EE-559 — Deep learning

10.1. Generative Adversarial Networks

Francois Fleuret
https://fleuret.org/ee559/
Mon Feb 18 13:32:58 UTC 2019

ZelCI3a0 AL

vvvvvvvvvvvv

FEDERALE DE LAUSANNF

A different approach to learn high-dimension generative models are the
Generative Adversarial Networks proposed by Goodfellow et al. (2014).

The idea behind GANs is to train two networks jointly:

o A discriminator D to classify samples as “real” or “fake”,

« a generator G to map a [simple] fixed distribution to samples that fool D.

AN

2 1

The approach is adversarial since the two networks have antagonistic objectives.

Frangois Fleuret EE-559 — Deep learning / 10.1. Generative Adversarial Networks 1/30

https://fleuret.org/ee559/

Francois Fleuret

Francois Fleuret

A bit more formally, let & be the signal space, and D the latent space
dimension.

e The generator
G:RP -

is trained so that [ideally] if it gets a random normal-distributed Z as input,
it produces a sample following the data distribution as output.

e The discriminator
D: 2 —[0,1]

is trained so that if it gets a sample as input, it predicts if it comes from
from G or from the real data.

EE-559 — Deep learning / 10.1. Generative Adversarial Networks 2 /30

If G is fixed, to train D given a set of “real points”
Xp~p, n=1 ..., N,

we can generate
znp~N(0,1), n=1,...,N,
build a two-class data-set

2 ={ (a,1), ., (w, 1), (6(z1),0), .., (G(zw), 0) },

TV TV
real samples ~pu fake samples ~pg

and minimize the binary cross-entropy

N N
Z(D) = —ﬁ <Z log D(xn) + > _ log(1 — D(G(z,,))))
n=1 n=1

= _% (AXNM [Iog D(X)] + IEXNMG [Iog(l - D(X))]))

where p is the true distribution of the data, and ug is the distribution of G(Z)
with Z ~ (0, 1).

EE-559 — Deep learning / 10.1. Generative Adversarial Networks 3/30

The situation is slightly more complicated since we also want to optimize G to
maximize D's loss.

Goodfellow et al. (2014) provide an analysis of the resulting equilibrium of that
strategy.

Frangois Fleuret EE-559 — Deep learning / 10.1. Generative Adversarial Networks 4 /30

Let's define
Z6(D,G) = Ex, [Iog D(X)] + Bxo g [Iog(l — D(X))]

which is high if D is doing a good job (low cross entropy), and low if G fools D.

Our ultimate goal is a G* that fools any D, so

G* = argmin max Zg(D, G).
G D

Frangois Fleuret EE-559 — Deep learning / 10.1. Generative Adversarial Networks 5 /30

If we define the optimal discriminator for a given generator

D¢ = argmax Zg(D, G),
D

our objective becomes

G* = argmin Z¢(Dg, G),
G

that is:
Find a G whose loss against the best D is low.
Frangois Fleuret EE-559 — Deep learning / 10.1. Generative Adversarial Networks 6 /30
We have
Z6(D,G) = Ex., [Iog D(X)] + Exeopg [Iog(l - D(X))]
— [1(x)108 D(x) + () log(1 ~ D(x))dk.
Since

p(x)

arg:jnax p(x)log d + pg(x)log(1l — d) m,

and
D¢ = argmax Zg(D, G),
D

if there is no regularization on D, we get

v DE(x) — M)
7 Pel) = ey et

Frangois Fleuret EE-559 — Deep learning / 10.1. Generative Adversarial Networks 7 /30

So, since

wron p(x)
o Pel) = e e

we get
Z6(Dg, 6) = Exy | 10 DE(X)| + Exnyg | log(1 — D(X)))

w(X) 1 (X)
{'°g (X) + MG(X)} Exen {'°g H(X) + MG(X)}

+ +
:]DKL(MHM MG)+IDKL(NG a MG)—|0g4

= Ex~,

2 2
=2Dys (1, pg) — log 4

where D js is the Jensen-Shannon Divergence, a standard dissimilarity measure
between distributions.

Frangois Fleuret EE-559 — Deep learning / 10.1. Generative Adversarial Networks 8 /30

To recap: if there is no capacity limitation for D, and if we define
Z6(D,G) = Ex., [Iog D(X)] + Exeopg [Iog(l - D(X))},

computing
G* = argmin mSXS,”G(D, G)
G

amounts to compute
G* = argénin Dys(p, pG),

where D5 is a reasonable dissimilarity measure between distributions.

f Although this derivation provides a nice formal framework, in practice D
is not “fully” optimized to [come close to] D¢ when optimizing G.

In our minimal example, we alternate gradient steps to improve G and D.

Frangois Fleuret EE-559 — Deep learning / 10.1. Generative Adversarial Networks 9 /30

z_dim, nb_hidden = 8, 100

model_G = nn.Sequential(nn.Linear(z_dim, nb_hidden),
nn.RelLU(),
nn.Linear (nb_hidden, 2))

model D = nn.Sequential(nn.Linear(2, nb_hidden),
nn.RelLUQ),
nn.Linear(nb_hidden, 1),

nn.Sigmoid())

Frangois Fleuret EE-559 — Deep learning / 10.1. Generative Adversarial Networks 10 / 30

batch_size, 1lr = 10, 1e-3

optimizer_G = optim.Adam(model_G.parameters(), lr = 1lr)
optimizer_D = optim.Adam(model_D.parameters(), lr = 1lr)

for e in range(nb_epochs):

for t, real_batch in enumerate(real_samples.split(batch_size)):
z = real_batch.new(real_batch.size(0), z_dim) .normal_()
fake_batch = model_G(z)

D_scores_on_real = model_D(real_batch)
D_scores_on_fake = model_D(fake_batch)

if t42 ==
loss = (1 - D_scores_on_fake).log() .mean()
optimizer_G.zero_grad()
loss.backward()
optimizer_G.step()
else:
loss = - (1 - D_scores_on_fake).log() .mean() \
- D_scores_on_real.log() .mean()
optimizer_D.zero_grad()
loss.backward()
optimizer_D.step()

Frangois Fleuret EE-559 — Deep learning / 10.1. Generative Adversarial Networks 11 /30

2d

8d

32d

Francois Fleuret

Francois Fleuret

Real - B Real - B Real - B Real -
synin - synin - synn - sy -
3 3 - 3
2 2 2
1 1 1
0 3 3
1 a 2
2 2 2
5 3 3
4 4 a

4 2 o 2 s s . 4 2 o 2 s s s 4 2 o 2 s 3 s s 2 o 2 s 3
Real - . Real - B Real . Real -
synin - synin - synth symn -

3 3 3
2 2 2
1 1 1
0 o 3
a a 1
2 2 2
3 3 3
4 “ “

4 2 o 2 s 3 . 4 2 o 2 s 3 . s 2 o 2 B 3 . s 2 o 2 B 3
Real - B Real - B Real - . Real -
synin - synin - L smin - sy -

3 3 ‘ 3
2 2 2
1 1 1
0 3 3
1 1 1
2 2 2
3 3 3
4 4 “
4 2 o 2 s s . a 2 o 2 s s s 4 2 o 2 s 3 6 s 2 o 2 s 3
EE-559 — Deep learning / 10.1. Generative Adversarial Networks 12 /30

In more realistic settings, the fake samples may be initially so “unrealistic” that
the response of D saturates. That causes the loss for G

Bx~pg | log(1 — D(X))]

to be far in the exponential tail of D’s sigmoid, and have zero gradient since
log(1 + €) ~ € does not correct it in any way.

Goodfellow et al. suggest to replace this term with a non-saturating cost

~Expg [10g(D(X))]

so that the log fixes D’s exponential behavior. The resulting optimization
problem has the same optima as the original one.

A The loss for D remains unchanged.

EE-559 — Deep learning / 10.1. Generative Adversarial Networks 13 /30

Figure 2: Visualization of samples from the model. Rightmost column shows the nearest training example of
the neighboring sample, in order to demonstrate that the model has not memorized the training set. Samples
are fair random draws, not cherry-picked. Unlike most other visualizations of deep generative models, these
images show actual samples from the model distributions, not conditional means given samples of hidden units.
Moreover, these samples are uncorrelated because the sampling process does not depend on Markov chain
mixing. a) MNIST b) TFD c) CIFAR-10 (fully connected model) d) CIFAR-10 (convolutional discriminator
and “deconvolutional” generator)

(Goodfellow et al., 2014)

Francois Fleuret EE-559 — Deep learning / 10.1. Generative Adversarial Networks 14 / 30

Deep Convolutional GAN

Francois Fleuret EE-559 — Deep learning / 10.1. Generative Adversarial Networks 15 / 30

“We also encountered difficulties attempting to scale GANs using CNN
architectures commonly used in the supervised literature. However, after
extensive model exploration we identified a family of architectures that
resulted in stable training across a range of datasets and allowed for training
higher resolution and deeper generative models.”

(Radford et al., 2015)

Francois Fleuret EE-559 — Deep learning / 10.1. Generative Adversarial Networks 16 / 30

Radford et al. converged to the following rules:

e Replace pooling layers with strided convolutions in D and strided
transposed convolutions in G,

e use batchnorm in both D and G,
e remove fully connected hidden layers,
e use ReLU in G except for the output, which uses Tanh,

e use LeakyRelLU activation in D for all layers.

Frangois Fleuret EE-559 — Deep learning / 10.1. Generative Adversarial Networks 17 / 30

Stride 2

Stride 2 Stride 2

Project and reshape

CONV 1

CONV 2 CONV 3 64

CONV 4 .
G(2)

Figure 1: DCGAN generator used for LSUN scene modeling. A 100 dimensional uniform distribu-
tion Z is projected to a small spatial extent convolutional representation with many feature maps.
A series of four fractionally-strided convolutions (in some recent papers, these are wrongly called
deconvolutions) then convert this high level representation into a 64 x 64 pixel image. Notably, no
fully connected or pooling layers are used.

(Radford et al., 2015)

We can have a look at the reference implementation provided in

https://github.com/pytorch/examples.git

Frangois Fleuret EE-559 — Deep learning / 10.1. Generative Adversarial Networks 18 / 30

default nz = 100, ngf = 64

class Generator(nn.Module):
def __init__(self, ngpu):
super (Generator, self).
self.ngpu = ngpu
self.main = nn.Sequential(
input is Z, going into a convolution
nn.ConvTranspose2d(nz, ngf * 8, 4, 1, 0, bias=False),
nn.BatchNorm2d (ngf * 8),
nn.ReLU(True),
state size. (ngf+*8) x 4 x 4
nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False),
nn.BatchNorm2d (ngf * 4),
nn.ReLU(True),
state size. (ngf#*4) x 8 x 8
nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1, bias=False),
nn.BatchNorm2d(ngf * 2),
nn.ReLU(True),
state size. (ngf*2) x 16 x 16
nn.ConvTranspose2d (ngf * 2, ngf, 4, 2, 1, bias=False),
nn.BatchNorm2d (ngf) ,
nn.ReLU(True),
state size. (ngf) x 32 x 32
nn.ConvTranspose2d(ngf, nc, 4, 2, 1, bias=False),
nn.Tanh()
state size. (nc) x 64 x 64

init__Q)

Frangois Fleuret EE-559 — Deep learning / 10.1. Generative Adversarial Networks 19 / 30

https://github.com/pytorch/examples.git

Francois Fleuret

Francois Fleuret

default nz = 100, ndf = 64

class Discriminator(nn.Module):
def __init__(self, ngpu):

super (Discriminator, self).__init__()

self.ngpu = ngpu

self.main = nn.Sequential(
input is (nc) x 64 x 64
nn.Conv2d(nc, ndf, 4, 2, 1, bias=False),
nn.LeakyReLU(0.2, inplace=True),
state size. (ndf) x 32 x 32

nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False),

nn.BatchNorm2d (ndf * 2),
nn.LeakyReLU(0.2, inplace=True),
state size. (ndf*2) x 16 x 16

nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=False),

nn.BatchNorm2d (ndf * 4),
nn.LeakyReLU(0.2, inplace=True),
state size. (ndf*4) x 8 x 8

nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 1, bias=False),

nn.BatchNorm2d (ndf * 8),
nn.LeakyReLU(0.2, inplace=True),
state size. (ndf*8) x 4 x 4

nn.Conv2d(ndf * 8, 1, 4, 1, 0, bias=False),

nn.Sigmoid ()

EE-559 — Deep learning / 10.1. Generative Adversarial Networks

custom weights initialization called on netG and netD

def weights_init(m):
classname = m.__class__.__name__
if classname.find(’Conv’) != -1:
m.weight.data.normal_(0.0, 0.02)
elif classname.find(’BatchNorm’) != -1:
m.weight.data.normal_(1.0, 0.02)
m.bias.data.fill_(0)

criterion = nn.BCELoss()

fixed_noise = torch.randn(opt.batchSize, nz, 1, 1, device=device)

real_label = 1
fake_label = 0

setup optimizer

optimizerD = optim.Adam(netD.parameters(), lr=opt.lr, betas=(opt.betal, 0.999))
optimizerG = optim.Adam(netG.parameters(), lr=opt.lr, betas=(opt.betal, 0.999))

EE-559 — Deep learning / 10.1. Generative Adversarial Networks

20 / 30

21 /30

HHHAHEHSHAH B H B R HEH SR RH RS HS

(1) Update D network: maximize log(D(x)) + log(l - D(G(z)))
HHHAHEHSHRHBH RS HEHEHRH R HAH

train with real

netD.zero_grad()

real_cpu = datal[0].to(device)

batch_size = real_cpu.size(0)

label = torch.full((batch_size,), real_label, device=device)

output = netD(real_cpu)

errD_real = criterion(output, label)
errD_real.backward()

D_x = output.mean().item()

train with fake

noise = torch.randn(batch_size, nz, 1, 1, device=device)
fake = netG(noise)

label.fill_(fake_label)

output = netD(fake.detach())

errD_fake = criterion(output, label)
errD_fake.backward()

D_G_zl = output.mean().item()

errD = errD_real + errD_fake

optimizerD.step()

Frangois Fleuret EE-559 — Deep learning / 10.1. Generative Adversarial Networks 22 /30

HEHHBHH B H B R R H RS H R RS

(2) Update G network: maximize log(D(G(z)))
HEHHAHH AR H R HRRHH AR R H RS H

netG.zero_grad()

label.fill_(real_label) # fake labels are real for generator cost
output = netD(fake)

errG = criterion(output, label)

errG.backward()

D_G_z2 = output.mean().item()

optimizerG.step()

Note that this update implements the — log(D(G(z))) trick.

Frangois Fleuret EE-559 — Deep learning / 10.1. Generative Adversarial Networks 23 /30

Real images from LSUN’s “bedroom” class.

Francois Fleuret EE-559 — Deep learning / 10.1. Generative Adversarial Networks 24 / 30

RET f‘UEE“j

Fake images after 1 epoch (3M images)

Frangois Fleuret EE-559 — Deep learning / 10.1. Generative Adversarial Networks 25 / 30

Fake images after 20 epochs

Francois Fleuret EE-559 — Deep learning / 10.1. Generative Adversarial Networks 26 / 30

Training a standard GAN often results in two pathological behaviors:

¢ Oscillations without convergence. Contrary to standard loss minimization,
we have no guarantee here that it will actually decrease.

e The infamous “mode collapse”, when G models very well a small
sub-population, concentrating on a few modes.

Additionally, performance is hard to assess and is often a “beauty contest”.

Frangois Fleuret EE-559 — Deep learning / 10.1. Generative Adversarial Networks 27 / 30

(Brock et al., 2018)

Francois Fleuret EE-559 — Deep learning / 10.1. Generative Adversarial Networks 28 / 30

(Brock et al., 2018)

Francois Fleuret EE-559 — Deep learning / 10.1. Generative Adversarial Networks 29 / 30

(Karras et al., 2018)

Francois Fleuret EE-559 — Deep learning / 10.1. Generative Adversarial Networks 30/ 30

References

A. Brock, J. Donahue, and K. Simonyan. Large scale gan training for high fidelity natural
image synthesis. CoRR, abs/1809.11096, 2018.

I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio. Generative adversarial networks. CoRR, abs/1406.2661,
2014.

T. Karras, S. Laine, and T. Aila. A style-based generator architecture for generative
adversarial networks. CoRR, abs/1812.04948, 2018.

A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. CoRR, abs/1511.06434, 2015.

	Deep Convolutional GAN

