)
self.fc_h2h = nn.Linear(dim_recurrent, dim_recurrent, bias = False)
self.fc_h2y = nn.Linear(dim_recurrent, dim_output)

def forward(self, input):
h = input.new_zeros(1, self.fc_h2y.weight.size(1))
for t in range(input.size(0)):

h = F.relu(self.fc_x2h(input[t:t+1]) + self.fc_h2h(h))
return self.fc_h2y(h)

B To simplify the processing of variable-length sequences, we are processing
samples (sequences) one at a time here.

François Fleuret EE-559 – Deep learning / 11.1. Recurrent Neural Networks 13 / 21

We encode the symbol at time t as a one-hot vector xt , and thanks to autograd,
the training can be implemented as

generator = SequenceGenerator(nb_symbols = 10,
pattern_length_min = 1, pattern_length_max = 10,
one_hot = True)

model = RecNet(dim_input = 10,
dim_recurrent = 50,
dim_output = 2)

cross_entropy = nn.CrossEntropyLoss()

optimizer = torch.optim.Adam(model.parameters(), lr = lr)

for k in range(args.nb_train_samples):
input, target = generator.generate()
output = model(input)
loss = cross_entropy(output, target)
optimizer.zero_grad()
loss.backward()
optimizer.step()

François Fleuret EE-559 – Deep learning / 11.1. Recurrent Neural Networks 14 / 21

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 50000 100000 150000 200000 250000

E
rr

o
r

Nb. sequences seen

Baseline

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 2 4 6 8 10 12 14 16 18 20

E
rr

o
r

Sequence length

Baseline

François Fleuret EE-559 – Deep learning / 11.1. Recurrent Neural Networks 15 / 21

Gating

François Fleuret EE-559 – Deep learning / 11.1. Recurrent Neural Networks 16 / 21

When unfolded through time, the model is deep, and training it involves in
particular dealing with vanishing gradients.

An important idea in the RNN models used in practice is to add in a form or
another a pass-through, so that the recurrent state does not go repeatedly
through a squashing non-linearity.

François Fleuret EE-559 – Deep learning / 11.1. Recurrent Neural Networks 17 / 21

For instance, the recurrent state update can be a per-component weighted
average of its previous value ht−1 and a full update h̄t , with the weighting zt
depending on the input and the recurrent state, acting as a “forget gate”.

So the model has an additional “gating” output

f : RD × RQ → [0, 1]Q ,

and the update rule takes the form

h̄t = Φ(xt , ht−1)
zt = f (xt , ht−1)
ht = zt � ht−1 + (1− zt)� h̄t ,

where � stands for the usual component-wise Hadamard product.

François Fleuret EE-559 – Deep learning / 11.1. Recurrent Neural Networks 18 / 21

We can improve our minimal example with such a mechanism, from our simple

ht = ReLU
(
W(x h)xt + W(h h)ht−1 + b(h)

)
(recurrent state)

to

h̄t = ReLU
(
W(x h)xt + W(h h)ht−1 + b(h)

)
(full update)

zt = sigm
(
W(x z)xt + W(h z)ht−1 + b(z)

)
(forget gate)

ht = zt � ht−1 + (1− zt)� h̄t (recurrent state)

François Fleuret EE-559 – Deep learning / 11.1. Recurrent Neural Networks 19 / 21

class RecNetWithGating(nn.Module):
def __init__(self, dim_input, dim_recurrent, dim_output):

super(RecNetWithGating, self).__init__()

self.fc_x2h = nn.Linear(dim_input, dim_recurrent)
self.fc_h2h = nn.Linear(dim_recurrent, dim_recurrent, bias = False)
self.fc_x2z = nn.Linear(dim_input, dim_recurrent)
self.fc_h2z = nn.Linear(dim_recurrent, dim_recurrent, bias = False)

self.fc_h2y = nn.Linear(dim_recurrent, dim_output)

def forward(self, input):
h = input.new_zeros(1, self.fc_h2y.weight.size(1))
for t in range(input.size(0)):

z = torch.sigmoid(self.fc_x2z(input[t:t+1]) + self.fc_h2z(h))
hb = F.relu(self.fc_x2h(input[t:t+1]) + self.fc_h2h(h))
h = z * h + (1 - z) * hb

return self.fc_h2y(h)

François Fleuret EE-559 – Deep learning / 11.1. Recurrent Neural Networks 20 / 21

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 50000 100000 150000 200000 250000

E
rr

o
r

Nb. sequences seen

Baseline
w/ Gating

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 2 4 6 8 10 12 14 16 18 20

E
rr

o
r

Sequence length

Baseline
w/ Gating

François Fleuret EE-559 – Deep learning / 11.1. Recurrent Neural Networks 21 / 21

References

S. Bai, J. Kolter, and V. Koltun. An empirical evaluation of generic convolutional and
recurrent networks for sequence modeling. CoRR, abs/1803.01271, 2018.

J. L. Elman. Finding structure in time. Cognitive Science, 14(2):179 – 211, 1990.

A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K. J. Lang. Phoneme recognition
using time-delay neural networks. IEEE Transactions on Acoustics, Speech, and Signal
Processing, 37(3):328–339, 1989.

P. J. Werbos. Generalization of backpropagation with application to a recurrent gas market
model. Neural Networks, 1(4):339–356, 1988.

	Inference from sequences
	Temporal Convolutions
	RNN and backprop through time
	Gating

