
EE-559 – Deep learning

1.2. Current applications and success

François Fleuret

https://fleuret.org/ee559/

Tue Feb 19 14:18:27 UTC 2019

ÉCOLE POLYTECHNIQUE
FÉDÉRALE DE LAUSANNE

Object detection and segmentation

16 Pinheiro, Lin, Collobert, Dollár

Fig. 8: More selected qualitative results (see also Figure 4).

(Pinheiro et al., 2016)

François Fleuret EE-559 – Deep learning / 1.2. Current applications and success 1 / 23

https://fleuret.org/ee559/

Human pose estimation

(Wei et al., 2016)

François Fleuret EE-559 – Deep learning / 1.2. Current applications and success 2 / 23

Reinforcement learning

Self-trained, plays 49 games at human level.

(Mnih et al., 2015)

François Fleuret EE-559 – Deep learning / 1.2. Current applications and success 3 / 23

Strategy games

March 2016, 4-1 against a 9-dan professional without handicap.

(Silver et al., 2016)

François Fleuret EE-559 – Deep learning / 1.2. Current applications and success 4 / 23

Translation

“The reason Boeing are doing this is to cram more seats in to make their plane
more competitive with our products,” said Kevin Keniston, head of passenger
comfort at Europe’s Airbus.

Ù
“La raison pour laquelle Boeing fait cela est de créer plus de sièges pour rendre
son avion plus compétitif avec nos produits”, a déclaré Kevin Keniston, chef
du confort des passagers chez Airbus.

When asked about this, an official of the American administration replied:
“The United States is not conducting electronic surveillance aimed at offices
of the World Bank and IMF in Washington.”

Ù
Interrogé à ce sujet, un fonctionnaire de l’administration américaine a répondu:
“Les États-Unis n’effectuent pas de surveillance électronique à l’intention des
bureaux de la Banque mondiale et du FMI à Washington”

(Wu et al., 2016)

François Fleuret EE-559 – Deep learning / 1.2. Current applications and success 5 / 23

Auto-captioning

Figure 5. A selection of evaluation results, grouped by human rating.

4.3.7 Analysis of Embeddings

In order to represent the previous word St−1 as input to
the decoding LSTM producing St, we use word embedding
vectors [22], which have the advantage of being indepen-
dent of the size of the dictionary (contrary to a simpler one-
hot-encoding approach). Furthermore, these word embed-
dings can be jointly trained with the rest of the model. It
is remarkable to see how the learned representations have
captured some semantic from the statistics of the language.
Table 4.3.7 shows, for a few example words, the nearest
other words found in the learned embedding space.

Note how some of the relationships learned by the model
will help the vision component. Indeed, having “horse”,
“pony”, and “donkey” close to each other will encourage the
CNN to extract features that are relevant to horse-looking
animals. We hypothesize that, in the extreme case where
we see very few examples of a class (e.g., “unicorn”), its
proximity to other word embeddings (e.g., “horse”) should
provide a lot more information that would be completely
lost with more traditional bag-of-words based approaches.

5. Conclusion

We have presented NIC, an end-to-end neural network
system that can automatically view an image and generate

Word Neighbors
car van, cab, suv, vehicule, jeep
boy toddler, gentleman, daughter, son
street road, streets, highway, freeway
horse pony, donkey, pig, goat, mule
computer computers, pc, crt, chip, compute

Table 6. Nearest neighbors of a few example words

a reasonable description in plain English. NIC is based on
a convolution neural network that encodes an image into a
compact representation, followed by a recurrent neural net-
work that generates a corresponding sentence. The model is
trained to maximize the likelihood of the sentence given the
image. Experiments on several datasets show the robust-
ness of NIC in terms of qualitative results (the generated
sentences are very reasonable) and quantitative evaluations,
using either ranking metrics or BLEU, a metric used in ma-
chine translation to evaluate the quality of generated sen-
tences. It is clear from these experiments that, as the size
of the available datasets for image description increases, so
will the performance of approaches like NIC. Furthermore,
it will be interesting to see how one can use unsupervised
data, both from images alone and text alone, to improve im-
age description approaches.

(Vinyals et al., 2015)

François Fleuret EE-559 – Deep learning / 1.2. Current applications and success 6 / 23

Question answering

I: Jane went to the hallway.
I: Mary walked to the bathroom.
I: Sandra went to the garden.
I: Daniel went back to the garden.
I: Sandra took the milk there.
Q: Where is the milk?
A: garden

I: It started boring, but then it got interesting.
Q: What’s the sentiment?
A: positive

(Kumar et al., 2015)

François Fleuret EE-559 – Deep learning / 1.2. Current applications and success 7 / 23

Image generation

(Brock et al., 2018)

François Fleuret EE-559 – Deep learning / 1.2. Current applications and success 8 / 23

Text generation

System Prompt (human-written)

In a shocking finding, scientist discovered a herd of unicorns living
in a remote, previously unexplored valley, in the Andes
Mountains. Even more surprising to the researchers was the fact that
the unicorns spoke perfect English.

Model Completion (machine-written, 10 tries)

The scientist named the population, after their distinctive horn,
Ovid’s Unicorn. These four-horned, silver-white unicorns were
previously unknown to science.

Now, after almost two centuries, the mystery of what sparked this odd
phenomenon is finally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of La
Paz, and several companions, were exploring the Andes Mountains when
they found a small valley, with no other animals or humans. Pérez
noticed that the valley had what appeared to be a natural fountain,
surrounded by two peaks of rock and silver snow.

(Radford et al., 2019)

François Fleuret EE-559 – Deep learning / 1.2. Current applications and success 9 / 23

Why does it work now?

François Fleuret EE-559 – Deep learning / 1.2. Current applications and success 10 / 23

The success of deep learning is multi-factorial:

• Five decades of research in machine learning,

• CPUs/GPUs/storage developed for other purposes,

• lots of data from “the internet”,

• tools and culture of collaborative and reproducible science,

• resources and efforts from large corporations.

François Fleuret EE-559 – Deep learning / 1.2. Current applications and success 11 / 23

Five decades of research in ML provided

• a taxonomy of ML concepts (classification, generative models, clustering,
kernels, linear embeddings, etc.),

• a sound statistical formalization (Bayesian estimation, PAC),

• a clear picture of fundamental issues (bias/variance dilemma, VC
dimension, generalization bounds, etc.),

• a good understanding of optimization issues,

• efficient large-scale algorithms.

François Fleuret EE-559 – Deep learning / 1.2. Current applications and success 12 / 23

From a practical perspective, deep learning

• lessens the need for a deep mathematical grasp,

• makes the design of large learning architectures a system/software
development task,

• allows to leverage modern hardware (clusters of GPUs),

• does not plateau when using more data,

• makes large trained networks a commodity.

François Fleuret EE-559 – Deep learning / 1.2. Current applications and success 13 / 23

10-3

100

103

106

109

1012

 1960 1970 1980 1990 2000 2010 2020

Fl
op

s
pe

r U
S

D

(Wikipedia “FLOPS”)

TFlops (1012) Price GFlops per $

Intel i7-6700K 0.2 $344 0.6

AMD Radeon R-7 240 0.5 $55 9.1

NVIDIA GTX 750 Ti 1.3 $105 12.3

AMD RX 480 5.2 $239 21.6

NVIDIA GTX 1080 8.9 $699 12.7

François Fleuret EE-559 – Deep learning / 1.2. Current applications and success 14 / 23

103

106

109

1012

 1980 1990 2000 2010 2020

B
yt

es
 p

er
 U

S
D

(John C. McCallum)

The typical cost of a 4Tb hard disk is $120 (Dec 2016).

François Fleuret EE-559 – Deep learning / 1.2. Current applications and success 15 / 23

AlexNet

BN-AlexNet

BN-NIN

GoogLeNet

ResN
et-1

8

VGG-16

VGG-19

ResN
et-3

4

ResN
et-5

0

ResN
et-1

01

Inceptio
n-v3

50

55

60

65

70

75

80

T
o
p
-1

 a
cc

u
ra

cy
 [

%
]

0 5 10 15 20 25 30 35 40

Operations [G-Ops]

50

55

60

65

70

75

80
T
o
p
-1

 a
cc

u
ra

cy
 [

%
]

AlexNet
BN-AlexNet

BN-NIN

ResNet-18

VGG-16 VGG-19

GoogLeNet

ResNet-34

ResNet-50
ResNet-101

Inception-v3

5M 35M 65M 95M 125M 155M

Figure 1: Top1 vs. network. Single-crop top-1 vali-
dation accuracies for top scoring single-model archi-
tectures. We introduce with this chart our choice of
colour scheme, which will be used throughout this
publication to distinguish effectively different archi-
tectures and their correspondent authors. Notice that
network of the same group share colour, for example
ResNet are all variations of pink.

Figure 2: Top1 vs. operations, size ∝ parameters.
Top-1 one-crop accuracy versus amount of operations
required for a single forward pass. The size of the
blobs is proportional to the number of network param-
eters; a legend is reported in the bottom right corner,
spanning from 5× 106 to 155× 106 params.

1 2 4 8 16 32 64

Batch size [/]

0

100

200

300

400

500

600

Fo
w

a
rd

 t
im

e
 p

e
r

im
a
g
e
 [

m
s]

BN-NIN

GoogLeNet

Inception-v3

AlexNet

BN-AlexNet

VGG-16

VGG-19

ResNet-18

ResNet-34

ResNet-50

ResNet-101

1 2 4 8 16 32 64

Batch size [/]

5

10

20

50

100

200

500

Fo
w

a
rd

 t
im

e
 p

e
r

im
a
g
e
 [

m
s]

BN-NIN

GoogLeNet

Inception-v3

AlexNet

BN-AlexNet

VGG-16

VGG-19

ResNet-18

ResNet-34

ResNet-50

ResNet-101

Figure 3: Inference time vs. batch size. These two charts show inference time across different batch sizes with
a linear and logarithmic ordinate respectively and logarithmic abscissa. Missing data points are due to lack of
enough system memory required to process bigger batches.

3.2 Inference Time

Figure 3 reports inference time per image on each architecture, as a function of image batch size
(from 1 to 64). We notice that VGG processes one image in more than half second, making it a less
likely contender in real-time applications on a NVIDIA TX1. AlexNet shows a speed up of roughly
15× going from batch of 1 to 64 images, due to weak optimisation of its fully connected layers. It is
a very surprising finding, that will be further discussed in the next subsection.

3.3 Power

Power measurements are complicated by the high frequency swings in current consumption, which
required high sampling current read-out to avoid aliasing. In this work, we used a 200MHz digital
oscilloscope with a current probe, as reported in section 2. Other measuring instruments, such as an
AC power strip with 2Hz sampling rate, or a GPIB controlled DC power supply with 12Hz sampling
rate, did not provide enough bandwidth to properly conduct power measurements.

3

(Canziani et al., 2016)

François Fleuret EE-559 – Deep learning / 1.2. Current applications and success 16 / 23

Data-set Year Nb. images Resolution Nb. classes
MNIST 1998 6.0× 104 28× 28 10
NORB 2004 4.8× 104 96× 96 5
Caltech 101 2003 9.1× 103 ' 300× 200 101
Caltech 256 2007 3.0× 104 ' 640× 480 256
LFW 2007 1.3× 104 250× 250 –
CIFAR10 2009 6.0× 104 32× 32 10
PASCAL VOC 2012 2.1× 104 ' 500× 400 20
MS-COCO 2015 2.0× 105 ' 640× 480 91
ImageNet 2016 14.2× 106 ' 500× 400 21, 841
Cityscape 2016 25× 103 2, 000× 1000 30

François Fleuret EE-559 – Deep learning / 1.2. Current applications and success 17 / 23

“Quantity has a Quality All Its Own.”

(Thomas A. Callaghan Jr.)

François Fleuret EE-559 – Deep learning / 1.2. Current applications and success 18 / 23

Implementing a deep network, PyTorch

François Fleuret EE-559 – Deep learning / 1.2. Current applications and success 19 / 23

Deep-learning development is usually done in a framework:

Language(s) License Main backer

PyTorch Python BSD Facebook

Caffe2 C++, Python Apache Facebook

TensorFlow Python, C++ Apache Google

MXNet Python, C++, R, Scala Apache Amazon

CNTK Python, C++ MIT Microsoft

Torch Lua BSD Facebook

Theano Python BSD U. of Montreal

Caffe C++ BSD 2 clauses U. of CA, Berkeley

A fast, low-level, compiled backend to access computation devices, combined
with a slow, high-level, interpreted language.

François Fleuret EE-559 – Deep learning / 1.2. Current applications and success 20 / 23

We will use the PyTorch framework for our experiments.

http://pytorch.org

“PyTorch is a python package that provides two high-level features:

• Tensor computation (like numpy) with strong GPU acceleration

• Deep Neural Networks built on a tape-based autograd system

You can reuse your favorite python packages such as numpy, scipy and Cython to
extend PyTorch when needed.”

François Fleuret EE-559 – Deep learning / 1.2. Current applications and success 21 / 23

http://pytorch.org

MNIST data-set

28× 28 grayscale images, 60k train samples, 10k test samples.

(leCun et al., 1998)

François Fleuret EE-559 – Deep learning / 1.2. Current applications and success 22 / 23

model = nn.Sequential(
nn.Conv2d(1, 32, 5), nn.MaxPool2d(3), nn.ReLU(),
nn.Conv2d(32, 64, 5), nn.MaxPool2d(2), nn.ReLU(),
Flattener(),
nn.Linear(256, 200), nn.ReLU(),
nn.Linear(200, 10)

)

nb_epochs, batch_size = 10, 100
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr = 0.1)

model.to(device)
criterion.to(device)
train_input, train_target = train_input.to(device), train_target.to(device)

mu, std = train_input.mean(), train_input.std()
train_input.sub_(mu).div_(std)

for e in range(nb_epochs):
for input, target in zip(train_input.split(batch_size),

train_target.split(batch_size)):
output = model(input)
loss = criterion(output, target)
optimizer.zero_grad()
loss.backward()
optimizer.step()

'7s on a GTX1080, '1% test error

François Fleuret EE-559 – Deep learning / 1.2. Current applications and success 23 / 23

References

A. Brock, J. Donahue, and K. Simonyan. Large scale gan training for high fidelity natural
image synthesis. CoRR, abs/1809.11096, 2018.

A. Canziani, A. Paszke, and E. Culurciello. An analysis of deep neural network models for
practical applications. CoRR, abs/1605.07678, 2016.

A. Kumar, O. Irsoy, J. Su, J. Bradbury, R. English, B. Pierce, P. Ondruska, I. Gulrajani,
and R. Socher. Ask me anything: Dynamic memory networks for natural language
processing. CoRR, abs/1506.07285, 2015.

Y. leCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik,
I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis.
Human-level control through deep reinforcement learning. Nature, 518(7540):529–533,
Feb. 2015.

P. O. Pinheiro, T.-Y. Lin, R. Collobert, and P. Dollár. Learning to refine object segments.
In European Conference on Computer Vision (ECCV), pages 75–91, 2016.

A. Radford, J. Wu, D. Amodei, D. Amodei, J. Clark, M. Brundage, and I. Sutskever.
Better language models and their implications. web, February 2019.
https://blog.openai.com/better-language-models/.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe,
J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu,
T. Graepel, and D. Hassabis. Mastering the game of go with deep neural networks and
tree search. Nature, 529:484–503, 2016.

O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. Show and tell: A neural image caption
generator. In Conference on Computer Vision and Pattern Recognition (CVPR), 2015.

S. Wei, V. Ramakrishna, T. Kanade, and Y. Sheikh. Convolutional pose machines. CoRR,
abs/1602.00134, 2016.

Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao,
Q. Gao, K. Macherey, J. Klingner, A. Shah, M. Johnson, X. Liu, L. Kaiser, S. Gouws,
Y. Kato, T. Kudo, H. Kazawa, K. Stevens, G. Kurian, N. Patil, W. Wang, C. Young,
J. Smith, J. Riesa, A. Rudnick, O. Vinyals, G. Corrado, M. Hughes, and J. Dean.
Google’s neural machine translation system: Bridging the gap between human and
machine translation. CoRR, abs/1609.08144, 2016.

https://blog.openai.com/better-language-models/

	Why does it work now?
	Implementing a deep network, PyTorch

