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Many applications require the automatic extraction of “refined” information
from raw signal (e.g. image recognition, automatic speech processing, natural
language processing, robotic control, geometry reconstruction).

(ImageNet)
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Our brain is so good at interpreting visual information that the “semantic gap”
is hard to assess intuitively.

This ﬁ is a horse
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>>> from torchvision.datasets import CIFAR10
>>> cifar = CIFAR10(’./data/cifar10/’, train=True, download=True)
Files already downloaded and verified
>>> x = torch.from_numpy(cifar.train_data) [43].transpose(2, 0).transpose(l, 2)
>>> x[:, :4, :8]
tensor([[[ 99, 98, 100, 103, 105, 107, 108, 110],
[100, 100, 102, 105, 107, 109, 110, 112],
[104, 104, 106, 109, 111, 112, 114, 116],
[109, 109, 111, 113, 116, 117, 118, 120]],

[[166, 165, 167, 169, 171, 172, 173, 175],
[166, 164, 167, 169, 169, 171, 172, 174],
[169, 167, 170, 171, 171, 173, 174, 176],
[170, 169, 172, 173, 175, 176, 177, 178]1],

[[198, 196, 199, 200, 200, 202, 203, 204],
[195, 194, 197, 197, 197, 199, 200, 201],
[197, 195, 198, 198, 198, 199, 201, 202],
[197, 196, 199, 198, 198, 199, 200, 201]1]], dtype=torch.uint8)
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Extracting semantic automatically requires models of extreme complexity, which
cannot be designed by hand.

Techniques used in practice consist of

1. defining a parametric model, and

2. optimizing its parameters by “making it work” on training data.

This is similar to biological systems for which the model (e.g. brain structure) is
DNA-encoded, and parameters (e.g. synaptic weights) are tuned through
experiences.

Deep learning encompasses software technologies to scale-up to billions of
model parameters and as many training examples.
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There are strong connections between standard statistical modeling and
machine learning.

Classical ML methods combine a “learnable” model from statistics (e.g. “linear
regression” ) with prior knowledge in pre-processing.

“Artificial neural networks” pre-dated these approaches, and do not follow that
dichotomy. They consist of “deep” stacks of parametrized processing.
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From artificial neural networks to “Deep Learning”
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Networks of “Threshold Logic Unit”
(McCulloch and Pitts, 1943)
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1949 — Donald Hebb proposes the Hebbian Learning principle.
1951 — Marvin Minsky creates the first ANN (Hebbian learning, 40 neurons).
1958 — Frank Rosenblatt creates a perceptron to classify 20 x 20 images.

1959 — David H. Hubel and Torsten Wiesel demonstrate orientation selectivity and
columnar organization in the cat’s visual cortex.

1982 — Paul Werbos proposes back-propagation for ANNSs.
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Follows Hubel and Wiesel's results.

!

(Fukushima, 1980)
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Network for the T-C problem
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Trained with back-prop.

(Rumelhart et al., 1988)
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LeNet-5

C3: f. maps 16@10x10
C1.: feature maps S4: f. maps 16@5x5

INPUT
30%32 6@28x28

S2: f. maps
6@14x14

Full conAection ‘ Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection

(leCun et al., 1998)
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(Krizhevsky et al., 2012)
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GoogleNet
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(Szegedy et al., 2015)
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Resnet

(He et al., 2015)
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Deep learning is built on a natural generalization of a neural network: a graph
of tensor operators, taking advantage of

the chain rule (aka “back-propagation”),

stochastic gradient decent,

convolutions,

parallel operations on GPUs.

This does not differ much from networks from the 90s
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This generalization allows to design complex networks of operators dealing with
images, sound, text, sequences, etc. and to train them end-to-end.
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CIFAR10
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32 x 32 color images, 50k train samples, 10k test samples.

(Krizhevsky, 2009, chap. 3)
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ImageNet Large Scale Visual Recognition Challenge.
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1000 categories, > 1M images

(http://image-net.org/challenges/LSVRC /2014 /browse-synsets)
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method top-1 err. top-5 err.
VGG [41] (ILSVRC’14) - 8.43"
GoogLeNet [44] (ILSVRC’14) - 7.89
VGG [41] (v5) 24.4 7.1
PReLU-net [13] 21.59 5.71
BN-inception [16] 21.99 5.81
ResNet-34 B 21.84 5.71
ResNet-34 C 21.53 5.60
ResNet-50 20.74 5.25
ResNet-101 19.87 4.60
ResNet-152 19.38 4.49

Table 4. Error rates (%) of single-model results on the ImageNet
validation set (except T reported on the test set).

method top-5 err. (test)
VGG [41] (ILSVRC’14) 7.32
GoogLeNet [44] (ILSVRC’ 14) 6.66
VGG [41] (v5) 6.8
PReLU-net [13] 4.94
BN-inception [16] 4.82
ResNet (ILSVRC’15) 3.57

Table 5. Error rates (%) of ensembles. The top-5 error is on the
test set of ImageNet and reported by the test server.

(He et al., 2015)
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