
EE-559 – Deep learning

10.4. Model persistence and checkpoints

François Fleuret

https://fleuret.org/ee559/

Mon Feb 18 13:33:05 UTC 2019

ÉCOLE POLYTECHNIQUE
FÉDÉRALE DE LAUSANNE

Saving and loading models is key to use models trained previously.

It also allows to implement checkpoints which keep track of the state during
training and allow to either restart after an expected interruption, or modulate
meta-parameters manually.

The underlying operation is serialization, that is the transcription of an
arbitrary object into a sequence of bytes saved on disk.

François Fleuret EE-559 – Deep learning / 10.4. Model persistence and checkpoints 1 / 9

https://fleuret.org/ee559/

The main PyTorch methods for serializing are torch.save(obj, filename)

and torch.load(filename).

>>> x = 34
>>> torch.save(x, ’x.pth’)
>>> y = torch.load(’x.pth’)
>>> y
34

>>> z = { ’a’: torch.LongTensor(2, 3).random_(10), ’b’: nn.Linear(10, 20) }
>>> torch.save(z, ’z.pth’)
>>> w = torch.load(’z.pth’)
>>> w
{’a’: tensor([[4, 2, 9],

[7, 2, 7]]), ’b’: Linear(in_features=10, out_features=20, bias=True)}

François Fleuret EE-559 – Deep learning / 10.4. Model persistence and checkpoints 2 / 9

One can save directly a full model like this, including arbitrary fields

>>> x = nn.Sequential(nn.Linear(3, 10), nn.ReLU(), nn.Linear(10, 1))
>>> x.blah = 14
>>> torch.save(x, ’model.pth’)
>>>
>>> z = torch.load(’model.pth’)
>>> z(torch.empty(2, 3).normal_())
tensor([[0.0665],

[0.2116]])
>>> z.blah
14

François Fleuret EE-559 – Deep learning / 10.4. Model persistence and checkpoints 3 / 9

Saving a full model with torch.save() bounds the saved quantities to the
specific class implementation, and may break after changes in the code.

The suggested policy is to save the state dictionary alone, as provided by
Module.state_dict(), which encompasses Parameters and buffers such as
batchnorm running estimates, etc.

Additionally

• Tensors are saved with their locations (CPU, or GPU), and will be loaded
in the same configuration,

• in your Modules, buffers have to be identified with register_buffer,

• loaded models are in train mode by default,

• optimizers have a state too (momentum, Adam).

François Fleuret EE-559 – Deep learning / 10.4. Model persistence and checkpoints 4 / 9

A checkpoint is a persistent object that keeps the global state of the training:
model and optimizer. In the following example (1) we load it when we start if it
exists, and (2) we save it at every epoch.

nb_epochs_finished = 0
model = Net()
optimizer = torch.optim.SGD(model.parameters(), lr = lr)

checkpoint_name = ’checkpoint.pth’

try:
checkpoint = torch.load(checkpoint_name)
nb_epochs_finished = checkpoint[’nb_epochs_finished’]
model.load_state_dict(checkpoint[’model_state’])
optimizer.load_state_dict(checkpoint[’optimizer_state’])
print(’Checkpoint loaded with %d epochs finished.’ % nb_epochs_finished)

except FileNotFoundError:
print(’Starting from scratch.’)

except:
print(’Error when loading the checkpoint.’)
exit(1)

François Fleuret EE-559 – Deep learning / 10.4. Model persistence and checkpoints 5 / 9

for k in range(nb_epochs_finished, nb_epochs):
acc_loss = 0

for input, target in zip(train_input.split(batch_size),
train_target.split(batch_size)):

output = model(input)
loss = criterion(output, target)
acc_loss += loss.item()
optimizer.zero_grad()
loss.backward()
optimizer.step()

print(k, acc_loss)

checkpoint = {
’nb_epochs_finished’: k + 1,
’model_state’: model.state_dict(),
’optimizer_state’: optimizer.state_dict()

}
torch.save(checkpoint, checkpoint_name)

François Fleuret EE-559 – Deep learning / 10.4. Model persistence and checkpoints 6 / 9

If we killall python during training

fleuret@elk:/tmp/ ./tinywithcheckpoint.py
Starting from scratch.
0 161.2404215920251
1 35.50377965264488
2 24.43254833246465
3 18.57419647696952
4 14.582882737944601
Killed

and re-start

fleuret@elk:/tmp/ ./tinywithcheckpoint.py
Checkpoint loaded with 5 epochs finished.
5 11.396404800716482
6 8.944935847055604
7 7.116929043420896
8 5.463898817846712
9 4.41012461569494
test_error 1.01% (101/10000)

François Fleuret EE-559 – Deep learning / 10.4. Model persistence and checkpoints 7 / 9

B
Since a model is saved with information about the CPU/GPUs where
each Storage is located there may be issues if the model is loaded on a
different hardware configuration.

François Fleuret EE-559 – Deep learning / 10.4. Model persistence and checkpoints 8 / 9

For instance, if we save a model located on a GPU:

>>> x = torch.nn.Linear(10, 4)
>>> x.to(’cuda’)
Linear(in_features=10, out_features=4, bias=True)
>>> torch.save(x, ’x.pth’)

And load it on a machine without GPU:

>>> x = torch.load(’x.pth’)
Traceback (most recent call last):
/.../
RuntimeError: cuda runtime error (35) : CUDA driver version is insufficient for
CUDA runtime version at torch/csrc/cuda/Module.cpp:51

This can be fixed by specifying at load time how to relocate storages:

>>> x = torch.load(’x.pth’, map_location = lambda storage, loc: storage)

François Fleuret EE-559 – Deep learning / 10.4. Model persistence and checkpoints 9 / 9

