
Deep Learning
Spring 2019

 
 

Prof. Gilles Louppe 
g.louppe@uliege.be

1 / 12

http://0.0.0.0:8003/g.louppe@uliege.be


Logistics
This course is given by:

Theory: Prof. Gilles Louppe (g.louppe@uliege.be)

Projects and guidance:

Joeri Hermans (joeri.hermans@doct.uliege.be)

Matthia Sabatelli (m.sabatelli@uliege.be)

Antoine Wehenkel (antoine.wehenkel@uliege.be)

Feel free to contact any of us for help!
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Lectures
Theoretical lectures

Tutorials

Q&A sessions
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Materials
Slides are available at github.com/glouppe/info8010-deep-learning.

In HTML and in PDFs.

Posted online the day before the lesson (hopefully).

Some lessons are partially adapted from "EE-559 Deep Learning" by Francois
Fleuret at EPFL.
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https://github.com/glouppe/info8010-deep-learning
https://fleuret.org/ee559


Textbook
None!
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Resources
Awesome Deep Learning

Awesome Deep Learning papers
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https://github.com/ChristosChristofidis/awesome-deep-learning
https://github.com/terryum/awesome-deep-learning-papers


AI at ULiège
This course is part of the many other courses available at ULiège and related to
AI, including:

INFO8006: Introduction to Arti�cial Intelligence

ELEN0062: Introduction to Machine Learning

INFO8010: Deep Learning  you are there

INFO8003: Optimal decision making for complex problems

INFO8004: Advanced Machine Learning

INFO0948: Introduction to Intelligent Robotics

INFO0049: Knowledge representation

ELEN0016: Computer vision

DROI8031: Introduction to the law of robots

←
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Outline
(Tentative and subject to change!)

Lecture 1: Fundamentals of machine learning

Lecture 2: Neural networks

Lecture 3: Convolutional neural networks

Lecture 4: Training neural networks

Lecture 5: Recurrent neural networks

Lecture 6: Auto-encoders and generative models

Lecture 7: Generative adversarial networks

Lecture 8: Uncertainty

Lecture 9: Adversarial attacks and defenses
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Philosophy
Thorough and detailed

Understand the foundations and the landscape of deep learning.

Be able to write from scratch, debug and run (some) deep learning
algorithms.

State-of-the-art

Introduction to materials new from research (  5 years old).

Understand some of the open questions and challenges in the �eld.

Practical

Fun and challenging course project.

≤
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Projects
Reading assignment

Read, summarize and criticize a major scienti�c paper in deep learning.

Pick one of the following three papers:

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image
recognition. arXiv:1512.03385.

Andrychowicz, M., Denil, M., Gomez, S., Hoffman, M. W., Pfau, D., Schaul, T., ...
& De Freitas, N. (2016). Learning to learn by gradient descent by gradient
descent. arXiv:1606.04474.

Zhang, C., Bengio, S., Hardt, M., Recht, B., & Vinyals, O. (2016). Understanding
deep learning requires rethinking generalization. arXiv:1611.03530.

Deadline: April 5, 2019 at 23:59.
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Project

Ambitious project of your choosing. Details to be announced soon.
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Evaluation
Exam (50%)

Reading assignment (10%)

Project (40%)

The reading assignment and the project are mandatory for presenting the exam.
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Let's start!
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Deep Learning
Lecture 1: Fundamentals of machine learning

 
 

Prof. Gilles Louppe 
g.louppe@uliege.be
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Today
Set the fundamentals of machine learning.

Why learning?

Applications and success

Statistical learning

Supervised learning

Empirical risk minimization

Under-�tting and over-�tting

Bias-variance dilemma
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Why learning?
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What do you see?

How do we do that?!
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Sheepdog or mop?
―――
Credits: Karen Zack, 2016. 5 / 65

https://twitter.com/teenybiscuit


Chihuahua or muf�n?
―――
Credits: Karen Zack. 2016. 6 / 65

https://twitter.com/teenybiscuit


The automatic extraction of semantic information from raw signal is at the core of
many applications, such as

image recognition

speech processing

natural language processing

robotic control

... and many others.

How can we write a computer program that implements that?
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The (human) brain is so good at interpreting visual information that the gap
between raw data and its semantic interpretation is dif�cult to assess intuitively:

 

This is a mushroom.
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This is a mushroom.
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 +  + 

This is a mushroom.
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This is a mushroom.

11 / 65



Extracting semantic information requires models of high complexity, which
cannot be designed by hand.

However, one can write a program that learns the task of extracting semantic
information.

Techniques used in practice consist of:

de�ning a parametric model with high capacity,

optimizing its parameters, by "making it work" on the training data.

―――
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 12 / 65

https://fleuret.org/ee559/


This is similar to biological systems for which the model (e.g., brain structure) is
DNA-encoded, and parameters (e.g., synaptic weights) are tuned through
experiences.

Deep learning encompasses software technologies to scale-up to billions of
model parameters and as many training examples.

―――
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 13 / 65

https://fleuret.org/ee559/


Applications and success
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YOLOv3YOLOv3YOLOv3
Watch later Share

Real-time object detection (Redmon and Farhadi, 2018)
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https://www.youtube.com/watch?v=MPU2HistivI
https://www.youtube.com/channel/UClVWrKrmoeNM7A9nkEMeYzA


ICNet for Real-Time Semantic Segmentation ICNet for Real-Time Semantic Segmentation ICNet for Real-Time Semantic Segmentation ………
Watch later Share

Segmentation (Hengshuang et al, 2017)
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https://www.youtube.com/watch?v=qWl9idsCuLQ
https://www.youtube.com/channel/UCv56S_tnXQvonXsbfSLyRZw


Realtime Multi-Person 2D Human Pose EstimRealtime Multi-Person 2D Human Pose EstimRealtime Multi-Person 2D Human Pose Estim………
Watch later Share

Pose estimation (Cao et al, 2017)
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https://www.youtube.com/watch?v=pW6nZXeWlGM
https://www.youtube.com/channel/UCfhk4b6eCktaWe1fw79FawQ


Google DeepMind's Deep Q-learning playing AGoogle DeepMind's Deep Q-learning playing AGoogle DeepMind's Deep Q-learning playing A………
Watch later Share

Reinforcement learning (Mnih et al, 2014)
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https://www.youtube.com/watch?v=V1eYniJ0Rnk
https://www.youtube.com/channel/UCbfYPyITQ-7l4upoX8nvctg


AlphaStar Agent VisualisationAlphaStar Agent VisualisationAlphaStar Agent Visualisation
Watch later Share

Strategy games (Deepmind, 2016-2018)
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https://www.youtube.com/watch?v=HcZ48JDamyk
https://www.youtube.com/channel/UC3YuO2Zux8kPfxTrKI6Xt7g


NVIDIA Autonomous CarNVIDIA Autonomous CarNVIDIA Autonomous Car
Watch later Share

Autonomous cars (NVIDIA, 2016)
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https://www.youtube.com/watch?v=qhUvQiKec2U
https://www.youtube.com/channel/UCHuiy8bXnmK5nisYHUd1J5g


Speech Recognition Breakthrough for the SpoSpeech Recognition Breakthrough for the SpoSpeech Recognition Breakthrough for the Spo………
Watch later Share

Speech recognition, translation and synthesis (Microsoft, 2012)
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https://www.youtube.com/watch?v=Nu-nlQqFCKg
https://www.youtube.com/channel/UCCb9_Kn8F_Opb3UCGm-lILQ


NeuralTalk and Walk, recognition, text descripNeuralTalk and Walk, recognition, text descripNeuralTalk and Walk, recognition, text descrip………
Watch later Share

Auto-captioning (2015)

22 / 65

https://www.youtube.com/watch?v=8BFzu9m52sc
https://www.youtube.com/channel/UCfUZhJzWJil_Ga0JnAHNsMg


Google Assistant will soon be able to call restGoogle Assistant will soon be able to call restGoogle Assistant will soon be able to call rest………
Watch later Share

Speech synthesis and question answering (Google, 2018)
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https://www.youtube.com/watch?v=7gh6_U7Nfjs
https://www.youtube.com/channel/UCCjyq_K1Xwfg8Lndy7lKMpA


A Style-Based Generator Architecture for GenA Style-Based Generator Architecture for GenA Style-Based Generator Architecture for Gen………
Watch later Share

Image generation (Karras et al, 2018)
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https://www.youtube.com/watch?v=kSLJriaOumA
https://www.youtube.com/channel/UCRtoHpUxLBJ95IU-p-4T_iA


GTC Japan 2017 Part 9: AI Creates Original MGTC Japan 2017 Part 9: AI Creates Original MGTC Japan 2017 Part 9: AI Creates Original M………
Watch later Share

Music composition (NVIDIA, 2017)
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https://www.youtube.com/watch?v=egJ0PTKQp4U
https://www.youtube.com/channel/UCHuiy8bXnmK5nisYHUd1J5g


New algorithms 
 

More data 
 

Software Faster compute engines 
 

Why does it work now?
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Building on the shoulders of giants

Five decades of research in machine learning provided

a taxonomy of ML concepts (classi�cation, generative models, clustering,
kernels, linear embeddings, etc.),

a sound statistical formalization (Bayesian estimation, PAC),

a clear picture of fundamental issues (bias/variance dilemma, VC dimension,
generalization bounds, etc.),

a good understanding of optimization issues,

ef�cient large-scale algorithms.

―――
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 27 / 65

https://fleuret.org/ee559/


Deep learning

From a practical perspective, deep learning

lessens the need for a deep mathematical grasp,

makes the design of large learning architectures a system/software
development task,

allows to leverage modern hardware (clusters of GPUs),

does not plateau when using more data,

makes large trained networks a commodity.

―――
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 28 / 65

https://fleuret.org/ee559/


―――
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 29 / 65

https://fleuret.org/ee559/


―――
Image credits: Canziani et al, 2016, arXiv:1605.07678. 30 / 65

https://arxiv.org/abs/1605.07678


Statistical learning
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Supervised learning
Consider an unknown joint probability distribution .

Assume training data

with , , .

In most cases,

 is a -dimensional vector of features or descriptors,

 is a scalar (e.g., a category or a real value).

The training data is generated i.i.d.

The training data can be of any �nite size .

In general, we do not have any prior information about .

P (X , Y )

(x  , y  ) ∼ P (X , Y ),i i

x  ∈ Xi y  ∈ Yi i = 1, ..., N

x  i p

y  i

N

P (X , Y )
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Inference

Supervised learning is usually concerned with the two following inference
problems:

Classi�cation: Given , for 

, we want to estimate for any new ,

Regression: Given , for , we want

to estimate for any new ,

(x  , y  ) ∈ X × Y = R × {1, ..., C}i i
p

i = 1, ..., N x

arg  P (Y = y∣X = x).
y

max

(x  , y  ) ∈ X × Y = R ×Ri i
p i = 1, ..., N

x

E Y ∣X = x .[ ]
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Or more generally, inference is concerned with the conditional estimation

for any new .

P (Y = y∣X = x)

(x, y)
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Classi�cation consists in identifying 
a decision boundary between objects of distinct classes.
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Regression aims at estimating relationships among (usually continuous) variables.
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Classi�cation:

Regression:

Empirical risk minimization
Consider a function  produced by some learning algorithm. The

predictions of this function can be evaluated through a loss

such that  measures how close the prediction  from  is.

 

Examples of loss functions

f : X → Y

ℓ : Y × Y → R,

ℓ(y, f(x)) ≥ 0 f(x) y

ℓ(y, f(x)) = 1  y≠f(x)

ℓ(y, f(x)) = (y − f(x))2
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Let  denote the hypothesis space, i.e. the set of all functions  than can be

produced by the chosen learning algorithm.

We are looking for a function  with a small expected risk (or generalization

error)

This means that for a given data generating distribution  and for a

given hypothesis space , the optimal model is

F f

f ∈ F

R(f) = E  ℓ(y, f(x)) .(x,y)∼P (X,Y ) [ ]

P (X , Y )
F

f  = arg  R(f).∗
f∈F
min
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Unfortunately, since  is unknown, the expected risk cannot be

evaluated and the optimal model cannot be determined.

However, if we have i.i.d. training data , we can

compute an estimate, the empirical risk (or training error)

This estimate is unbiased and can be used for �nding a good enough
approximation of . This results into the empirical risk minimization principle:

P (X , Y )

d = {(x  , y  )∣i = 1, … , N}i i

(f ,d) =   ℓ(y  , f(x  )).R̂
N

1

(x  ,y  )∈di i

∑ i i

f  ∗

f  = arg  (f ,d)∗
d

f∈F
min R̂
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Most machine learning algorithms, including neural networks, implement
empirical risk minimization.

Under regularity assumptions, empirical risk minimizers converge:

 f  = f  

N→∞
lim ∗

d
∗
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Polynomial regression

Consider the joint probability distribution  induced by the data

generating process

where ,  and  is an unknown polynomial of degree 3.

P (X ,Y )

(x, y) ∼ P (X ,Y ) ⇔ x ∼ U [−10; 10], ϵ ∼ N (0,σ ), y = g(x) + ϵ2

x ∈ R y ∈ R g
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Our goal is to �nd a function  that makes good predictions on average over 

.

Consider the hypothesis space  of polynomials of degree 3 de�ned

through their parameters  such that

f

P (X , Y )

f ∈ F
w ∈ R4

 ≜ f(x;w) =  w  xŷ
d=0

∑
3

d
d
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For this regression problem, we use the squared error loss

to measure how wrong the predictions are.

Therefore, our goal is to �nd the best value  such

ℓ(y, f(x;w)) = (y − f(x;w))2

w  ∗

  

w  ∗ = arg  R(w)
w

min

= arg  E  (y − f(x;w))
w

min (x,y)∼P (X,Y ) [
2]
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Given a large enough training set , the empirical

risk minimization principle tells us that a good estimate  of  can be found

by minimizing the empirical risk:

d = {(x  , y  )∣i = 1, … , N}i i

w  ∗
d w  ∗

w∗
d = arg  (w,d)

w
min R̂

= arg    (y  − f(x  ;w))
w

min
N

1

(x  ,y  )∈di i

∑ i i
2

= arg    (y  −  w  x  )
w

min
N

1

(x  ,y  )∈di i

∑ i

d=0

∑
3

d i
d 2

= arg     −      

w
min

N

1

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

y

    

⎝
⎜
⎜
⎛ y  1

y  2

…
y  N
⎠
⎟
⎟
⎞

X

    

⎝
⎜
⎜
⎛ x  …x  1

0
1
3

x  …x  2
0

2
3

…
x  …x  N

0
N
3 ⎠
⎟
⎟
⎞

⎝
⎜
⎜
⎛w  0

w  1

w  2

w  3
⎠
⎟
⎟
⎞

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥2
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This is ordinary least squares regression, for which the solution is known
analytically:

w  = (X X) X y∗
d T −1 T
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The expected risk minimizer  within our hypothesis space is  itself.

Therefore, on this toy problem, we can verify that 

 as .

w  ∗ g

f(x;w  ) → f(x;w  ) = g(x)∗
d

∗ N → ∞
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Under-�tting and over-�tting
What if we consider a hypothesis space  in which candidate functions  are

either too "simple" or too "complex" with respect to the true data generating
process?

F f
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 = polynomials of degree 1F
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 = polynomials of degree 2F
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 = polynomials of degree 3F
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 = polynomials of degree 4F
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 = polynomials of degree 5F
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 = polynomials of degree 10F
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Degree  of the polynomial VS. error.d
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Let  be the set of all functions .

We de�ne the Bayes risk as the minimal expected risk over all possible functions,

and call Bayes model the model  that achieves this minimum.

No model  can perform better than .

YX f : X → Y

R  =  R(f),B
f∈YX
min

f  B

f f  B
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The capacity of an hypothesis space induced by a learning algorithm intuitively
represents the ability to �nd a good model  for any function, regardless of

its complexity.

In practice, capacity can be controlled through hyper-parameters of the learning
algorithm. For example:

The degree of the family of polynomials;

The number of layers in a neural network;

The number of training iterations;

Regularization terms.

f ∈ F
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If the capacity of  is too low, then  and  is large for any 

, including  and . Such models  are said to under�t the data.

If the capacity of  is too high, then  or  is small. 

However, because of the high capacity of the hypothesis space, the empirical
risk minimizer  could �t the training data arbitrarily well such that

In this situation,  becomes too specialized with respect to the true data

generating process and a large reduction of the empirical risk (often) comes
at the price of an increase of the expected risk of the empirical risk minimizer 

. In this situation,  is said to over�t the data.

F f  ∉ FB R(f) − R  B

f ∈ F f  ∗ f  ∗
d f

F f  ∈ FB R(f  ) − R  ∗ B

f  ∗
d

R(f  ) ≥ R  ≥ (f  ,d) ≥ 0.∗
d

B R̂ ∗
d

f  ∗
d

R(f  )∗
d f  ∗

d
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Therefore, our goal is to adjust the capacity of the hypothesis space such that the
expected risk of the empirical risk minimizer gets as low as possible.
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When over�tting,

This indicates that the empirical risk  is a poor estimator of the

expected risk .

Nevertheless, an unbiased estimate of the expected risk can be obtained by

evaluating  on data  independent from the training samples :

This test error estimate can be used to evaluate the actual performance of the
model. However, it should not be used, at the same time, for model selection.

R(f  ) ≥ R  ≥ (f  ,d) ≥ 0.∗
d

B R̂ ∗
d

(f  ,d)R̂ ∗
d

R(f  )∗
d

f  ∗
d d  test d

(f  ,d  ) =   ℓ(y  , f  (x  ))R̂ ∗
d

test
N

1

(x  ,y  )∈d  i i test

∑ i ∗
d

i
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Degree  of the polynomial VS. error.d
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(Proper) evaluation protocol

There may be over-�tting, but it does not bias the �nal performance evaluation.

―――
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 57 / 65

https://fleuret.org/ee559/


This should be avoided at all costs!

―――
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 58 / 65

https://fleuret.org/ee559/


Instead, keep a separate validation set for tuning the hyper-parameters.

―――
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 59 / 65

https://fleuret.org/ee559/


Bias-variance decomposition
Consider a �xed point  and the prediction  of the empirical risk

minimizer at .

Then the local expected risk of  is

where

 is the local expected risk of the Bayes model. This term cannot be

reduced.

 represents the discrepancy between  and .

x = f  (x)Ŷ ∗
d

x

f  ∗
d

R(f ∣x)∗
d = E  (y − f  (x))y∼P (Y ∣x) [ ∗

d 2]

= E  (y − f  (x) + f  (x) − f  (x))y∼P (Y ∣x) [ B B ∗
d 2]

= E  (y − f  (x)) + E  (f  (x) − f  (x))y∼P (Y ∣x) [ B
2] y∼P (Y ∣x) [ B ∗

d 2]

= R(f  ∣x) + (f  (x) − f  (x))B B ∗
d 2

R(f  ∣x)B

(f  (x) − f  (x))B ∗
d 2 f  B f  ∗

d
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If  is itself considered as a random variable, then  is also a

random variable, along with its predictions .

d ∼ P (X , Y ) f  ∗
d

Ŷ
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Formally, the expected local expected risk yields to:

This decomposition is known as the bias-variance decomposition.

The noise term quantities the irreducible part of the expected risk.

The bias term measures the discrepancy between the average model and the
Bayes model.

The variance term quantities the variability of the predictions.

  

E  R(f  ∣x)d [ ∗
d ]

= E  R(f  ∣x) + (f  (x) − f  (x))d [ B B ∗
d 2]

= R(f  ∣x) + E  (f  (x) − f  (x))B d [ B ∗
d 2]

=  +  +  

noise(x)

 R(f  ∣x)B

bias (x)2

 (f  (x) − E  f  (x) )B d [ ∗
d ] 2

var(x)

 E  (E  f  (x) − f  (x))d [ d [ ∗
d ] ∗

d 2]
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Bias-variance trade-off

Reducing the capacity makes  �t the data less on average, which increases

the bias term.

Increasing the capacity makes  vary a lot with the training data, which

increases the variance term.

f  ∗
d

f  ∗
d

―――
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 64 / 65

https://fleuret.org/ee559/


The end.
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Deep Learning
Lecture 2: Neural networks

 
 

Prof. Gilles Louppe 
g.louppe@uliege.be
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Today
Explain and motivate the basic constructs of neural networks.

From linear discriminant analysis to logistic regression

Stochastic gradient descent

From logistic regression to the multi-layer perceptron

Vanishing gradients and recti�ed networks

Universal approximation theorem
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Cooking recipe
Get data (loads of them).

Get good hardware.

De�ne the neural network architecture as a composition of differentiable
functions.

Stick to non-saturating activation function to avoid vanishing gradients.

Prefer deep over shallow architectures.

Optimize with (variants of) stochastic gradient descent.

Evaluate gradients with automatic differentiation.
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Neural networks

4 / 61



Threshold Logic Unit
The Threshold Logic Unit (McCulloch and Pitts, 1943) was the �rst mathematical
model for a neuron. Assuming Boolean inputs and outputs, it is de�ned as:

This unit can implement:

Therefore, any Boolean function can be built with such units.

f(x) = 1  {  w  x  +b≥0}∑
i i i

or(a, b) = 1  {a+b−0.5≥0}

and(a, b) = 1  {a+b−1.5≥0}

not(a) = 1  {−a+0.5≥0}
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―――
Credits: McCulloch and Pitts, A logical calculus of ideas immanent in nervous activity, 1943. 6 / 61

http://www.cse.chalmers.se/~coquand/AUTOMATA/mcp.pdf


Perceptron
The perceptron (Rosenblatt, 1957) is very similar, except that the inputs are real:

This model was originally motivated by biology, with  being synaptic weights

and  and  �ring rates.

f(x) =   {
1
0

if   w  x  + b ≥ 0∑i i i

otherwise

w  i

x  i f

7 / 61



―――
Credits: Frank Rosenblatt, Mark I Perceptron operators' manual, 1960. 8 / 61

https://apps.dtic.mil/dtic/tr/fulltext/u2/236965.pdf


 
 

The Mark I Percetron (Frank Rosenblatt).
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Perceptron Research from the 50's & 60's, clipPerceptron Research from the 50's & 60's, clipPerceptron Research from the 50's & 60's, clip
Watch later Share

The Perceptron
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https://www.youtube.com/watch?v=cNxadbrN_aI
https://www.youtube.com/channel/UCUcHLAennNBnGl7MuFfZGrw


Let us de�ne the (non-linear) activation function:

The perceptron classi�cation rule can be rewritten as

sign(x) =   {
1
0

if x ≥ 0
otherwise

f(x) = sign(  w  x  + b).
i

∑ i i
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x0

h

w0

b

×

add signx1

w1

×

x2

w2

×

The computation of

can be represented as a
computational graph where

white nodes correspond to
inputs and outputs;

red nodes correspond to
model parameters;

blue nodes correspond to
intermediate operations.

Computational graphs

f(x) = sign(  w  x  + b)
i

∑ i i
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In terms of tensor operations,  can be rewritten as

for which the corresponding computational graph of  is:

x h

w b

dot add sign

f

f(x) = sign(w x+ b),T

f
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Linear discriminant analysis
Consider training data , with

,

.

Assume class populations are Gaussian, with same covariance matrix 

(homoscedasticity):

(x, y) ∼ P (X , Y )

x ∈ Rp

y ∈ {0, 1}

Σ

P (x∣y) =  exp −  (x− μ  ) Σ (x− μ  )
 (2π) ∣Σ∣p

1
(

2
1

y
T −1

y )
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Using the Bayes' rule, we have:

P (Y = 1∣x) =  

P (x)
P (x∣Y = 1)P (Y = 1)

=  

P (x∣Y = 0)P (Y = 0) + P (x∣Y = 1)P (Y = 1)
P (x∣Y = 1)P (Y = 1)

=  .
1 +  P (x∣Y =1)P (Y =1)

P (x∣Y =0)P (Y =0)

1
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Using the Bayes' rule, we have:

It follows that with

we get

P (Y = 1∣x) =  

P (x)
P (x∣Y = 1)P (Y = 1)

=  

P (x∣Y = 0)P (Y = 0) + P (x∣Y = 1)P (Y = 1)
P (x∣Y = 1)P (Y = 1)

=  .
1 +  P (x∣Y =1)P (Y =1)

P (x∣Y =0)P (Y =0)

1

σ(x) =  ,
1 + exp(−x)

1

P (Y = 1∣x) = σ log  + log  .(
P (x∣Y = 0)
P (x∣Y = 1)

P (Y = 0)
P (Y = 1)

)
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Therefore,

P (Y = 1∣x)

= σ  log  +   

⎝
⎜
⎜
⎛

P (x∣Y = 0)
P (x∣Y = 1)

a

 log
P (Y = 0)
P (Y = 1)

⎠
⎟
⎟
⎞

= σ log P (x∣Y = 1) − log P (x∣Y = 0) + a( )

= σ −  (x− μ  ) Σ (x− μ  ) +  (x− μ  ) Σ (x− μ  ) + a(
2
1

1
T −1

1 2
1

0
T −1

0 )

= σ   x+   

⎝
⎜
⎛

wT

 (μ  − μ  ) Σ1 0
T −1

b

  (μ  Σ μ  − μ  Σ μ  ) + a
2
1

0
T −1

0 1
T −1

1

⎠
⎟
⎞

= σ w x+ b( T )
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Note that the sigmoid function

looks like a soft heavyside:

Therefore, the overall model  is very similar to the

perceptron.

σ(x) =  

1 + exp(−x)
1

f(x;w, b) = σ(w x+ b)T
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x h

w b

dot add σ

This unit is the lego brick of all neural networks!
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Logistic regression
Same model

as for linear discriminant analysis.

But,

ignore model assumptions (Gaussian class populations, homoscedasticity);

instead, �nd  that maximizes the likelihood of the data.

P (Y = 1∣x) = σ w x+ b( T )

w, b
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We have,

This loss is an instance of the cross-entropy

for  and .

arg  P (d∣w, b)
w,b

max

= arg   P (Y = y  ∣x  ,w, b)
w,b

max
x  ,y  ∈di i

∏ i i

= arg   σ(w x  + b) (1 − σ(w x  + b))
w,b

max
x  ,y  ∈di i

∏ T
i

y  i T
i

1−y  i

= arg   

w,b
min

L(w,b)=  ℓ(y  ,  (x  ;w,b))∑
i i ŷ i

  −y  log σ(w x  + b) − (1 − y  ) log(1 − σ(w x  + b))
x  ,y  ∈di i

∑ i
T

i i
T

i

H(p, q) = E  [− log q]p

p = Y ∣x  i q = ∣x  Ŷ i
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When  takes values in , a similar derivation yields the logistic lossY {−1, 1}

L(w, b) = −  log σ y  (w x  + b)) .
x  ,y  ∈di i

∑ ( i
T

i )
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In general, the cross-entropy and the logistic losses do not admit a minimizer
that can be expressed analytically in closed form.

However, a minimizer can be found numerically, using a general minimization
technique such as gradient descent.
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Gradient descent
Let  denote a loss function de�ned over model parameters  (e.g.,  and ).

To minimize , gradient descent uses local linear information to iteratively

move towards a (local) minimum.

For , a �rst-order approximation around  can be de�ned as

L(θ) θ w b

L(θ)

θ  ∈ R0
d θ  0

(θ  + ϵ) = L(θ  ) + ϵ ∇  L(θ  ) +  ∣∣ϵ∣∣ .L̂ 0 0
T

θ 0 2γ
1 2
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A minimizer of the approximation  is given for

which results in the best improvement for the step .

Therefore, model parameters can be updated iteratively using the update rule

where

 are the initial parameters of the model;

 is the learning rate;

both are critical for the convergence of the update rule.

(θ  + ϵ)L̂ 0

∇  (θ  + ϵ)ϵL̂ 0 = 0

= ∇  L(θ  ) +  ϵ,θ 0
γ

1

ϵ = −γ∇  L(θ  )θ 0

θ  = θ  − γ∇  L(θ  ),t+1 t θ t

θ  0

γ
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Example 1: Convergence to a local minima
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Example 2: Convergence to the global minima
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Example 3: Divergence due to a too large learning rate
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Stochastic gradient descent
In the empirical risk minimization setup,  and its gradient decompose as

Therefore, in batch gradient descent the complexity of an update grows linearly
with the size  of the dataset.

More importantly, since the empirical risk is already an approximation of the
expected risk, it should not be necessary to carry out the minimization with great
accuracy.

L(θ)

  

L(θ)

∇L(θ)

=   ℓ(y  , f(x  ; θ))
N

1

x  ,y  ∈di i

∑ i i

=   ∇ℓ(y  , f(x  ; θ)).
N

1

x  ,y  ∈di i

∑ i i

N
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Instead, stochastic gradient descent uses as update rule:

Iteration complexity is independent of .

The stochastic process  depends on the examples  picked

randomly at each iteration.

θ  = θ  − γ∇ℓ(y  , f(x  ; θ  ))t+1 t i(t+1) i(t+1) t

N

{θ  ∣t = 1, ...}t i(t)
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Batch gradient descent Stochastic gradient descent

 
 

Instead, stochastic gradient descent uses as update rule:

Iteration complexity is independent of .

The stochastic process  depends on the examples  picked

randomly at each iteration.

θ  = θ  − γ∇ℓ(y  , f(x  ; θ  ))t+1 t i(t+1) i(t+1) t

N

{θ  ∣t = 1, ...}t i(t)
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Why is stochastic gradient descent still a good idea?

Informally, averaging the update

over all choices  restores batch gradient descent.

Formally, if the gradient estimate is unbiased, e.g., if

then the formal convergence of SGD can be proved, under appropriate
assumptions (see references).

Interestingly, if training examples  are received and used in an

online fashion, then SGD directly minimizes the expected risk.

θ  = θ  − γ∇ℓ(y  , f(x  ; θ  ))t+1 t i(t+1) i(t+1) t

i(t + 1)

E  [∇ℓ(y  , f(x  ; θ ))]i(t+1) i(t+1) i(t+1) t =   ∇ℓ(y  , f(x  ; θ  ))
N

1

x  ,y  ∈di i

∑ i i t

= ∇L(θ  )t

x  , y  ∼ P  i i X,Y
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When decomposing the excess error in terms of approximation, estimation and
optimization errors, stochastic algorithms yield the best generalization
performance (in terms of expected risk) despite being the worst optimization
algorithms (in terms of empirical risk) (Bottou, 2011).

  

E R(   ) − R(f  )[ f
~

∗
d

B ]

= E R(f  ) − R(f  ) + E R(f  ) − R(f  ) + E R(   ) − R(f  )[ ∗ B ] [ ∗
d

∗ ] [ f
~

∗
d

∗
d ]

= E  + E  + Eapp est opt
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Layers
So far we considered the logistic unit , where , , 

 and .

These units can be composed in parallel to form a layer with  outputs:

where , , ,  and where  is upgraded to the

element-wise sigmoid function.

 

x h

W b

matmul add σ

h = σ w x+ b( T ) h ∈ R x ∈ Rp

w ∈ Rp b ∈ R

q

h = σ(W x+ b)T

h ∈ Rq x ∈ Rp W ∈ Rp×q b ∈ Rq σ(⋅)
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Multi-layer perceptron
Similarly, layers can be composed in series, such that:

where  denotes the model parameters .

This model is the multi-layer perceptron, also known as the fully connected
feedforward network.

h0

h1

...

hL

f(x; θ) = ŷ

= x

= σ(W  h  + b  )1
T

0 1

= σ(W  h  + b  )L
T

L−1 L

= h  L

θ {W  ,b  , ...∣k = 1, ..., L}k k
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x h1

W 1 b1

matmul add σ h2

W 2 b2

matmul add σ hL

W L bL

matmul add σ...
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Classi�cation

For binary classi�cation, the width  of the last layer  is set to , which

results in a single output  that models the probability 

.

For multi-class classi�cation, the sigmoid action  in the last layer can be

generalized to produce a (normalized) vector  of probability

estimates .  

 
This activation is the  function, where its -th output is de�ned as

for .

q L 1
h  ∈ [0, 1]L

P (Y = 1∣x)

σ

h  ∈ [0, 1]L
C

P (Y = i∣x)

Softmax i

Softmax(z)  =  ,i
 exp(z  )∑j=1

C
j

exp(z  )i

i = 1, ..., C

37 / 61



Regression

The last activation  can be skipped to produce unbounded output values 

.

σ

h  ∈ RL
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Automatic differentiation
To minimize  with stochastic gradient descent, we need the gradient 

.

Therefore, we require the evaluation of the (total) derivatives

of the loss  with respect to all model parameters , , for .

These derivatives can be evaluated automatically from the computational graph
of  using automatic differentiation.

L(θ)
∇  ℓ(θ  )θ t

 ,  

dW  k

dℓ
db  k

dℓ

ℓ W  k b  k k = 1, ..., L

ℓ
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Chain rule

g1

x

g2

g3

...

gm

f y

u2

u3

u1

...

um

Let us consider a 1-dimensional output composition , such thatf ∘ g

  

y

u
= f(u)

= g(x) = (g  (x), ..., g  (x)).1 m
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The chain rule states that 

For the total derivative, the chain rule generalizes to

(f ∘ g) = (f ∘ g)g .′ ′ ′

  

 

dx
dy

=    

k=1

∑
m

∂u  k

∂y

recursive case

  

dx
du  k
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Reverse automatic differentiation

Since a neural network is a composition of differentiable functions, the total
derivatives of the loss can be evaluated backward, by applying the chain rule
recursively over its computational graph.

The implementation of this procedure is called reverse automatic
differentiation.
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Let us consider a simpli�ed 2-layer MLP and the following loss function:

for , ,  and .

  

f(x;W  ,W  )1 2

ℓ(y,  ;W  ,W  )ŷ 1 2

= σ W  σ W  x( 2
T ( 1

T ))

= cross_ent(y,  ) + λ ∣∣W  ∣∣  + ∣∣W  ∣∣  ŷ ( 1 2 2 2)

x ∈ Rp y ∈ RW  ∈ R1
p×q W  ∈ R2

q
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In the forward pass, intermediate values are all computed from inputs to outputs,
which results in the annotated computational graph below:

x

W 1

σ( ⋅ )u1 u2

W 2

σ( ⋅ )u3 ŷ

y

u4|| ⋅ ||2 u5 u6

u7

λ

u8
l
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The total derivative can be computed through a backward pass, by walking
through all paths from outputs to parameters in the computational graph and
accumulating the terms. For example, for  we have:

x

W 1

σ( ⋅ )u1 u2

W 2

σ( ⋅ )u3 ŷ

y

u4|| ⋅ ||2 u5 u6

u7

λ

u8
l

 dW  1

dℓ

  

 

dW  1

dℓ

 

dW  1

du  8

=   +   

∂u  8

∂ℓ
dW  1

du  8

∂u  4

∂ℓ
dW  1

du  4

= ...
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x

W 1

σ( ⋅ )u1 u2

W 2

σ( ⋅ )u3 ŷ

Let us zoom in on the computation of the network output  and of its derivative

with respect to .

Forward pass: values , ,  and  are computed by traversing the graph

from inputs to outputs given ,  and .

Backward pass: by the chain rule we have

Note how evaluating the partial derivatives requires the intermediate values
computed forward.

 ŷ

W  1

u  1 u  2 u  3  ŷ

x W  1 W  2

  

 

dW  1

d  ŷ
=     

∂u  3

∂  ŷ

∂u  2

∂u  3

∂u  1

∂u  2

∂W  1

∂u  1

=     

∂u  3

∂σ(u  )3

∂u  2

∂W  u  2
T

2

∂u  1

∂σ(u  )1

∂W  1

∂W  u  1
T

1
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This algorithm is also known as backpropagation.

An equivalent procedure can be de�ned to evaluate the derivatives in
forward mode, from inputs to outputs.

Since differentiation is a linear operator, automatic differentiation can be
implemented ef�ciently in terms of tensor operations.
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Vanishing gradients
Training deep MLPs with many layers has for long (pre-2011) been very dif�cult
due to the vanishing gradient problem.

Small gradients slow down, and eventually block, stochastic gradient
descent.

This results in a limited capacity of learning.

Backpropagated gradients normalized histograms (Glorot and Bengio, 2010). 
Gradients for layers far from the output vanish to zero.
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Let us consider a simpli�ed 3-layer MLP, with , such that

Under the hood, this would be evaluated as

and its derivative  as

x, w  , w  , w  ∈ R1 2 3

f(x; w  , w  , w  ) = σ w σ w  σ w  x .1 2 3 ( 3 ( 2 ( 1 )))

u1

u2

u3

u4

u5

ŷ

= w  x1

= σ(u  )1

= w  u  2 2

= σ(u  )3

= w  u  3 4

= σ(u  )5

 dw  1

d  ŷ

 

dw  1

d  ŷ
=       

∂u  5

∂  ŷ

∂u  4

∂u  5

∂u  3

∂u  4

∂u  2

∂u  3

∂u  1

∂u  2

∂w  1

∂u  1

=  w   w   x
∂u  5

∂σ(u  )5
3 ∂u  3

∂σ(u  )3
2 ∂u  1

∂σ(u  )1
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The derivative of the sigmoid activation function  is:

Notice that  for all .

σ

 (x) = σ(x)(1 − σ(x))
dx
dσ

0 ≤  (x) ≤  dx
dσ

4
1 x
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Assume that weights  are initialized randomly from a Gaussian with

zero-mean and small variance, such that with high probability .

Then,

This implies that the gradient  exponentially shrinks to zero as the number of

layers in the network increases.

Hence the vanishing gradient problem.

In general, bounded activation functions (sigmoid, tanh, etc) are prone to the
vanishing gradient problem.

Note the importance of a proper initialization scheme.

w  , w  , w  1 2 3

−1 ≤ w  ≤ 1i

 =      x
dw  1

d  ŷ

≤  4
1

  

∂u  5

∂σ(u  )5

≤1

 w  3

≤  4
1

  

∂u  3

∂σ(u  )3

≤1

 w  2

≤  4
1

  

∂u  1

σ(u  )1

 dw  1

d  ŷ
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Recti�ed linear units
Instead of the sigmoid activation function, modern neural networks are for most
based on recti�ed linear units (ReLU) (Glorot et al, 2011):

ReLU(x) = max(0,x)
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Note that the derivative of the ReLU function is

For , the derivative is unde�ned. In practice, it is set to zero.

 ReLU(x) =   

dx
d

{
0
1

if x ≤ 0
otherwise

x = 0
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Therefore,

This solves the vanishing gradient problem, even for deep networks! (provided
proper initialization)

Note that:

The ReLU unit dies when its input is negative, which might block gradient
descent.

This is actually a useful property to induce sparsity.

This issue can also be solved using leaky ReLUs, de�ned as

for a small  (e.g., ).

 =  w   w   x
dw  1

d  ŷ

=1

  

∂u  5

∂σ(u  )5
3

=1

  

∂u  3

∂σ(u  )3
2

=1

  

∂u  1

∂σ(u  )1

LeakyReLU(x) = max(αx, x)

α ∈ R+ α = 0.1
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Universal approximation
Theorem. (Cybenko 1989; Hornik et al, 1991) Let  be a bounded, non-

constant continuous function. Let  denote the -dimensional hypercube, and 

 denote the space of continuous functions on . Given any 

and , there exists  and  such that

satis�es

It guarantees that even a single hidden-layer network can represent any
classi�cation problem in which the boundary is locally linear (smooth);

It does not inform about good/bad architectures, nor how they relate to the
optimization procedure.

The universal approximation theorem generalizes to any non-polynomial
(possibly unbounded) activation function, including the ReLU (Leshno, 1993).

σ(⋅)
I  p p

C(I  )p I  p f ∈ C(I  )p

ϵ > 0 q > 0 v  , w  , b  , i = 1, ..., qi i i

F (x) =  v  σ(w  x + b  )
i≤q

∑ i i
T

i

 ∣f(x) − F (x)∣ < ϵ.
x∈I  p

sup
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Theorem (Barron, 1992) The mean integrated square error between the

estimated network  and the target function  is bounded by

where  is the number of training points,  is the number of neurons,  is the

input dimension, and  measures the global smoothness of .

Combines approximation and estimation errors.

Provided enough data, it guarantees that adding more neurons will result in a
better approximation.

F̂ f

O  +  log N(
q

C  f
2

N

qp
)

N q p

C  f f
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Let us consider the 1-layer MLP

 
This model can approximate any smooth 1D function, provided enough hidden
units.

f(x) = w  ReLU(x + b  ).∑ i i
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Effect of depth

Theorem (Montúfar et al, 2014) A recti�er neural network with  input units and 

 hidden layers of width  can compute functions that have 

 linear regions.

That is, the number of linear regions of deep models grows exponentially in 

and polynomially in .

Even for small values of  and , deep recti�er models are able to produce

substantially more linear regions than shallow recti�er models.

p

L q ≥ p

Ω((  ) q )
p
q (L−1)p p

L

q

L q
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Deep learning
Recent advances and model architectures in deep learning are built on a natural
generalization of a neural network: a graph of tensor operators, taking advantage
of

the chain rule

stochastic gradient descent

convolutions

parallel operations on GPUs.

This does not differ much from networks from the 90s, as covered in Today's
lecture.

―――
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 59 / 61

https://fleuret.org/ee559/


This generalization allows to compose and design complex networks of
operators, possibly dynamically, dealing with images, sound, text, sequences, etc.
and to train them end-to-end.

―――
Credits: Francois Fleuret, EE559 Deep Learning, EPFL; Rahmatizadeh et al, 2017, arXiv:1707.02920. 60 / 61

https://fleuret.org/ee559/
https://arxiv.org/abs/1707.02920


The end.
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Deep Learning
Lecture 3: Convolutional networks
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Today
How to make neural networks see?

A little history

Convolutions

Convolutional network architectures

What is really happening?
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A little history
Adapted from Yannis Avrithis, "Lecture 1: Introduction", Deep Learning for vision,
2018.
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https://sif-dlv.github.io/


 
 

 

Visual perception (Hubel and Wiesel, 1959-1962)

David Hubel and Torsten Wiesel discover the neural basis of visual
perception.

Nobel Prize of Medicine in 1981 for this work.
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Hubel & Wiesel 1: IntroHubel & Wiesel 1: IntroHubel & Wiesel 1: Intro
Watch later Share

Hubel and Wiesel
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https://www.youtube.com/watch?v=y_l4kQ5wjiw
https://www.youtube.com/channel/UC1hU2EG8WLeNvlnDlCY4BwA


―――
Credits: Hubel and Wiesel, Receptive �elds, binocular interaction and functional architecture in the cat's visual cortex, 1962. 6 / 71

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1359523/


―――
Credits: Hubel and Wiesel, Receptive �elds, binocular interaction and functional architecture in the cat's visual cortex, 1962. 7 / 71

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1359523/


 
 

Perceptron (Rosenblatt, 1959)

The Mark-1 Perceptron:

Analog circuit implementation of a neural network,

Parameters as potentiometers.

―――
Credits: Frank Rosenblatt, Principle of Neurodynamics, 1961. 8 / 71

http://www.dtic.mil/dtic/tr/fulltext/u2/256582.pdf


"If we show the perceptron a stimulus, say a square, and associate a response to that
square, this response will immediately generalize perfectly to all transforms of the
square under the transformation group [...]."

This is quite similar to Hubel and Wiesel's simple and complex cells!

―――
Credits: Frank Rosenblatt, Principle of Neurodynamics, 1961. 9 / 71

http://www.dtic.mil/dtic/tr/fulltext/u2/256582.pdf


AI winter (Minsky and Papert, 1969+)

Minsky and Papert rede�ne the perceptron as a linear classi�er,

Then they prove a series of impossiblity results. AI winter follows.

―――
Credits: Minsky and Papert, Perceptrons: an Introduction to Computational Geometry, 1969. 10 / 71



Automatic differentiation (Werbos, 1974)

Formulate an arbitrary function as computational graph.

Dynamic feedback: compute symbolic derivatives by dynamic programming.

―――
Credits: Paul Werbos, Beyond regression: new tools for prediction and analysis in the behavioral sciences, 1974. 11 / 71



Neocognitron (Fukushima, 1980)

Fukushima proposes a direct neural network implementation of the hierarchy
model of the visual nervous system of Hubel and Wiesel.

―――
Credits: Kunihiko Fukushima, Neocognitron: A Self-organizing Neural Network Model, 1980. 12 / 71

https://www.rctn.org/bruno/public/papers/Fukushima1980.pdf


Convolutions Feature hierarchy

Built upon convolutions and enables the composition of a feature hierarchy.

Biologically-inspired training algorithm, which proves to be largely
inef�cient.

―――
Credits: Kunihiko Fukushima, Neocognitron: A Self-organizing Neural Network Model, 1980. 13 / 71

https://www.rctn.org/bruno/public/papers/Fukushima1980.pdf


Introduce backpropagation in
multi-layer networks with sigmoid
non-linearities and sum of
squares loss function.

Advocate batch gradient descent
for supervised learning.

Discuss online gradient descent,
momentum and random
initialization.

Depart from biologically plausible
training algorithms.

Backpropagation (Rumelhart et al, 1986)

―――
Credits: Rumelhart et al, Learning representations by back-propagating errors, 1986. 14 / 71

http://www.cs.toronto.edu/~hinton/absps/naturebp.pdf


Convolutional networks (LeCun, 1990)

Train a convolutional network by backpropagation.

Advocate end-to-end feature learning for image classi�cation.

―――
Credits: LeCun et al, Handwritten Digit Recognition with a Back-Propagation Network, 1990. 15 / 71

http://yann.lecun.com/exdb/publis/pdf/lecun-90c.pdf


Convolutional Network Demo from 1993Convolutional Network Demo from 1993Convolutional Network Demo from 1993
Watch later Share

LeNet-1 (LeCun et al, 1993)
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https://www.youtube.com/watch?v=FwFduRA_L6Q
https://www.youtube.com/channel/UCMU7l2bIv6MXlgJR3-E33Dw


 
 

 
Object detection 

(Redmon et al, 2015)

 
Geometric matching 

(Rocco et al, 2017)

 
Semantic segmentation 

(Long et al, 2015)

 
Instance segmentation 

(He et al, 2017)

Convolutional networks are now used everywhere in vision.
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... but also in many other applications, including:

speech recognition and synthesis

natural language processing

protein/DNA binding prediction

or more generally, any problem with a spatial (or sequential) structure.
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Convolutions
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Let us consider the �rst layer of a MLP taking images as input. What are the
problems with this architecture?

―――
Credits: Yannis Avrithis, Deep Learning for Vision, University of Rennes 1. 20 / 71

https://sif-dlv.github.io/


Issues

Too many parameters: .

What if images are ?

What if the �rst layer counts  units?

Spatial organization of the input is destroyed.

The network is not invariant to transformations (e.g., translation).

100 × 784 + 100
640 × 480 × 3

1000
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Instead, let us only keep a sparse set of connections, where all weights having the
same color are shared.

―――
Credits: Yannis Avrithis, Deep Learning for Vision, University of Rennes 1. 22 / 71

https://sif-dlv.github.io/


The resulting operation can be seen as shifting the same weight triplet
(kernel).

The set of inputs seen by each unit is its receptive �eld.

 This is a 1D convolution, which can be generalized to more dimensions.⇒
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Convolutions
For one-dimensional tensors, given an input vector  and a convolutional

kernel , the discrete convolution  is a vector of size 

such that

Technically,  denotes the cross-correlation operator.

However, most machine learning libraries call it convolution.

x ∈ RW

u ∈ Rw u ⋆ x W − w + 1

  

(u ⋆ x)[i] =  u  x  .
m=0

∑
w−1

m m+i

⋆
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―――
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 25 / 71

https://fleuret.org/ee559/


Convolutions generalize to multi-dimensional tensors:

In its most usual form, a convolution takes as input a 3D tensor 

, called the input feature map.

A kernel  slides across the input feature map, along its height

and width. The size  is the size of the receptive �eld.

At each location, the element-wise product between the kernel and the input
elements it overlaps is computed and the results are summed up.

x ∈ RC×H×W

u ∈ RC×h×w

h×w
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―――
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 27 / 71

https://fleuret.org/ee559/


The �nal output  is a 2D tensor of size 

called the output feature map and such that:

where  and  are shared parameters to learn.

 convolutions can be applied in the same way to produce a 

 feature map, where  is the depth.

o (H − h + 1) × (W − w + 1)

oj,i = b  +  (u  ⋆ x  )[j, i] = b  +    u  x  j,i

c=0

∑
C−1

c c j,i

c=0

∑
C−1

n=0

∑
h−1

m=0

∑
w−1

c,n,m c,n+j,m+i

u b

D

D × (H − h + 1) × (W − w + 1) D
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Convolution as a matrix multiplication

As a guiding example, let us consider the convolution of single-channel tensors 

 and :x ∈ R4×4 u ∈ R3×3

u ⋆ x =      ⋆       =   

⎝

⎛1
1
3

4
4
3

1
3
1⎠

⎞

⎝
⎜
⎜
⎛4

1
3
6

5
8
6
5

8
8
6
7

7
8
4
8⎠
⎟
⎟
⎞

(
122
126

148
134

)
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The convolution operation can be equivalently re-expressed as a single matrix
multiplication:

the convolutional kernel  is rearranged as a sparse Toeplitz circulant matrix,

called the convolution matrix:

the input  is �attened row by row, from top to bottom:

Then,

which we can reshape to a  matrix to obtain .

u

U =                   

⎝
⎜
⎜
⎛1

0
0
0

4
1
0
0

1
4
0
0

0
1
0
0

1
0
1
0

4
1
4
1

3
4
1
4

0
3
0
1

3
0
1
0

3
3
4
1

1
3
3
4

0
1
0
3

0
0
3
0

0
0
3
3

0
0
1
3

0
0
0
1⎠
⎟
⎟
⎞

x

v(x) =                (4 5 8 7 1 8 8 8 3 6 6 4 6 5 7 8)
T

Uv(x) =     (122 148 126 134)
T

2 × 2 u ⋆ x
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The same procedure generalizes to  and convolutional kernel 

, such that:

the convolutional kernel is rearranged as a sparse Toeplitz circulant matrix 

of shape  where

each row  identi�es an element of the output feature map,

each column  identi�es an element of the input feature map,

the value  corresponds to the kernel value the element  is multiplied with in output ;

the input  is �attened into a column vector  of shape ;

the output feature map  is obtained by reshaping the 

 column vector  as a 

 matrix.

Therefore, a convolutional layer is a special case of a fully connected layer:

x ∈ RH×W

u ∈ Rh×w

U
(H − h + 1)(W − w + 1) × HW

i

j

U  i,j j i

x v(x) HW × 1

u ⋆ x
(H − h + 1)(W − w + 1) × 1 Uv(x)
(H − h + 1) × (W − w + 1)

h = u ⋆ x⇔ v(h) =Uv(x) ⇔ v(h) =W v(x)T
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x h

u

⋆

x h

U

flatten matmul reshape

⇔
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Strides

The stride speci�es the size of the
step for the convolution operator.

This parameter reduces the size
of the output map.

―――
Credits: Dumoulin and Visin, A guide to convolution arithmetic for deep learning, 2016. 33 / 71

https://arxiv.org/abs/1603.07285


Padding

Padding speci�es whether the
input volume is padded arti�cially
around its border.

This parameter is useful to keep
spatial dimensions constant
across �lters.

Zero-padding is the default mode.

―――
Credits: Dumoulin and Visin, A guide to convolution arithmetic for deep learning, 2016. 34 / 71

https://arxiv.org/abs/1603.07285


Equivariance

A function  is equivariant to  if .

Parameter sharing used in a convolutional layer causes the layer to be
equivariant to translation.

That is, if  is any function that translates the input, the convolution function

is equivariant to .

If an object moves in the input image, its representation will move the same amount in the output.

f g f(g(x)) = g(f(x))

g

g

―――
Credits: LeCun et al, Gradient-based learning applied to document recognition, 1998. 35 / 71



Equivariance is useful when we know some local function is useful
everywhere (e.g., edge detectors).

Convolution is not equivariant to other operations such as change in scale or
rotation.

36 / 71



Pooling
When the input volume is large, pooling layers can be used to reduce the input
dimension while preserving its global structure, in a way similar to a down-scaling
operation.

Consider a pooling area of size  and a 3D input tensor .

Max-pooling produces a tensor  such that

Average pooling produces a tensor  such that

Pooling is very similar in its formulation to convolution.

h × w x ∈ RC×(rh)×(sw)

o ∈ RC×r×s

o  =  x  .c,j,i
n<h,m<w

max c,rj+n,si+m

o ∈ RC×r×s

o  =    x  .c,j,i
hw

1

n=0

∑
h−1

m=0

∑
w−1

c,rj+n,si+m
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―――
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 38 / 71

https://fleuret.org/ee559/


Invariance

A function  is invariant to  if .

Pooling layers can be used for building inner activations that are (slightly)
invariant to small translations of the input.

Invariance to local translation is helpful if we care more about the presence
of a pattern rather than its exact position.

f g f(g(x)) = f(x)
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Architectures
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Layer patterns
A convolutional network can often be de�ned as a composition of convolutional
layers ( ), pooling layers ( ), linear recti�ers ( ) and fully connected

layers ( ).

CONV POOL RELU

FC
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The most common convolutional network architecture follows the pattern:

where:

 indicates repetition;

 indicates an optional pooling layer;

 (and usually ), ,  (and usually );

the last fully connected layer holds the output (e.g., the class scores).

INPUT→ [[CONV→ RELU]*N → POOL?]*M → [FC→ RELU]*K → FC

*

POOL?

N ≥ 0 N ≤ 3 M ≥ 0 K ≥ 0 K < 3
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Architectures
Some common architectures for convolutional networks following this pattern
include:

, which implements a linear classi�er ( ).

, which implements a -layer MLP.

.

.

.

INPUT→ FC N =M = K = 0

INPUT→ [FC→ RELU]∗K → FC K

INPUT→ CONV→ RELU→ FC

INPUT→ [CONV→ RELU→ POOL]*2→ FC→ RELU→ FC

INPUT→ [[CONV→ RELU]*2→ POOL]*3→ [FC→ RELU]*2→ FC
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LeNet-5 (LeCun et al, 1998)

First convolutional network to use backpropagation.

Applied to character recognition.
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----------------------------------------------------------------

        Layer (type)               Output Shape         Param #

================================================================

            Conv2d-1            [-1, 6, 28, 28]             156

              ReLU-2            [-1, 6, 28, 28]               0

         MaxPool2d-3            [-1, 6, 14, 14]               0

            Conv2d-4           [-1, 16, 10, 10]           2,416

              ReLU-5           [-1, 16, 10, 10]               0

         MaxPool2d-6             [-1, 16, 5, 5]               0

            Conv2d-7            [-1, 120, 1, 1]          48,120

              ReLU-8            [-1, 120, 1, 1]               0

            Linear-9                   [-1, 84]          10,164

             ReLU-10                   [-1, 84]               0

           Linear-11                   [-1, 10]             850

       LogSoftmax-12                   [-1, 10]               0

================================================================

Total params: 61,706                                            

Trainable params: 61,706                                        

Non-trainable params: 0                                         

----------------------------------------------------------------

Input size (MB): 0.00                                           

Forward/backward pass size (MB): 0.11                           

Params size (MB): 0.24                                          

Estimated Total Size (MB): 0.35                                 

----------------------------------------------------------------
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AlexNet (Krizhevsky et al, 2012)

16.4% top-5 error on ILSVRC'12, outperformed all by 10%.

Implementation on two GPUs, because of memory constraints.
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----------------------------------------------------------------

        Layer (type)               Output Shape         Param #

================================================================

            Conv2d-1           [-1, 64, 55, 55]          23,296

              ReLU-2           [-1, 64, 55, 55]               0

         MaxPool2d-3           [-1, 64, 27, 27]               0

            Conv2d-4          [-1, 192, 27, 27]         307,392

              ReLU-5          [-1, 192, 27, 27]               0

         MaxPool2d-6          [-1, 192, 13, 13]               0

            Conv2d-7          [-1, 384, 13, 13]         663,936

              ReLU-8          [-1, 384, 13, 13]               0

            Conv2d-9          [-1, 256, 13, 13]         884,992

             ReLU-10          [-1, 256, 13, 13]               0

           Conv2d-11          [-1, 256, 13, 13]         590,080

             ReLU-12          [-1, 256, 13, 13]               0

        MaxPool2d-13            [-1, 256, 6, 6]               0

          Dropout-14                 [-1, 9216]               0

           Linear-15                 [-1, 4096]      37,752,832

             ReLU-16                 [-1, 4096]               0

          Dropout-17                 [-1, 4096]               0

           Linear-18                 [-1, 4096]      16,781,312

             ReLU-19                 [-1, 4096]               0

           Linear-20                 [-1, 1000]       4,097,000

================================================================

Total params: 61,100,840                                        

Trainable params: 61,100,840                                    

Non-trainable params: 0                                         

----------------------------------------------------------------

Input size (MB): 0.57                                           

Forward/backward pass size (MB): 8.31                           

Params size (MB): 233.08                                        

Estimated Total Size (MB): 241.96                               

----------------------------------------------------------------
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96  kernels learned by the �rst convolutional layer.

Top 48 kernels were learned on GPU1, while the bottom 48 kernels were
learned on GPU 2.

11 × 11 × 3
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VGG (Simonyan and Zisserman, 2014)

7.3% top-5 error on ILSVRC'14.

Depth increased up to 19 layers, kernel sizes reduced to 3.
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----------------------------------------------------------------

        Layer (type)               Output Shape         Param #

================================================================

            Conv2d-1         [-1, 64, 224, 224]           1,792

              ReLU-2         [-1, 64, 224, 224]               0

            Conv2d-3         [-1, 64, 224, 224]          36,928

              ReLU-4         [-1, 64, 224, 224]               0

         MaxPool2d-5         [-1, 64, 112, 112]               0

            Conv2d-6        [-1, 128, 112, 112]          73,856

              ReLU-7        [-1, 128, 112, 112]               0

            Conv2d-8        [-1, 128, 112, 112]         147,584

              ReLU-9        [-1, 128, 112, 112]               0

        MaxPool2d-10          [-1, 128, 56, 56]               0

           Conv2d-11          [-1, 256, 56, 56]         295,168

             ReLU-12          [-1, 256, 56, 56]               0

           Conv2d-13          [-1, 256, 56, 56]         590,080

             ReLU-14          [-1, 256, 56, 56]               0

           Conv2d-15          [-1, 256, 56, 56]         590,080

             ReLU-16          [-1, 256, 56, 56]               0

        MaxPool2d-17          [-1, 256, 28, 28]               0

           Conv2d-18          [-1, 512, 28, 28]       1,180,160

             ReLU-19          [-1, 512, 28, 28]               0

           Conv2d-20          [-1, 512, 28, 28]       2,359,808

             ReLU-21          [-1, 512, 28, 28]               0

           Conv2d-22          [-1, 512, 28, 28]       2,359,808

             ReLU-23          [-1, 512, 28, 28]               0

        MaxPool2d-24          [-1, 512, 14, 14]               0

           Conv2d-25          [-1, 512, 14, 14]       2,359,808

             ReLU-26          [-1, 512, 14, 14]               0

           Conv2d-27          [-1, 512, 14, 14]       2,359,808

             ReLU-28          [-1, 512, 14, 14]               0

           Conv2d-29          [-1, 512, 14, 14]       2,359,808

             ReLU-30          [-1, 512, 14, 14]               0

        MaxPool2d-31            [-1, 512, 7, 7]               0

           Linear-32                 [-1, 4096]     102,764,544

             ReLU-33                 [-1, 4096]               0

          Dropout-34                 [-1, 4096]               0

           Linear-35                 [-1, 4096]      16,781,312

             ReLU-36                 [-1, 4096]               0

          Dropout-37                 [-1, 4096]               0

           Linear-38                 [-1, 1000]       4,097,000

================================================================

Total params: 138,357,544                                       

Trainable params: 138,357,544                                   

Non-trainable params: 0                                         

----------------------------------------------------------------

Input size (MB): 0.57                                           

Forward/backward pass size (MB): 218.59                         

Params size (MB): 527.79                                        

Estimated Total Size (MB): 746.96                               

----------------------------------------------------------------
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The effective receptive �eld is the part of the visual input that affects a given unit
indirectly through previous layers.

It grows linearly with depth.

A stack of three  kernels of stride 1 has the same effective receptive

�eld as a single  kernel, but fewer parameters.

3 × 3
7 × 7

―――
Credits: Yannis Avrithis, Deep Learning for Vision, University of Rennes 1. 52 / 71

https://sif-dlv.github.io/


ResNet (He et al, 2015)

Even deeper models (34, 50, 101
and 152 layers)

Skip connections.

Resnet-50 vs. VGG:

5.25% top-5 error vs. 7.1%

25M vs. 138M parameters

3.8B Flops vs. 15.3B Flops

Fully convolutional until the last layer
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----------------------------------------------------------------

        Layer (type)               Output Shape         Param #

================================================================

            Conv2d-1         [-1, 64, 112, 112]           9,408

       BatchNorm2d-2         [-1, 64, 112, 112]             128

              ReLU-3         [-1, 64, 112, 112]               0

         MaxPool2d-4           [-1, 64, 56, 56]               0

            Conv2d-5           [-1, 64, 56, 56]           4,096

       BatchNorm2d-6           [-1, 64, 56, 56]             128

              ReLU-7           [-1, 64, 56, 56]               0

            Conv2d-8           [-1, 64, 56, 56]          36,864

       BatchNorm2d-9           [-1, 64, 56, 56]             128

             ReLU-10           [-1, 64, 56, 56]               0

           Conv2d-11          [-1, 256, 56, 56]          16,384

      BatchNorm2d-12          [-1, 256, 56, 56]             512

           Conv2d-13          [-1, 256, 56, 56]          16,384

      BatchNorm2d-14          [-1, 256, 56, 56]             512

             ReLU-15          [-1, 256, 56, 56]               0

       Bottleneck-16          [-1, 256, 56, 56]               0

           Conv2d-17           [-1, 64, 56, 56]          16,384

      BatchNorm2d-18           [-1, 64, 56, 56]             128

             ReLU-19           [-1, 64, 56, 56]               0

           Conv2d-20           [-1, 64, 56, 56]          36,864

      BatchNorm2d-21           [-1, 64, 56, 56]             128

             ReLU-22           [-1, 64, 56, 56]               0

           Conv2d-23          [-1, 256, 56, 56]          16,384

      BatchNorm2d-24          [-1, 256, 56, 56]             512

             ReLU-25          [-1, 256, 56, 56]               0

       Bottleneck-26          [-1, 256, 56, 56]               0

           Conv2d-27           [-1, 64, 56, 56]          16,384

      BatchNorm2d-28           [-1, 64, 56, 56]             128

             ReLU-29           [-1, 64, 56, 56]               0

           Conv2d-30           [-1, 64, 56, 56]          36,864

      BatchNorm2d-31           [-1, 64, 56, 56]             128

             ReLU-32           [-1, 64, 56, 56]               0

           Conv2d-33          [-1, 256, 56, 56]          16,384

      BatchNorm2d-34          [-1, 256, 56, 56]             512

             ReLU-35          [-1, 256, 56, 56]               0

       Bottleneck-36          [-1, 256, 56, 56]               0

           Conv2d-37          [-1, 128, 56, 56]          32,768

      BatchNorm2d-38          [-1, 128, 56, 56]             256

             ReLU-39          [-1, 128, 56, 56]               0

           Conv2d-40          [-1, 128, 28, 28]         147,456

      BatchNorm2d-41          [-1, 128, 28, 28]             256

             ReLU-42          [-1, 128, 28, 28]               0

           Conv2d-43          [-1, 512, 28, 28]          65,536

      BatchNorm2d-44          [-1, 512, 28, 28]           1,024

           Conv2d-45          [-1, 512, 28, 28]         131,072

      BatchNorm2d-46          [-1, 512, 28, 28]           1,024

             ReLU-47          [-1, 512, 28, 28]               0

       Bottleneck-48          [-1, 512, 28, 28]               0

           Conv2d-49          [-1, 128, 28, 28]          65,536

      BatchNorm2d-50          [-1, 128, 28, 28]             256

             ReLU-51          [-1, 128, 28, 28]               0

           Conv2d-52          [-1, 128, 28, 28]         147,456

      BatchNorm2d-53          [-1, 128, 28, 28]             256

...

...

Bottleneck-130         [-1, 1024, 14, 14]               0

    Conv2d-131          [-1, 256, 14, 14]         262,144

BatchNorm2d-132          [-1, 256, 14, 14]             512

      ReLU-133          [-1, 256, 14, 14]               0

    Conv2d-134          [-1, 256, 14, 14]         589,824

BatchNorm2d-135          [-1, 256, 14, 14]             512

      ReLU-136          [-1, 256, 14, 14]               0

    Conv2d-137         [-1, 1024, 14, 14]         262,144

BatchNorm2d-138         [-1, 1024, 14, 14]           2,048

      ReLU-139         [-1, 1024, 14, 14]               0

Bottleneck-140         [-1, 1024, 14, 14]               0

    Conv2d-141          [-1, 512, 14, 14]         524,288

BatchNorm2d-142          [-1, 512, 14, 14]           1,024

      ReLU-143          [-1, 512, 14, 14]               0

    Conv2d-144            [-1, 512, 7, 7]       2,359,296

BatchNorm2d-145            [-1, 512, 7, 7]           1,024

      ReLU-146            [-1, 512, 7, 7]               0

    Conv2d-147           [-1, 2048, 7, 7]       1,048,576

BatchNorm2d-148           [-1, 2048, 7, 7]           4,096

    Conv2d-149           [-1, 2048, 7, 7]       2,097,152

BatchNorm2d-150           [-1, 2048, 7, 7]           4,096

      ReLU-151           [-1, 2048, 7, 7]               0

Bottleneck-152           [-1, 2048, 7, 7]               0

    Conv2d-153            [-1, 512, 7, 7]       1,048,576

BatchNorm2d-154            [-1, 512, 7, 7]           1,024

      ReLU-155            [-1, 512, 7, 7]               0

    Conv2d-156            [-1, 512, 7, 7]       2,359,296

BatchNorm2d-157            [-1, 512, 7, 7]           1,024

      ReLU-158            [-1, 512, 7, 7]               0

    Conv2d-159           [-1, 2048, 7, 7]       1,048,576

BatchNorm2d-160           [-1, 2048, 7, 7]           4,096

      ReLU-161           [-1, 2048, 7, 7]               0

Bottleneck-162           [-1, 2048, 7, 7]               0

    Conv2d-163            [-1, 512, 7, 7]       1,048,576

BatchNorm2d-164            [-1, 512, 7, 7]           1,024

      ReLU-165            [-1, 512, 7, 7]               0

    Conv2d-166            [-1, 512, 7, 7]       2,359,296

BatchNorm2d-167            [-1, 512, 7, 7]           1,024

      ReLU-168            [-1, 512, 7, 7]               0

    Conv2d-169           [-1, 2048, 7, 7]       1,048,576

BatchNorm2d-170           [-1, 2048, 7, 7]           4,096

      ReLU-171           [-1, 2048, 7, 7]               0

Bottleneck-172           [-1, 2048, 7, 7]               0

 AvgPool2d-173           [-1, 2048, 1, 1]               0

    Linear-174                 [-1, 1000]       2,049,000

================================================================

Total params: 25,557,032                                        

Trainable params: 25,557,032                                    

Non-trainable params: 0                                         

----------------------------------------------------------------

Input size (MB): 0.57                                           

Forward/backward pass size (MB): 286.56                         

Params size (MB): 97.49                                         

Estimated Total Size (MB): 384.62                               

----------------------------------------------------------------
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Deeper is better
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Finding the optimal neural network architecture remains an active area of
research.

―――
Credits: Canziani et al, An Analysis of Deep Neural Network Models for Practical Applications, 2016. 56 / 71

https://arxiv.org/abs/1605.07678


Pre-trained models
Training a model on natural images, from scratch, takes days or weeks.

Many models trained on ImageNet are publicly available for download. These
models can be used as feature extractors or for smart initialization.
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Transfer learning

Take a pre-trained network, remove the last layer(s) and then treat the rest of
the the network as a �xed feature extractor.

Train a model from these features on a new task.

Often better than handcrafted feature extraction for natural images, or
better than training from data of the new task only.

Fine tuning

Same as for transfer learning, but also �ne-tune the weights of the pre-
trained network by continuing backpropagation.

All or only some of the layers can be tuned.
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In the case of models pre-trained on ImageNet, this often works even when input
images for the new task are not photographs of objects or animals, such as
biomedical images, satellite images or paintings.

 

―――
Credits: Mormont et al, Comparison of deep transfer learning strategies for digital pathology, 2018. 59 / 71

http://hdl.handle.net/2268/222511


What is really happening?
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Maximum response samples
Convolutional networks can be inspected by looking for input images  that

maximize the activation  of a chosen convolutional kernel  at layer  and

index  in the layer �lter bank.

Such images can be found by gradient ascent on the input space:

x
h  (x)ℓ,d u ℓ

d

L (x)ℓ,d

x0

xt+1

= ∣∣h  (x)∣∣  ℓ,d 2

∼ U [0, 1]C×H×W

= x  + γ∇  L  (x  )t x ℓ,d t
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VGG-16, convolutional layer 1-1, a few of the 64 �lters

―――
Credits: Francois Chollet, How convolutional neural networks see the world, 2016. 62 / 71

https://blog.keras.io/how-convolutional-neural-networks-see-the-world.html


VGG-16, convolutional layer 2-1, a few of the 128 �lters

―――
Credits: Francois Chollet, How convolutional neural networks see the world, 2016. 63 / 71

https://blog.keras.io/how-convolutional-neural-networks-see-the-world.html


VGG-16, convolutional layer 3-1, a few of the 256 �lters

―――
Credits: Francois Chollet, How convolutional neural networks see the world, 2016. 64 / 71

https://blog.keras.io/how-convolutional-neural-networks-see-the-world.html


VGG-16, convolutional layer 4-1, a few of the 512 �lters

―――
Credits: Francois Chollet, How convolutional neural networks see the world, 2016. 65 / 71

https://blog.keras.io/how-convolutional-neural-networks-see-the-world.html


VGG-16, convolutional layer 5-1, a few of the 512 �lters

―――
Credits: Francois Chollet, How convolutional neural networks see the world, 2016. 66 / 71

https://blog.keras.io/how-convolutional-neural-networks-see-the-world.html


Some observations:

The �rst layers appear to encode direction and color.

The direction and color �lters get combined into grid and spot textures.

These textures gradually get combined into increasingly complex patterns.

In other words, the network appears to learn a hierarchical composition of
patterns.
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What if we build images that maximize the activation of a chosen class output?
The left image is predicted with 99.9% con�dence as a magpie!

―――
Credits: Francois Chollet, How convolutional neural networks see the world, 2016. 68 / 71

https://blog.keras.io/how-convolutional-neural-networks-see-the-world.html


Journey on the Deep DreamJourney on the Deep DreamJourney on the Deep Dream

Deep Dream. Start from an image , offset by a random jitter, enhance some

layer activation at multiple scales, zoom in, repeat on the produced image .

x  t

x  t+1
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https://www.youtube.com/watch?v=SCE-QeDfXtA
https://www.youtube.com/channel/UCAKyAhWoa58eBYp0uVb_ujw


Biological plausibility

"Deep hierarchical neural networks are beginning to transform neuroscientists’
ability to produce quantitatively accurate computational models of the sensory
systems, especially in higher cortical areas where neural response properties had
previously been enigmatic."

―――

Credits: Yamins et al, Using goal-driven deep learning models to understand sensory cortex, 2016.
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The end.
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Optimizers
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Gradient descent
To minimize a loss  of the form

standard batch gradient descent (GD) consists in applying the update rule

where  is the learning rate.

L(θ)

L(θ) =   ℓ(y  , f(x  ; θ)),
N

1

n=1

∑
N

n n

  

g  t

θ  t+1

=   ∇  ℓ(y  , f(x  ; θ  ))
N

1

n=1

∑
N

θ n n t

= θ  − γg  ,t t

γ
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While it makes sense in principle to compute the gradient exactly,

it takes time to compute and becomes inef�cient for large ,

it is an empirical estimation of an hidden quantity (the expected risk), and any
partial sum is also an unbiased estimate, although of greater variance.

N

―――
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 6 / 56

https://fleuret.org/ee559/


To illustrate how partial sums are good estimates, consider an ideal case where
the training set is the same set of  samples replicated  times. Then,

Then, instead of summing over all the samples and moving by , we can visit only 

 samples and move by , which would cut the computation by .

Although this is an ideal case, there is redundancy in practice that results in
similar behaviors.

M ≪ N K

L(θ) =   ℓ(y  , f(x  ; θ))
N

1

i=n

∑
N

n n

=   ℓ(y  , f(x  ; θ))
N

1

k=1

∑
K

m=1

∑
M

m m

=  K  ℓ(y  , f(x  ; θ)).
N

1

m=1

∑
M

m m

γ

M = N/K Kγ K

―――
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 7 / 56

https://fleuret.org/ee559/


Stochastic gradient descent

To reduce the computational complexity, stochastic gradient descent (SGD)
consists in updating the parameters after every sample

gt

θt+1

= ∇  ℓ(y  , f(x  ; θ  ))θ n(t) n(t) t

= θ  − γg  .t t
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The stochastic behavior of SGD helps evade local minima.

While being computationally faster than batch gradient descent,

gradient estimates used by SGD can be very noisy,

SGD does not bene�t from the speed-up of batch-processing.
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Mini-batching

Instead, mini-batch SGD consists of visiting the samples in mini-batches and
updating the parameters each time

where the order  to visit the samples can be either sequential or random.

Increasing the batch size  reduces the variance of the gradient estimates

and enables the speed-up of batch processing.

The interplay between  and  is still unclear.

  

g  t

θ  t+1

=   ∇  ℓ(y  , f(x  ; θ  ))
B

1

b=1

∑
B

θ n(t,b) n(t,b) t

= θ  − γg  ,t t

n(t, b)

B

B γ

―――
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 11 / 56

https://fleuret.org/ee559/


Limitations

The gradient descent method makes strong assumptions about

the magnitude of the local curvature to set the step size,

the isotropy of the curvature, so that the same step size  makes sense in all

directions.

γ

―――
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 12 / 56

https://fleuret.org/ee559/
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γ = 0.1
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γ = 0.4
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Wolfe conditions

Let us consider a function  to minimize along , following a direction of descent 

.

For , the Wolfe conditions on the step size  are as follows:

Suf�cient decrease condition:

Curvature condition:

f x

p

0 < c  < c  < 11 2 γ

f(x + γp) ≤ f(x) + c  γp ∇f(x)1
T

c  p ∇f(x) ≤ p ∇f(x + γp)2
T T
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The suf�cient decrease condition ensures that  decreases suf�ciently. 

(  is the step size.)

f

α

―――
Credits: Wikipedia, Wolfe conditions. 18 / 56

https://en.wikipedia.org/wiki/Wolfe_conditions


The curvature condition ensures that the slope has been reduced suf�ciently.

―――
Credits: Wikipedia, Wolfe conditions. 19 / 56

https://en.wikipedia.org/wiki/Wolfe_conditions


The Wolfe conditions can be used to design line search algorithms to
automatically determine a step size , hence ensuring convergence towards a

local minima.

However, in deep learning,

these algorithms are impractical because of the size of the parameter space
and the overhead it would induce,

they might lead to over�tting when the empirical risk is minimized too well.

γ  t
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The tradeoffs of learning

When decomposing the excess error in terms of approximation, estimation and
optimization errors, stochastic algorithms yield the best generalization
performance (in terms of expected risk) despite being the worst optimization
algorithms (in terms of empirical risk) (Bottou, 2011).

  

E R(   ) − R(f  )[ f
~

∗
d

B ]

= E R(f  ) − R(f  ) + E R(f  ) − R(f  ) + E R(   ) − R(f  )[ ∗ B ] [ ∗
d

∗ ] [ f
~

∗
d

∗
d ]

= E  + E  + Eapp est opt
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Momentum

In the situation of small but consistent gradients, as through valley �oors,
gradient descent moves very slowly.
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The new variable  is the velocity. It

corresponds to the direction and speed by
which the parameters move as the learning
dynamics progresses, modeled as an
exponentially decaying moving average of
negative gradients.

Gradient descent with momentum has three
nice properties:

it can go through local barriers,

it accelerates if the gradient does not change much,

it dampens oscillations in narrow valleys.

αut−1
ut

−γgt

An improvement to gradient descent is to use momentum to add inertia in the
choice of the step direction, that is

ut

θt+1

= αu  − γg  t−1 t

= θ  + u  .t t

u  t

―――
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 23 / 56

https://fleuret.org/ee559/


The hyper-parameter  controls how recent gradients affect the current update.

Usually, , with .

If at each update we observed , the step would (eventually) be

Therefore, for , it is like multiplying the maximum speed by 

relative to the current direction.

α

α = 0.9 α > γ

g

u = −  g.
1 − α

γ

α = 0.9 10
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Nesterov momentum

An alternative consists in simulating a step in the direction of the velocity, then
calculate the gradient and make a correction.

αut−1

ut

−γgt

  

g  t

u  t

θ  t+1

=   ∇  ℓ(y  , f(x  ; θ  + αu  ))
N

1

n=1

∑
N

θ n n t t−1

= αu  − γg  t−1 t

= θ  + ut t
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Adaptive learning rate
Vanilla gradient descent assumes the isotropy of the curvature, so that the same
step size  applies to all parameters.

 

Isotropic vs. Anistropic

γ
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AdaGrad

Per-parameter downscale by square-root of sum of squares of all its historical
values.

AdaGrad eliminates the need to manually tune the learning rate. Most
implementation use  as default.

It is good when the objective is convex.

 grows unboundedly during training, which may cause the step size to

shrink and eventually become in�nitesimally small.

rt

θt+1

= r  + g  ⊙ g  t−1 t t

= θ  −  ⊙ g  .t
δ +  r  t

γ
t

γ = 0.01

r  t
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RMSProp

Same as AdaGrad but accumulate an exponentially decaying average of the
gradient.

Perform better in non-convex settings.

Does not grow unboundedly.

  

r  t

θ  t+1

= ρr  + (1 − ρ)g  ⊙ g  t−1 t t

= θ  −  ⊙ g  .t
δ +  r  t

γ
t
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Adam

Similar to RMSProp with momentum, but with bias correction terms for the �rst
and second moments.

Good defaults are  and .

Adam is one of the default optimizers in deep learning, along with SGD with
momentum.

  

s  t

 ŝ t

r  t

 r̂ t

θ  t+1

= ρ  s  + (1 − ρ  )g  1 t−1 1 t

=  

1 − ρ  1
t

s  t

= ρ  r  + (1 − ρ  )g  ⊙ g  2 t−1 2 t t

=  

1 − ρ  2
t

s  t

= θ  − γ  t
δ +   r̂ t

 ŝ t

ρ  = 0.91 ρ  = 0.9992
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―――
Credits: Kingma and Ba, Adam: A Method for Stochastic Optimization, 2014. 33 / 56

https://arxiv.org/abs/1412.6980


Scheduling
Despite per-parameter adaptive learning rate methods, it is usually helpful to
anneal the learning rate  over time.

Step decay: reduce the learning rate by some factor every few epochs (e.g, by
half every 10 epochs).

Exponential decay:  where  and  are hyper-

parameters.

 decay:  where  and  are hyper-parameters.

 

 
Step decay scheduling for training ResNets.

γ

γ  = γ  exp(−kt)t 0 γ  0 k

1/t γ  = γ  /(1 + kt)t 0 γ  0 k
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Initialization
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In convex problems, provided a good learning rate , convergence is

guaranteed regardless of the initial parameter values.

In the non-convex regime, initialization is much more important!

Little is known on the mathematics of initialization strategies of neural
networks.

What is known: initialization should break symmetry.

What is known: the scale of weights is important.

γ
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Controlling for the variance in the forward pass

A �rst strategy is to initialize the network parameters such that activations
preserve the same variance across layers.

Intuitively, this ensures that the information keeps �owing during the forward
pass, without reducing or magnifying the magnitude of input signals
exponentially.
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Let us assume that

we are in a linear regime at initialization (e.g., the positive part of a ReLU or
the middle of a sigmoid),

weights  are initialized independently,

biases  are initialized to be ,

input feature variances are the same, which we denote as .

Then, the variance of the activation  of unit  in layer  is

where  is the width of layer  and  for all .

w  ij
l

b  l 0

V[x]

h  i
l i l

V h[ i
l] = V  w  h  [

j=0

∑
q  −1l−1

ij
l

j
l−1]

=  V w  V h
j=0

∑
q  −1l−1

[ ij
l ] [ j

l−1]

q  l l h  = x  j
0

j j = 0, ..., p − 1
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If we further assume that weights  at layer  share the same variance 

and that the variance of the activations in the previous layer are the same, then
we can drop the indices and write

Therefore, the variance of the activations is preserved across layers when

This condition is enforced in LeCun's uniform initialization, which is de�ned as

w  ij
l l V w[ l]

V h = q  V w V h .[ l] l−1 [ l] [ l−1]

V w =  ∀l.[ l]
q  l−1

1

w  ∼ U −  ,  .ij
l [  

q  l−1

3
 

q  l−1

3
]
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Controlling for the variance in the backward pass

A similar idea can be applied to ensure that the gradients �ow in the backward
pass (without vanishing nor exploding), by maintaining the variance of the
gradient with respect to the activations �xed across layers.

Under the same assumptions as before,

V  [
dh  i

l

d  ŷ
] = V    [

j=0

∑
q  −1l+1

dh  j
l+1

d  ŷ

∂h  i
l

∂h  j
l+1

]

= V   w  [
j=0

∑
q  −1l+1

dh  j
l+1

d  ŷ
j,i
l+1]

=  V  V w  

j=0

∑
q  −1l+1

[
dh  j

l+1

d  ŷ
] [ ji

l+1]
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If we further assume that

the gradients of the activations at layer  share the same variance

the weights at layer  share the same variance ,

then we can drop the indices and write

Therefore, the variance of the gradients with respect to the activations is
preserved across layers when

l

l + 1 V w[ l+1]

V  = q  V  V w .[
dhl

d  ŷ
] l+1 [

dhl+1

d  ŷ
] [ l+1]

V w =  ∀l.[ l]
q  l

1
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Xavier initialization

We have derived two different conditions on the variance of ,

.

A compromise is the Xavier initialization, which initializes  randomly from a

distribution with variance

For example, normalized initialization is de�ned as

wl

V w =  [ l]
q  l−1

1

V w =  [ l] q  l

1

wl

V w =  =  .[ l]
 2

q  +q  l−1 l

1
q  + q  l−1 l

2

w  ∼ U −  ,  .ij
l [  

q  + q  l−1 l

6
 

q  + q  l−1 l

6
]
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―――
Credits: Glorot and Bengio, Understanding the dif�culty of training deep feedforward neural networks, 2010. 43 / 56

http://proceedings.mlr.press/v9/glorot10a.html


―――
Credits: Glorot and Bengio, Understanding the dif�culty of training deep feedforward neural networks, 2010. 44 / 56

http://proceedings.mlr.press/v9/glorot10a.html


Normalization

45 / 56



Data normalization
Previous weight initialization strategies rely on preserving the activation
variance constant across layers, under the initial assumption that the input
feature variances are the same.

That is,

for all pairs of features .

V x  = V x  ≜ V x[ i] [ j ] [ ]

i, j

―――
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 46 / 56

https://fleuret.org/ee559/


In general, this constraint is not satis�ed but can be enforced by standardizing
the input data feature-wise,

where

x = (x−  ) ⊙  ,′ μ̂
σ̂

1

 

 =   x =   (x−  ) .μ̂
N

1

x∈d

∑ σ̂2

N

1

x∈d

∑ μ̂ 2

―――
Credits: Scikit-Learn, Compare the effect of different scalers on data with outliers. 47 / 56

https://scikit-learn.org/stable/auto_examples/preprocessing/plot_all_scaling.html#standardscaler


Batch normalization
Maintaining proper statistics of the activations and derivatives is critical for
training neural networks.

This constraint can be enforced explicitly during the forward pass by re-
normalizing them.

Batch normalization was the �rst method introducing this idea.

―――
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 48 / 56

https://fleuret.org/ee559/


―――
Credits: Ioffe and Szegedy, Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, 2015. 49 / 56

https://arxiv.org/abs/1502.03167


During training, batch normalization shifts and rescales according to the
mean and variance estimated on the batch.

During test, it shifts and rescales according to the empirical moments
estimated during training.

―――
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 50 / 56

https://fleuret.org/ee559/


u u'BN

Let us consider a given minibatch of samples at training, for which , 

, are intermediate values computed at some location in the

computational graph.

In batch normalization following the node , the per-component mean and

variance are �rst computed on the batch

from which the standardized  are computed such that

where  are parameters to optimize.

u  ∈ Rb
q

b = 1, ..., B

u

  =   u   =   (u  −   ) ,μ̂batch
B

1

b=1

∑
B

b σ̂batch
2

B

1

b=1

∑
B

b μ̂batch
2

u  ∈ Rb
′ q

ub
′ = γ ⊙ (u  −   ) ⊙  + βb μ̂batch

 + ϵσ̂batch

1

γ, β ∈ Rq

―――
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 51 / 56

https://fleuret.org/ee559/


Exercise: How does batch normalization combine with backpropagation?
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During inference, batch normalization shifts and rescales each component
according to the empirical moments estimated during training:

u = γ ⊙ (u−  ) ⊙  + β.′ μ̂
σ̂

1

―――
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 53 / 56

https://fleuret.org/ee559/


―――
Credits: Ioffe and Szegedy, Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, 2015. 54 / 56

https://arxiv.org/abs/1502.03167


The position of batch normalization relative to the non-linearity is not clear.

―――
Credits: Ioffe and Szegedy, Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, 2015. 55 / 56

https://arxiv.org/abs/1502.03167


Layer normalization

Given a single input sample , a similar approach can be applied to standardize

the activations  across a layer instead of doing it over the batch.

x
u
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The end.
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Many real-world problems require to process a signal with a sequence structure.

Sequence classi�cation:

sentiment analysis

activity/action recognition

DNA sequence classi�cation

action selection

Sequence synthesis:

text synthesis

music synthesis

motion synthesis

Sequence-to-sequence translation:

speech recognition

text translation

part-of-speech tagging

―――
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 3 / 69

https://fleuret.org/ee559/


Sequence classi�cation

Sequence synthesis

Sequence-to-sequence translation

Given a set , if  denotes the set of sequences of elements from ,

then we formally de�ne:

 
In the rest of the slides, we consider only time-indexed signal, although it
generalizes to arbitrary sequences.

X S(X ) X

S(X ) = ∪  X ,t=1
∞ t

f : S(X ) → {1, ..., C}

f : R → S(X )d

f : S(X ) → S(Y)

―――
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 4 / 69

https://fleuret.org/ee559/


Temporal convolutions
One of the simplest approach to sequence processing is to use temporal
convolutional networks (TCNs).

TCNs correspond to standard 1D convolutional networks.

They process input sequences as �xed-size vectors of the maximum possible
length.

―――
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 5 / 69

https://fleuret.org/ee559/


Complexity:

Increasing the window size  makes the required number of layers grow as 

.

Thanks to dilated convolutions, the model size is .

The memory footprint and computation are .

T

O(log T )

O(log T )

O(T log T )

―――
Credits: Philippe Remy, keras-tcn, 2018; Francois Fleuret, EE559 Deep Learning, EPFL. 6 / 69

https://github.com/philipperemy/keras-tcn
https://fleuret.org/ee559/


―――
Credits: Bai et al, An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling, 2018. 7 / 69

https://arxiv.org/abs/1803.01271


Recurrent neural networks
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When the input is a sequence  of variable length , a standard

approach is to use a recurrent model which maintains a recurrent state 

updated at each time step .

x ∈ S(R )p T (x)
h  ∈ Rt

q

t

―――
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 9 / 69

https://fleuret.org/ee559/


Formally, for ,

where  and .

Predictions can be computed at any time step  from the recurrent state,

with .

t = 1, ..., T (x)

h  = ϕ(x  ,h  ; θ),t t t−1

ϕ : R ×R → Rp q q h  ∈ R0
q

t

y  = ψ(h  ; θ),t t

ψ : R → Rq C

―――
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 10 / 69

https://fleuret.org/ee559/
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Even though the number of steps  depends on , this is a standard

computational graph, and automatic differentiation can deal with it as usual.

In the case of recurrent neural networks, this is referred to as backpropagation
through time.

T x

15 / 69



x 1

h1

θ ϕ

h0

ϕ

x 2

h2

ϕ ϕ

h T

x T

ψ

yT

ψ

y2

ψ

y1

...

16 / 69



Elman networks
Elman networks consist of  and  de�ned as primitive neuron units, such as

logistic regression units.

That is,

where  and  are non-linear activation functions, such as the sigmoid

function,  or .

ϕ ψ

  

h  = σ  W  x  +W  h  + b  t h ( xh
T

t hh
T

t−1 h)

y  = σ  W  h  + b  t y ( y
T

t y)

W  ∈ R ,W  ∈ R ,b  ∈ R , b  ∈ R,h  = 0xh
T p×q

hh
T q×q

h
q

y 0

σ  h σ  y

tanh ReLU
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Example

Can a recurrent network learn to tell whether a variable-length sequence is a
palindrome?

 
For training, we will use sequences of random sizes, from  to .

x

(1, 2, 3, 2, 1)
(2, 1, 2)
(3, 4, 1, 2)
(0)
(1, 4)

y

1
1
0
1
0

1 10
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Epoch vs. cross-entropy.
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Sequence length vs. cross-entropy.

Note that the network was trained on sequences of size 10 or lower. 
It does not appear to generalize outside of the range.
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Stacked RNNs
Recurrent networks can be viewed as layers producing sequences  of

activations.

As for multi-perceptron layers, recurrent layers can be composed in series to form
a stack of recurrent networks.

 

x 1:T h1
1:T

θ

RNN RNN h2
1:T RNN RNN h L

1:T
... ψ yT

h  1:T
l
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Epoch vs. cross-entropy.
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Sequence length vs. cross-entropy.
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Bidirectional RNNs
Computing the recurrent states forward in time does not make use of future

input values , even though there are known.

RNNs can be made bidirectional by consuming the sequence in both
directions.

Effectively, this amounts to run the same (single direction) RNN twice:

once over the original sequence ,

once over the reversed sequence .

The resulting recurrent states of the bidirectional RNN is the concatenation
of two resulting sequences of recurrent states.

x  t+1:T

x  1:T

x  T :1
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Gating
When unfolded through time, the resulting network can grow very deep, and
training it involves dealing with vanishing gradients.

A critical component in the design of RNN cells is to add in a pass-through, or
additive paths, so that the recurrent state does not go repeatedly through a
squashing non-linearity.

This is very similar to skip connections in ResNets.

 
 
 

h t−1 h tϕ +

―――
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 25 / 69

https://fleuret.org/ee559/


For instance, the recurrent state update can be a per-component weighted

average of its previous value  and a full update , with the weighting 

depending on the input and the recurrent state, hence acting as a forget gate.

Formally,

h  t−1  h̄t z  t

  

 h̄t

z  t

h  t

= ϕ(x  ,h  ; θ)t t−1

= f(x  ,h  ; θ)t t−1

= z  ⊙ h  + (1 − z  ) ⊙  .t t−1 t h̄t

―――
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 26 / 69

https://fleuret.org/ee559/


x t

h t
h t−1

⊙ +

1 − ⊙

f ϕ

z t h̄̄ t
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LSTM

The long short-term memory model (Hochreiter and Schmidhuber, 1997) is an
instance of the previous gated recurrent cell, with the following changes:

The recurrent state is split into two parts  and , where

 is the cell state and

 is output state.

A forget gate  selects the cell state information to erase.

An input gate  selects the cell state information to update.

An output gate  selects the cell state information to output.

c  t h  t

c  t

h  t

f  t

i  t

o  t
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x t

h t

ct⊙ +

σ σ

ft c̄t

h t−1

ct−1

σ tanh

it

⊙

ot ⊙

tanh

  

f  t = σ W  [h  ,x  ] + b  ( f
T

t−1 t f )
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x t

h t

ct⊙ +

σ σ

ft c̄t

h t−1

ct−1

σ tanh

it

⊙

ot ⊙

tanh

it
c̄t

= σ W  [h  ,x  ] + b  ( i
T

t−1 t i)

= tanh W  [h  ,x  ] + b  ( c
T

t−1 t c)
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x t

h t

ct⊙ +

σ σ

ft c̄t

h t−1

ct−1

σ tanh

it

⊙

ot ⊙

tanh

  

c  t = f  ⊙ c  + i  ⊙  t t−1 t c̄t
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x t

h t

ct⊙ +

σ σ

ft c̄t

h t−1

ct−1

σ tanh

it

⊙

ot ⊙

tanh

  

o  t

h  t

= σ W  [h  ,x  ] + b  ( o
T

t−1 t o)

= o  ⊙ tanh(c  )t t
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Epoch vs. cross-entropy.
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Sequence length vs. cross-entropy.

34 / 69



GRU

The gated recurrent unit (Cho et al, 2014) is another gated recurrent cell.

It is based on two gates instead of three: an update gate  and a reset gate 

.

GRUs perform similarly as LSTMs for language or speech modeling
sequences, but with fewer parameters.

However, LSTMs remain strictly stronger than GRUs.

z  t

r  t
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x t

h t
h t−1

+

σ σ

r t z t

1 −

tanh h̄̄ t

⊙

⊙

⊙

  

z  t

r  t

 h̄t

h  t

= σ W  [h  ,x  ] + b  ( z
T

t−1 t z)

= σ W  [h  ,x  ] + b  ( r
T

t−1 t r)

= tanh W  [r  ⊙ h  ,x  ] + b  ( h
T

t t−1 t h)

= (1 − z  ) ⊙ h  + z  ⊙  t h−1 t h̄t
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Epoch vs. cross-entropy.
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Sequence length vs. cross-entropy.
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Gradient clipping
Gated units prevent gradients from vanishing, but not from exploding.

The standard strategy to solve this issue is gradient norm clipping, which rescales
the norm of the gradient to a �xed threshold  when it is above:δ

f =  min(∣∣∇f ∣∣, δ).∇
~

∣∣∇f ∣∣
∇f

―――
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 39 / 69

https://fleuret.org/ee559/


Orthogonal initialization
Let us consider a simpli�ed RNN, with no inputs, no bias, an identity activation

function  (as in the positive part of a ReLU) and the initial recurrent state  set

to the identity matrix.

We have,

For a sequence of size , it comes

Ideally, we would like  to neither vanish nor explode as  increases.

σ h  0

ht = σ W  x  +W  h  + b  ( xh
T

t hh
T

t−1 h)

=W  h  hh
T

t−1

=W h  .T
t−1

n

h  =W(W(W(...(Wh  )...))) =W h  =W I =W .n 0
n

0
n n

Wn n
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Fibonacci digression

The Fibonacci sequence is

It grows fast! But how fast?

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, ...
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In matrix form, the Fibonacci sequence is equivalently expressed as

With , we have

 =    .(
f  k+2

f  k+1
) (

1
1

1
0

) (
f  k+1

f  k
)

f  =  0 (
1
0)

f  = Af  = A f  .k+1 k
k+1

0
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The matrix  can be diagonalized as

where

In particular,

Therefore, the Fibonacci sequence grows exponentially fast with the golden ratio 

.

A

A = SΛS ,−1

  .

Λ

S

=   (
φ

0
0

−φ−1)

=   (
φ

1
−φ−1

1
)

A = SΛ S .n n −1

φ
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Theorem

Let  be the spectral radius of the matrix , de�ned as

We have:

if  then  (= vanishing activations),

if  then  (= exploding activations).

ρ(A) A

ρ(A) = max{∣λ  ∣, ..., ∣λ  ∣}.1 d

ρ(A) < 1 lim  ∣∣A ∣∣ = 0n→∞
n

ρ(A) > 1 lim  ∣∣A ∣∣ = ∞n→∞
n
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,  vanish.

0:00 / 0:03

ρ(A) < 1 An

―――
Credits: Stephen Merety, Explaining and illustrating orthogonal initialization for recurrent neural networks, 2016. 45 / 69

https://smerity.com/articles/2016/orthogonal_init.html


,  explode.

0:00 / 0:03

ρ(A) > 1 An

―――
Credits: Stephen Merety, Explaining and illustrating orthogonal initialization for recurrent neural networks, 2016. 46 / 69

https://smerity.com/articles/2016/orthogonal_init.html


Orthogonal initialization

If  is orthogonal, then it is diagonalizable and all its eigenvalues are equal to 

or . In this case, the norm of

remains bounded.

Therefore, initializing  as a random orthogonal matrix will guarantee that

activations will neither vanish nor explode.

In practice, a random orthogonal matrix can be found through the SVD
decomposition or the QR factorization of a random matrix.

This initialization strategy is known as orthogonal initialization.

A −1
1

A = SΛ Sn n −1

W
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In Tensor�ow's Orthogonal initializer:

# Generate a random matrix

a = random_ops.random_normal(flat_shape, dtype=dtype, seed=self.seed)

# Compute the qr factorization

q, r = gen_linalg_ops.qr(a, full_matrices=False)

# Make Q uniform

d = array_ops.diag_part(r)

q *= math_ops.sign(d)

if num_rows < num_cols:

  q = array_ops.matrix_transpose(q)

return self.gain * array_ops.reshape(q, shape)

―――
Credits: Tensor�ow, tensor�ow/python/ops/init_ops.py. 48 / 69

https://github.com/tensorflow/tensorflow/blob/r1.13/tensorflow/python/ops/init_ops.py#L581


 is orthogonal.

0:00 / 0:03

A

―――
Credits: Stephen Merety, Explaining and illustrating orthogonal initialization for recurrent neural networks, 2016. 49 / 69

https://smerity.com/articles/2016/orthogonal_init.html


Finally, let us note that exploding activations are also the reason why squashing
non-linearity functions (such as ) are preferred in RNNs.

They avoid recurrent states from exploding by upper bounding .

(At least when running the network forward.)

tanh

∣∣h  ∣∣t
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Applications
(some)
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Sentiment analysis

Document-level modeling for sentiment analysis (= text classi�cation),  
with stacked, bidirectional and gated recurrent networks.

―――
Credits: Duyu Tang et al, Document Modeling with Gated Recurrent Neural Network for Sentiment Classi�cation, 2015. 52 / 69

http://www.aclweb.org/anthology/D15-1167


Language models

Model language as a Markov chain, such that sentences are sequences of words 

 drawn repeatedly from

This is an instance of sequence synthesis, for which predictions are computed at
all time steps .

w  1:T

p(w  ∣w  ).t 1:t−1

t
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―――
Credits: Alex Graves, Generating Sequences With Recurrent Neural Networks, 2013. 54 / 69

https://arxiv.org/abs/1308.0850


Open in Google Colab.

55 / 69

https://drive.google.com/file/d/1mMKGnVxirJnqDViH7BDJxFqWrsXlPSoK/view?usp=sharing


 
sketch-rnn-demo

The same generative architecture applies to any kind of sequences.

Say, sketches de�ned as sequences of strokes?

56 / 69

https://magenta.tensorflow.org/assets/sketch_rnn_demo/index.html


Neural machine translation

―――
Credits: Yonghui Wu et al, Google’s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation, 2016. 57 / 69

https://arxiv.org/abs/1609.08144


―――
Credits: Yonghui Wu et al, Google’s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation, 2016. 58 / 69

https://arxiv.org/abs/1609.08144


Image captioning

―――
Credits: Kelvin Xu et al, Show, Attend and Tell: Neural Image Caption Generation with Visual Attention, 2015. 59 / 69

https://arxiv.org/abs/1502.03044


―――
Credits: Kelvin Xu et al, Show, Attend and Tell: Neural Image Caption Generation with Visual Attention, 2015. 60 / 69

https://arxiv.org/abs/1502.03044


Text-to-speech synthesis

―――
Image credits: Shen et al, 2017. arXiv:1712.05884. 61 / 69

https://arxiv.org/abs/1712.05884


DRAW: A Recurrent Neural Network For Image GenDRAW: A Recurrent Neural Network For Image GenDRAW: A Recurrent Neural Network For Image Gen………
Watch later Share

DRAW: A Recurrent Neural Network For Image Generation
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https://www.youtube.com/watch?v=Zt-7MI9eKEo
https://www.youtube.com/channel/UCihka0nB2Mn4cudGujsG01g


MariFlow - Self-Driving Mario Kart w/Recurrent NeMariFlow - Self-Driving Mario Kart w/Recurrent NeMariFlow - Self-Driving Mario Kart w/Recurrent Ne………
Watch later Share

A recurrent network playing Mario Kart.
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https://www.youtube.com/watch?v=Ipi40cb_RsI
https://www.youtube.com/channel/UC8aG3LDTDwNR1UQhSn9uVrw


Differentiable computers
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Yann LeCun (Director of AI Research, Facebook, 2018)

People are now building a new kind of software by assembling networks of
parameterized functional blocks and by training them from examples using some
form of gradient-based optimization.

An increasingly large number of people are de�ning the networks procedurally in
a data-dependent way (with loops and conditionals), allowing them to change
dynamically as a function of the input data fed to them. It's really very much like a
regular program, except it's parameterized.

65 / 69



Any Turing machine can be simulated by a recurrent neural network 
(Siegelmann and Sontag, 1995)
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Differentiable Neural Computer (Graves et al, 2016)
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A differentiable neural computer being trained to store and recall dense binary
numbers. Upper left: the input (red) and target (blue), as 5-bit words and a 1 bit
interrupt signal. Upper right: the model's output
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The end.
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Auto-encoders
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Many applications such as image synthesis, denoising, super-resolution, speech
synthesis or compression, require to go beyond classi�cation and regression and
model explicitly a high-dimensional signal.

This modeling consists of �nding "meaningful degrees of freedom", or "factors of
variations", that describe the signal and are of lesser dimension.

―――
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 4 / 70

https://fleuret.org/ee559/


―――
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 5 / 70

https://fleuret.org/ee559/


―――
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 6 / 70

https://fleuret.org/ee559/


Auto-encoders
An auto-encoder is a composite function made of

an encoder  from the original space  to a latent space ,

a decoder  to map back to ,

such that  is close to the identity on the data.

f X Z

g X

g ∘ f

―――
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 7 / 70

https://fleuret.org/ee559/


A proper auto-encoder should capture a good parameterization of the signal, and
in particular the statistical dependencies between the signal components.

―――
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 8 / 70

https://fleuret.org/ee559/


Let  be the data distribution over . A good auto-encoder could be

characterized with the reconstruction loss

Given two parameterized mappings  and , training consists of

minimizing an empirical estimate of that loss,

p(x) X

E  ∣∣x− g ∘ f(x)∣∣ ≈ 0.x∼p(x) [
2]

f(⋅; θ  )f g(⋅; θ  )f

θ = arg    ∣∣x  − g(f(x  , θ  ), θ  )∣∣ .
θ  ,θ  f g

min
N

1

i=1

∑
N

i i f g
2

―――
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 9 / 70

https://fleuret.org/ee559/


For example, when the auto-encoder is linear,

with , the reconstruction error reduces to

In this case, an optimal solution is given by PCA.

  

f : z
g : x̂

=U xT

=Uz,

U ∈ Rp×k

E  ∣∣x−UU x∣∣ .x∼p(x) [
T 2]
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Deep auto-encoders

     

x x̂zf g

Better results can be achieved with more sophisticated classes of mappings than
linear projections, in particular by designing  and  as deep neural networks.

For instance,

by combining a multi-layer perceptron encoder  with a multi-

layer perceptron decoder .

by combining a convolutional network encoder  with a

decoder  composed of the reciprocal transposed

convolutional layers.

f g

f : R → Rp q

g : R → Rq p

f : R → Rw×h×c q

g : R → Rq w×h×c
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Deep neural decoders require layers that increase the input dimension, i.e., that

map  to , with .

This is the opposite of what we did so far with feedforward networks, in
which we reduced the dimension of the input to a few values.

Fully connected layers could be used for that purpose but would face the
same limitations as before (spatial specialization, too many parameters).

Ideally, we would like layers that implement the inverse of convolutional and
pooling layers.

z ∈ Rq = g(z) ∈ Rx̂ p p≫ q

12 / 70



Transposed convolutions

A transposed convolution is a convolution where the implementation of the
forward and backward passes are swapped.

Given a convolutional kernel ,

the forward pass is implemented as  with appropriate

reshaping, thereby effectively up-sampling an input  into a larger one;

the backward pass is computed by multiplying the loss by  instead of .

Transposed convolutions are also referred to as fractionally-strided convolutions
or deconvolutions (mistakenly).

x h

U T

flatten matmul reshape

u

v(h) =U v(x)T

v(x)

U UT
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―――
Credits: Dumoulin and Visin, A guide to convolution arithmetic for deep learning, 2016. 14 / 70

https://arxiv.org/abs/1603.07285


―――
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 15 / 70

https://fleuret.org/ee559/


―――
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 16 / 70

https://fleuret.org/ee559/


―――
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 17 / 70

https://fleuret.org/ee559/


Interpolation
To get an intuition of the learned latent representation, we can pick two samples 

 and  at random and interpolate samples along the line in the latent space.

 

x x′

―――
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 18 / 70

https://fleuret.org/ee559/


―――
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 19 / 70

https://fleuret.org/ee559/


―――
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 20 / 70

https://fleuret.org/ee559/


Sampling from latent space
The generative capability of the decoder  can be assessed by introducing a

(simple) density model  over the latent space , sample there, and map the

samples into the data space  with .

g

q Z
X g

―――
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 21 / 70

https://fleuret.org/ee559/


For instance, a factored Gaussian model with diagonal covariance matrix,

where both  and  are estimated on training data.

q(z) = N (  , ),μ̂ Σ̂

 μ̂ Σ̂
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―――
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 23 / 70

https://fleuret.org/ee559/


These results are not satisfactory because the density model on the latent space
is too simple and inadequate.

Building a good model amounts to our original problem of modeling an empirical
distribution, although it may now be in a lower dimension space.

―――
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 24 / 70

https://fleuret.org/ee559/


Generative models

―――
Credits: slides adapted from "Tutorial on Deep Generative Models", Shakir Mohamed and Danilo Rezende, UAI 2017. 25 / 70

http://auai.org/uai2017/media/tutorials/shakir.pdf


A generative model is a probabilistic model  that can be used as a simulator of

the data. Its purpose is to generate synthetic but realistic high-dimensional data

that is as close as possible from the true but unknown data distribution , but

for which we have empirical samples.

Motivation

Go beyond estimating :

Understand and imagine how the world evolves.

Recognize objects in the world and their factors of variation.

Establish concepts for reasoning and decision making.

p

x ∼ p(x; θ),

p(x)

p(y∣x)
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Generative models have a role in many important problems
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Image and content generation

Generating images and video content.

(Gregor et al, 2015; Oord et al, 2016; Dumoulin et al, 2016)

28 / 70



Text-to-speech synthesis

Generating audio conditioned on text.

(Oord et al, 2016)
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Communication and compression

Hierarchical compression of images and other data.

(Gregor et al, 2016)
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Image super-resolution

Photo-realistic single image super-resolution.

(Ledig et al, 2016)
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One-shot generalization

Rapid generalization of novel concepts.

(Gregor et al, 2016)
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Visual concept learning

Understanding the factors of variation and invariances.

(Higgins et al, 2017)
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Scene understanding

Understanding the components of scenes and their interactions.

(Wu et al, 2017)
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Future simulation

Simulate future trajectories of environments based on actions for planning.

 

(Finn et al, 2016)
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Drug design and response prediction

Generative models for proposing candidate molecules and for improving
prediction through semi-supervised learning.

(Gomez-Bombarelli et al, 2016)
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Locating celestial bodies

Generative models for applications in astronomy and high-energy physics.

(Regier et al, 2015)
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Variational inference
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Latent variable model

x

z

Consider for now a prescribed latent variable model that relates a set of

observable variables  to a set of unobserved variables .x ∈ X z ∈ Z
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The probabilistic model is given and motivated by domain knowledge
assumptions.

Examples include:

Linear discriminant analysis

Bayesian networks

Hidden Markov models

Probabilistic programs
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The probabilistic model de�nes a joint probability distribution , which

decomposes as

If we interpret  as causal factors for the high-dimension representations , then

sampling from  can be interpreted as a stochastic generating process from

 to .

For a given model , inference consists in computing the posterior

For most interesting cases, this is usually intractable since it requires evaluating
the evidence

p(x, z)

p(x, z) = p(x∣z)p(z).

z x
p(x∣z)

Z X

p(x, z)

p(z∣x) =  .
p(x)

p(x∣z)p(z)

p(x) = p(x∣z)p(z)dz.∫
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Variational inference

Variational inference turns posterior inference into an optimization problem.

Consider a family of distributions  that approximate the posterior 

, where the variational parameters  index the family of distributions.

The parameters  are �t to minimize the KL divergence between  and

the approximation .

q(z∣x; ν)
p(z∣x) ν

ν p(z∣x)
q(z∣x; ν)
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Formally, we want to minimize

For the same reason as before, the KL divergence cannot be directly minimized

because of the  term.

  

KL(q(z∣x; ν)∣∣p(z∣x)) = E  log  q(z∣x;ν) [
p(z∣x)

q(z∣x; ν)
]

= E  log q(z∣x; ν) − log p(x, z) + log p(x).q(z∣x;ν) [ ]

log p(x)
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However, we can write

where  is called the evidence lower bound objective.

Since  does not depend on , it can be considered as a constant, and

minimizing the KL divergence is equivalent to maximizing the evidence lower
bound, while being computationally tractable.

Given a dataset , the �nal objective is the sum 

.

KL(q(z∣x; ν)∣∣p(z∣x)) = log p(x) −  

ELBO(x;ν)

 E  log p(x, z) − log q(z∣x; ν)q(z∣x;ν) [ ]

ELBO(x; ν)

log p(x) ν

d = {x  ∣i = 1, ..., N}i

 ELBO(x  ; ν)∑{x  ∈d}i
i
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Remark that

Therefore, maximizing the ELBO:

encourages distributions to place their mass on con�gurations of latent
variables that explain the observed data (�rst term);

encourages distributions close to the prior (second term).

  

ELBO(x; ν) = E  log p(x, z) − log q(z∣x; ν)q(z;∣xν) [ ]

= E  log p(x∣z)p(z) − log q(z∣x; ν)q(z∣x;ν) [ ]

= E  log p(x∣z) − KL(q(z∣x; ν)∣∣p(z))q(z∣x;ν) [ ]
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Optimization

We want

We can proceed by gradient ascent, provided we can evaluate .

In general, this gradient is dif�cult to compute because the expectation is

unknown and the parameters  are parameters of the distribution  we

integrate over.

  

ν∗ = arg  ELBO(x; ν)
ν

max

= arg  E  log p(x, z) − log q(z∣x; ν) .
ν

max q(z∣x;ν) [ ]

∇  ELBO(x; ν)ν

ν q(z∣x; ν)
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Variational auto-encoders
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So far we assumed a prescribed probabilistic model motivated by domain
knowledge. We will now directly learn a stochastic generating process with a
neural network.
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Variational auto-encoders
A variational auto-encoder is a deep latent variable model where:

The likelihood  is parameterized with a generative network 

(or decoder) that takes as input  and outputs parameters  to

the data distribution. E.g.,

The approximate posterior  is parameterized with an inference

network  (or encoder) that takes as input  and outputs parameters 

 to the approximate posterior. E.g.,

p(x∣z; θ) NN  θ

z ϕ = NN  (z)θ

  

μ, σ

p(x∣z; θ)

= NN  (z)θ

= N (x; μ, σ I)2

q(z∣x; φ)
NN  φ x

ν = NN  (x)φ

μ, σ

q(z∣x; φ)

= NN  (x)φ

= N (z; μ, σ I)2
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―――
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 50 / 70

https://fleuret.org/ee559/


As before, we can use variational inference, but to jointly optimize the generative
and the inference networks parameters  and .

We want

Given some generative network , we want to put the mass of the latent

variables, by adjusting , such that they explain the observed data, while

remaining close to the prior.

Given some inference network , we want to put the mass of the observed

variables, by adjusting , such that they are well explained by the latent

variables.

θ φ

θ , φ∗ ∗ = arg  ELBO(x; θ, φ)
θ,φ

max

= arg  E  log p(x, z; θ) − log q(z∣x; φ)
θ,φ

max q(z∣x;φ) [ ]

= arg  E  log p(x∣z; θ) − KL(q(z∣x; φ)∣∣p(z)).
θ,φ

max q(z∣x;φ) [ ]

θ

φ

φ

θ
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Unbiased gradients of the ELBO with respect to the generative model
parameters  are simple to obtain:

which can be estimated with Monte Carlo integration.

However, gradients with respect to the inference model parameters  are more

dif�cult to obtain:

θ

  

∇  ELBO(x; θ, φ)θ = ∇  E  log p(x, z; θ) − log q(z∣x; φ)θ q(z∣x;φ) [ ]

= E  ∇  (log p(x, z; θ) − log q(z∣x; φ))q(z∣x;φ) [ θ ]

= E  ∇  log p(x, z; θ) ,q(z∣x;φ) [ θ ]

φ

  

∇  ELBO(x; θ, φ)φ = ∇  E  log p(x, z; θ) − log q(z∣x; φ)φ q(z∣x;φ) [ ]

≠ E  ∇  (log p(x, z; θ) − log q(z∣x; φ))q(z∣x;φ) [ φ ]
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x

z

f

φ

~q(z ∣ x; φ)

Let us abbreviate

We have

We cannot backpropagate through the stochastic node  to compute !

  

ELBO(x; θ, φ) = E  log p(x, z; θ) − log q(z∣x; φ)q(z∣x;φ) [ ]

= E  f(x, z; φ) .q(z∣x;φ) [ ]

z ∇  fφ
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Reparameterization trick
The reparameterization trick consists in re-expressing the variable

as some differentiable and invertible transformation of another random variable 

given  and ,

such that the distribution of  is independent of  or .

z ∼ q(z∣x;φ)

ϵ

x φ

z = g(φ,x, ϵ),

ϵ x φ
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x ε

f

φ

= g(φ, x, ε)z

For example, if , where  and 

 are the outputs of the inference network , then a common

reparameterization is:

q(z∣x; φ) = N (z; μ(x; φ), σ (x; φ))2 μ(x; φ)
σ (x; φ)2 NN  φ

  

p(ϵ)

z
= N (ϵ;0, I)
= μ(x; φ) + σ(x; φ) ⊙ ϵ
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Given such a change of variable, the ELBO can be rewritten as:

Therefore,

which we can now estimate with Monte Carlo integration.

The last required ingredient is the evaluation of the likelihood  given

the change of variable . As long as  is invertible, we have:

  

ELBO(x; θ, φ) = E  f(x, z; φ)q(z∣x;φ) [ ]

= E  f(x, g(φ,x, ϵ); φ)p(ϵ) [ ]

∇  ELBO(x; θ, φ)φ = ∇  E  f(x, g(φ,x, ϵ); φ)φ p(ϵ) [ ]

= E  ∇  f(x, g(φ,x, ϵ); φ) ,p(ϵ) [ φ ]

q(z∣x; φ)
g g

log q(z∣x; φ) = log p(ϵ) − log  det   .
∣
∣
∣
∣

(
∂ϵ
∂z

)
∣
∣
∣
∣
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Example
Consider the following setup:

Generative model:

  

z

p(z)
p(x∣z; θ)

μ(z; θ)

log σ (z; θ)2

h
θ

∈ RJ

= N (z;0, I)
= N (x; μ(z; θ), σ (z; θ)I)2

=W  h+ b  2
T

2

=W  h+ b  3
T

3

= ReLU(W  z + b  )1
T

1

= {W  ,b  ,W  ,b  ,W  ,b  }1 1 2 2 3 3

57 / 70



Inference model:

Note that there is no restriction on the generative and inference network
architectures. They could as well be arbitrarily complex convolutional networks.

q(z∣x; φ)

p(ϵ)

z

μ(x; φ)

log σ (x; φ)2

h
φ

= N (z; μ(x; φ), σ (x; φ)I)2

= N (ϵ;0, I)
= μ(x; φ) + σ(x; φ) ⊙ ϵ

=W  h+ b  5
T

5

=W  h+ b  6
T

6

= ReLU(W  x+ b  )4
T

4

= {W  ,b  ,W  ,b  ,W  ,b  }4 4 5 5 6 6
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Plugging everything together, the objective can be expressed as:

where the KL divergence can be expressed analytically as

which allows to evaluate its derivative without approximation.

  

ELBO(x; θ, φ) = E  log p(x, z; θ) − log q(z∣x; φ)q(z∣x;φ) [ ]

= E  log p(x∣z; θ) − KL(q(z∣x; φ)∣∣p(z))q(z∣x;φ) [ ]

= E  log p(x∣z = g(φ,x, ϵ); θ) − KL(q(z∣x; φ)∣∣p(z))p(ϵ) [ ]

KL(q(z∣x; φ)∣∣p(z)) =   1 + log(σ  (x; φ)) − μ  (x; φ) − σ  (x; φ) ,
2
1

j=1

∑
J

( j
2

j
2

j
2 )
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Consider as data  the MNIST digit dataset:d

60 / 70



(Kingma and Welling, 2013)
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(Kingma and Welling, 2013) 62 / 70



Applications of (variational) AEs
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Face manifold from conv/deconv variational autoeFace manifold from conv/deconv variational autoeFace manifold from conv/deconv variational autoe………
Watch later Share

Random walks in latent space.

(Alex Radford, 2015)
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https://www.youtube.com/watch?v=XNZIN7Jh3Sg
https://www.youtube.com/channel/UC9fDDsyBR1KT4VKwfog6Dkg


Impersonation by encoding-decoding an unknown face.

(Kamil Czarnogórski, 2016)

0:18 / 0:18
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Transfer learning from synthetic to real images usiTransfer learning from synthetic to real images usiTransfer learning from synthetic to real images usi………
Watch later Share

(Inoue et al, 2017)
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https://www.youtube.com/watch?v=Wd-1WU8emkw
https://www.youtube.com/channel/UCHuAMFn2T8nYEhcbvCXSfjA


(Tom White, 2016)
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(Bowman et al, 2015)
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Design of new molecules with desired chemical properties. 
(Gomez-Bombarelli et al, 2016)
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The end.
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"ACM named Yoshua Bengio, Geoffrey Hinton, and Yann LeCun recipients of the
2018 ACM A.M. Turing Award for conceptual and engineering breakthroughs that

have made deep neural networks a critical component of computing."
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Learn a model of the data.

Generative adversarial networks

Wasserstein GANs

Convergence of GANs

State of the art

Applications

Today

 
 

"Generative adversarial networks is the coolest idea 
in deep learning in the last 20 years." -- Yann LeCun.
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Generative adversarial networks
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GANs
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A two-player game

In generative adversarial networks (GANs), the task of learning a generative
model is expressed as a two-player zero-sum game between two networks.

The �rst network is a generator , mapping a latent space

equipped with a prior distribution  to the data space, thereby inducing a

distribution

The second network  is a classi�er trained to

distinguish between true samples  and generated samples 

.

The central mechanism consists in using supervised learning to guide the learning
of the generative model.

g(⋅; θ) : Z → X
p(z)

x ∼ q(x; θ) ⇔ z ∼ p(z),x = g(z; θ).

d(⋅;ϕ) : X → [0, 1]
x ∼ p(x)

x ∼ q(x; θ)
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arg    

θ
min

ϕ
max

V (ϕ,θ)

 E  log d(x; ϕ) + E  log(1 − d(g(z; θ); ϕ))x∼p(x) [ ] z∼p(z) [ ]
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Learning process

In practice, the minimax solution is approximated using alternating stochastic
gradient descent:

where gradients are estimated with Monte Carlo integration.

For one step on , we can optionally take  steps on , since we need the

classi�er to remain near optimal.

Note that to compute , it is necessary to backprop all the way

through  before computing the partial derivatives with respect to 's

internals.

  

θ

ϕ

← θ − γ∇  V (ϕ, θ)θ

← ϕ + γ∇  V (ϕ, θ),ϕ

θ k ϕ

∇  V (ϕ, θ)θ

d g
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(Goodfellow et al, 2014)
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Demo: GAN Lab
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https://poloclub.github.io/ganlab


Game analysis

Let us consider the value function .

For a �xed ,  is high if  is good at recognizing true from generated

samples.

If  is the best classi�er given , and if  is high, then this implies that the

generator is bad at reproducing the data distribution.

Conversely,  will be a good generative model if  is low when  is a perfect

opponent.

Therefore, the ultimate goal is

V (ϕ, θ)

g V (ϕ, θ) d

d g V

g V d

θ = arg   V (ϕ, θ).∗

θ
min

ϕ
max
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For a generator  �xed at , the classi�er  with parameters  is optimal if and

only if

g θ d ϕ  θ
∗

∀x, d(x; ϕ  ) =  .θ
∗

q(x; θ) + p(x)
p(x)
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Therefore,

where  is the Jensen-Shannon divergence.

  V (ϕ, θ) =  V (ϕ  , θ)
θ

min
ϕ

max
θ

min θ
∗

=  E  log  + E  log  

θ
min x∼p(x) [

q(x; θ) + p(x)
p(x)

] x∼q(x;θ) [
q(x; θ) + p(x)

q(x; θ)
]

=  KL p(x)∣∣  

θ
min (

2
p(x) + q(x; θ)

)

+ KL q(x; θ)∣∣  − log 4(
2

p(x) + q(x; θ)
)

=  2 JSD(p(x)∣∣q(x; θ)) − log 4
θ

min

JSD
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In summary,

Since  is minimum if and only if

for all , this proves that the minimax solution corresponds to a generative model

that perfectly reproduces the true data distribution.

θ∗ = arg   V (ϕ, θ)
θ

min
ϕ

max

= arg  JSD(p(x)∣∣q(x; θ)).
θ

min

JSD(p(x)∣∣q(x; θ))

p(x) = q(x; θ)

x
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(Goodfellow et al, 2014)
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DCGANs
 
 
 

(Radford et al, 2015)
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(Radford et al, 2015)
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(Radford et al, 2015)
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Vector arithmetic in latent space (Radford et al, 2015)
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Open problems
Training a standard GAN often results in pathological behaviors:

Oscillations without convergence: contrary to standard loss minimization,
alternating stochastic gradient descent has no guarantee of convergence.

Vanishing gradients: when the classi�er  is too good, the value function

saturates and we end up with no gradient to update the generator.

Mode collapse: the generator  models very well a small sub-population,

concentrating on a few modes of the data distribution.

Performance is also dif�cult to assess in practice.

 

Mode collapse (Metz et al, 2016)

d

g
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Cabinet of curiosities

While early results (2014-2016) were already impressive, a close inspection of the

fake samples distribution  often revealed fundamental issues highlighting

architectural limitations.

q(x; θ)
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Cherry-picks (Goodfellow, 2016)
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Problems with counting (Goodfellow, 2016)
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Problems with perspective (Goodfellow, 2016)
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Problems with global structures (Goodfellow, 2016)
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Wasserstein GANs
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Return of the Vanishing Gradients
For most non-toy data distributions, the fake samples  may be so bad

initially that the response of  saturates.

At the limit, when  is perfect given the current generator ,

Therefore,

and , thereby halting gradient descent.

x ∼ q(x; θ)
d

d g

d(x; ϕ)

d(x; ϕ)

= 1, ∀x ∼ p(x),

= 0, ∀x ∼ q(x; θ).

V (ϕ, θ) = E  log d(x; ϕ) + E  log(1 − d(g(z; θ); ϕ)) = 0x∼p(x) [ ] z∼p(z) [ ]

∇  V (ϕ, θ) = 0θ
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Dilemma

If  is bad, then  does not have accurate feedback and the loss function

cannot represent the reality.

If  is too good, the gradients drop to 0, thereby slowing down or even

halting the optimization.

d g

d
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Jensen-Shannon divergence
For any two distributions  and ,

where

 if and only if ,

 if and only if  and  have disjoint supports.

p q

0 ≤ JSD(p∣∣q) ≤ log 2,

JSD(p∣∣q) = 0 p = q

JSD(p∣∣q) = log 2 p q
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Notice how the Jensen-Shannon divergence poorly accounts for the metric
structure of the space.

Intuitively, instead of comparing distributions "vertically", we would like to
compare them "horizontally".

30 / 82



Wasserstein distance
An alternative choice is the Earth mover's distance, which intuitively corresponds
to the minimum mass displacement to transform one distribution into the other.

Then,

p =  1  +  1  +  1  4
1

[1,2] 4
1

[3,4] 2
1

[9,10]

q = 1  [5,7]

W  (p, q) = 4 ×  + 2 ×  + 3 ×  = 31 4
1

4
1

2
1

―――
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 31 / 82
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The Earth mover's distance is also known as the Wasserstein-1 distance and is
de�ned as:

where:

 denotes the set of all joint distributions  whose marginals are

respectively  and ;

 indicates how much mass must be transported from  to  in order

to transform the distribution  into .

 is the L1 norm and  represents the cost of moving a unit of

mass from  to .

W  (p, q) =  E  ∣∣x − y∣∣1
γ∈Π(p,q)

inf (x,y)∼γ [ ]

Π(p, q) γ(x, y)
p q

γ(x, y) x y

p q

∣∣ ⋅ ∣∣ ∣∣x − y∣∣
x y
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Notice how the  distance does not saturate. Instead, it increases

monotonically with the distance between modes:

For any two distributions  and ,

,

 if and only if .

W  1

W  (p, q) = d1

p q

W  (p, q) ∈ R1
+

W  (p, q) = 01 p = q
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Wasserstein GANs
Given the attractive properties of the Wasserstein-1 distance, Arjovsky et al
(2017) propose to learn a generative model by solving instead:

Unfortunately, the de�nition of  does not provide with an operational way of

estimating it because of the intractable .

On the other hand, the Kantorovich-Rubinstein duality tells us that

where the supremum is over all the 1-Lipschitz functions . That is,

functions  such that

θ = arg  W  (p(x)∣∣q(x; θ))∗

θ
min 1

W  1
inf

W  (p(x)∣∣q(x; θ)) =  E  f(x) − E  f(x)1
∣∣f∣∣  ≤1L

sup x∼p(x) [ ] x∼q(x;θ) [ ]

f : X → R
f

∣∣f ∣∣  =   ≤ 1.L
x,x′

max
∣∣x− x ∣∣′

∣∣f(x) − f(x )∣∣′
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For  and ,p =  1  +  1  +  1  4
1

[1,2] 4
1

[3,4] 2
1

[9,10] q = 1  [5,7]

W  (p, q)1 = 4 ×  + 2 ×  + 3 ×  = 3
4
1

4
1

2
1

=  −  = 3

E  f(x)x∼p(x) [ ]

 3 ×  + 1 ×  + 2 ×  (
4
1

4
1

2
1

)

E  f(x)x∼q(x;θ) [ ]

 −1 ×  − 1 ×  (
2
1

2
1

)

―――
Credits: Francois Fleuret, EE559 Deep Learning, EPFL. 36 / 82
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Using this result, the Wasserstein GAN algorithm consists in solving the minimax
problem:

 Note that this formulation is very close to the original GANs, except that:

The classi�er  is replaced by a critic function  and

its output is not interpreted through the cross-entropy loss;

There is a strong regularization on the form of . In practice, to ensure 1-

Lipschitzness,

Arjovsky et al (2017) propose to clip the weights of the critic at each iteration;

Gulrajani et al (2017) add a regularization term to the loss.

As a result, Wasserstein GANs bene�t from:

a meaningful loss metric,

improved stability (no mode collapse is observed).

θ = arg   E  d(x; ϕ) − E  d(x; ϕ)∗

θ
min

ϕ:∣∣d(⋅;ϕ)∣∣  ≤1L

max x∼p(x) [ ] x∼q(x;θ) [ ]

d : X → [0, 1] d : X → R

d
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(Arjovsky et al, 2017)
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(Arjovsky et al, 2017)
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Convergence of GANs
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Solving for saddle points is different from gradient descent.

Minimization problems yield conservative vector �elds.

Min-max saddle point problems may yield non-conservative vector �elds.

―――
Credits: Ferenc Huszár, GANs are Broken in More than One Way, 2017. 41 / 82

https://www.inference.vc/my-notes-on-the-numerics-of-gans/


Following the notations of Mescheder et al (2018), the training objective for the
two players can be described by an objective function of the form

where the goal of the generator is to minimizes the loss, whereas the
discriminator tries to maximize it.

If , then we recover the original GAN

objective.

if  and and if we impose the Lipschitz constraint on , then we

recover Wassterstein GAN.

L(θ, ϕ) = E  f(d(g(z; θ); ϕ)) + E  f(−d(x; ϕ)) ,p(z) [ ] p(x) [ ]

f(t) = − log(1 + exp(−t))

f(t) = −t d
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Training algorithms can be described as �xed points algorithms that apply some
operator  to the parameters values .

For simultaneous gradient descent,

where  denotes the gradient vector �eld

Similarly, alternating gradient descent can be described by an operator 

, where  and  perform an update for the generator

and discriminator, respectively.

F  (θ, ϕ)h (θ, ϕ)

F  (θ, ϕ) = (θ, ϕ) + hv(θ, ϕ)h

v(θ, ϕ)

v(θ, ϕ) :=  .(
−∇  L(θ, ϕ)θ

∇  L(θ, ϕ)ϕ
)

F  = F  ∘ F  h 2,h 1,h F  1,h F  2,h
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Local convergence near an equilibrium point

Let us consider the Jacobian  at the equilibrium :

if  has eigenvalues with absolute value bigger than 1, the training

will generally not converge to .

if all eigenvalues have absolute value smaller than 1, the training will
converge to .

if all eigenvalues values are on the unit circle, training can be convergent,
divergent or neither.

In particular, Mescheder et al (2017) show that all eigenvalues can be forced to
remain within the unit ball if and only if the learning rate  is made suf�ciently

small.

F  (θ , ϕ )h
′ ∗ ∗ (θ , ϕ )∗ ∗

F  (θ , ϕ )h
′ ∗ ∗

(θ , ϕ )∗ ∗

(θ , ϕ )∗ ∗

h
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For the (idealized) continuous system

which corresponds to training GANs with in�nitely small learning rate :

if all eigenvalues of the Jacobian  at a stationary point 

have negative real-part, the continuous system converges locally to 

;

if  has eigenvalues with positive real-part, the continuous system

is not locally convergent.

if all eigenvalues have zero real-part, it can be convergent, divergent or
neither.

 =  ,(
(t)θ̇

 (t)ϕ̇
) (

−∇  L(θ, ϕ)θ

∇  L(θ, ϕ)ϕ
)

h → 0

v (θ , ϕ )′ ∗ ∗ (θ , ϕ )∗ ∗

(θ , ϕ )∗ ∗

v (θ , ϕ )′ ∗ ∗
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Continuous system: divergence.

―――
Credits: Mescheder et al, Which Training Methods for GANs do actually Converge?, 2018. 46 / 82

https://arxiv.org/abs/1801.04406


Continuous system: convergence.

―――
Credits: Mescheder et al, Which Training Methods for GANs do actually Converge?, 2018. 47 / 82

https://arxiv.org/abs/1801.04406


Discrete system: divergence ( , too large).h = 1

―――
Credits: Mescheder et al, Which Training Methods for GANs do actually Converge?, 2018. 48 / 82

https://arxiv.org/abs/1801.04406


Discrete system: convergence ( , small enough).h = 0.5

―――
Credits: Mescheder et al, Which Training Methods for GANs do actually Converge?, 2018. 49 / 82

https://arxiv.org/abs/1801.04406


Dirac-GAN: Vanilla GANs

On the Dirac-GAN toy problem, eigenvalues are . Therefore

convergence is not guaranteed.

{−f (0)i, +f (0)i}′ ′

―――
Credits: Mescheder et al, Which Training Methods for GANs do actually Converge?, 2018. 50 / 82

https://arxiv.org/abs/1801.04406


Dirac-GAN: Wasserstein GANs

Eigenvalues are . Therefore convergence is not guaranteed.{−i, +i}

―――
Credits: Mescheder et al, Which Training Methods for GANs do actually Converge?, 2018. 51 / 82

https://arxiv.org/abs/1801.04406


Dirac-GAN: Zero-centered gradient penalties

A penalty on the squared norm of the gradients of the discriminator results in the
regularization

The resulting eigenvalues are . Therefore, for , all

eigenvalues have negative real part, hence training is locally convergent!

R  (ϕ) =  E  ∣∣∇  d(x; ϕ)∣∣ .1 2
γ

x∼p(x) [ x
2]

{−  ±  }2
γ

 − f (0)4
γ ′ 2 γ > 0

―――
Credits: Mescheder et al, Which Training Methods for GANs do actually Converge?, 2018. 52 / 82

https://arxiv.org/abs/1801.04406


―――
Credits: Mescheder et al, Which Training Methods for GANs do actually Converge?, 2018. 53 / 82

https://arxiv.org/abs/1801.04406


―――
Credits: Mescheder et al, Which Training Methods for GANs do actually Converge?, 2018. 54 / 82

https://arxiv.org/abs/1801.04406


―――
Credits: Mescheder et al, Which Training Methods for GANs do actually Converge?, 2018. 55 / 82

https://arxiv.org/abs/1801.04406


State of the art
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Progressive growing of GANs
Wasserstein GANs as baseline (Arjovsky et al, 2017) +  

Gradient Penalty (Gulrajani, 2017) + (quite a few other tricks)

+

(Karras et al, 2017)
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(Karras et al, 2017)
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Progressive Growing of GANs for Improved QProgressive Growing of GANs for Improved QProgressive Growing of GANs for Improved Q………
Watch later Share

(Karras et al, 2017)
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https://www.youtube.com/watch?v=XOxxPcy5Gr4
https://www.youtube.com/channel/UCRtoHpUxLBJ95IU-p-4T_iA


BigGANs
Self-attention GANs as baseline (Zhang et al, 2018) + Hinge loss objective (Lim
and Ye, 2017; Tran et al, 2017) + Class information to  with class-conditional

batchnorm (de Vries et al, 2017) + Class information to  with projection (Miyato

and Koyama, 2018) + Half the learning rate of SAGAN, 2 -steps per -step +

Spectral normalization for both  and  + Orthogonal initialization (Saxe et al,

2014) + Large minibatches (2048) + Large number of convolution �lters + Shared
embedding and hierarchical latent spaces + Orthogonal regularization +

Truncated sampling + (quite a few other tricks)

 

(Brock et al, 2018)

g

d

d g

g d
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The 1000 ImageNet Categories inside of BigGThe 1000 ImageNet Categories inside of BigGThe 1000 ImageNet Categories inside of BigG………
Watch later Share

(Brock et al, 2018)
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https://www.youtube.com/watch?v=YY6LrQSxIbc
https://www.youtube.com/channel/UCD9wTkRZ6jjs--o93bvWnXw


StyleGAN
Progressive GANs as baseline (Karras et al, 2017) + Non-saturating loss instead of

WGAN-GP +  regularization (Mescheder et al, 2018) + (quite a few other

tricks)

+

R  1
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A Style-Based Generator Architecture for GenA Style-Based Generator Architecture for GenA Style-Based Generator Architecture for Gen………
Watch later Share

(Karras et al, 2018)
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https://www.youtube.com/watch?v=kSLJriaOumA
https://www.youtube.com/channel/UCRtoHpUxLBJ95IU-p-4T_iA


The StyleGAN generator  is so powerful that it can re-generate arbitrary faces.

   

g
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Applications
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 need not be a random noise distribution.p(z)
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Image-to-image translation

CycleGANs (Zhu et al, 2017)
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High-Resolution Image Synthesis and SemantHigh-Resolution Image Synthesis and SemantHigh-Resolution Image Synthesis and Semant………
Watch later Share

High-resolution image synthesis (Wang et al, 2017)
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https://www.youtube.com/watch?v=3AIpPlzM_qs
https://www.youtube.com/channel/UCFZyj1cwp7JLEqpMb_eTbOQ


GauGAN: Changing Sketches into PhotorealisGauGAN: Changing Sketches into PhotorealisGauGAN: Changing Sketches into Photorealis………
Watch later Share

GauGAN: Changing sketches into photorealistic masterpieces (NVIDIA, 2019)

72 / 82

https://www.youtube.com/watch?v=p5U4NgVGAwg
https://www.youtube.com/channel/UCHuiy8bXnmK5nisYHUd1J5g


Captioning

(Shetty et al, 2017)
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Text-to-image synthesis

(Zhang et al, 2017)
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(Zhang et al, 2017)

75 / 82



Music generation

MuseGAN (Dong et al, 2018)

0:000:000:00 / 3:15/ 3:15/ 3:15
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Accelerating scienti�c simulators

Learning particle physics (Paganini et al, 2017)
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Learning cosmological models (Rodriguez et al, 2018)
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Brain reading

(Shen et al, 2018)
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(Shen et al, 2018)
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Deep image reconstruction: Natural imagesDeep image reconstruction: Natural imagesDeep image reconstruction: Natural images
Watch later Share

Brain reading (Shen et al, 2018)
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https://www.youtube.com/watch?v=jsp1KaM-avU
https://www.youtube.com/channel/UCo_tGsrIchrnaiMepAQQUWg


The end.
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Today
How to model uncertainty in deep learning?

Uncertainty

Aleatoric uncertainty

Epistemic uncertainty

2 / 52



"Every time a scienti�c paper presents a bit of data, it's accompanied by an error bar
– a quiet but insistent reminder that no knowledge is complete or perfect. It's a
calibration of how much we trust what we think we know." ― Carl Sagan.
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Uncertainty
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Motivation

In May 2016, there was the �rst fatality from an assisted driving system, caused
by the perception system confusing the white side of a trailer for bright sky.

―――
Credits: Kendall and Gal, What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?, 2017. 5 / 52

https://papers.nips.cc/paper/7141-what-uncertainties-do-we-need-in-bayesian-deep-learning-for-computer-vision.pdf


An image classi�cation system erroneously identi�es two African Americans as
gorillas, raising concerns of racial discrimination.

―――
Credits: Kendall and Gal, What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?, 2017. 6 / 52

https://papers.nips.cc/paper/7141-what-uncertainties-do-we-need-in-bayesian-deep-learning-for-computer-vision.pdf


If both these algorithms were able to assign a high level of uncertainty to their
erroneous predictions, then the system may have been able to make better
decisions, and likely avoid disaster.

―――
Credits: Kendall and Gal, What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?, 2017. 7 / 52

https://papers.nips.cc/paper/7141-what-uncertainties-do-we-need-in-bayesian-deep-learning-for-computer-vision.pdf


Types of uncertainty
Case 1

Let us consider a neural network model trained with several pictures of dog
breeds.

We ask the model to decide on a dog breed using a photo of a cat.

What would you want the model to do?
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Case 2

We have three different types of images to classify, cat, dog, and cow, where only
cat images are noisy.
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Case 3

What is the best model parameters that best explain a given dataset? What
model structure should we use?
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Case 1: Given a model trained with several pictures of dog breeds. We ask the
model to decide on a dog breed using a photo of a cat.

 Out of distribution test data.

 

Case 2: We have three different types of images to classify, cat, dog, and cow,
where only cat images are noisy.

 Aleatoric uncertainty.

 

Case 3: What is the best model parameters that best explain a given dataset?
What model structure should we use?

 Epistemic uncertainty.

⇒

⇒

⇒
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"Our model exhibits in (d) increased aleatoric uncertainty on object boundaries
and for objects far from the camera. Epistemic uncertainty accounts for our
ignorance about which model generated our collected data. In (e) our model
exhibits increased epistemic uncertainty for semantically and visually challenging
pixels. The bottom row shows a failure case of the segmentation model when the
model fails to segment the footpath due to increased epistemic uncertainty, but not
aleatoric uncertainty."

―――
Credits: Kendall and Gal, What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?, 2017. 12 / 52

https://papers.nips.cc/paper/7141-what-uncertainties-do-we-need-in-bayesian-deep-learning-for-computer-vision.pdf


Aleatoric uncertainty
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Aleatoric uncertainty captures noise inherent in the observations.

For example, sensor noise or motion noise result in uncertainty.

This uncertainty cannot be reduced with more data.

However, aleatoric could be reduced with better measurements.
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Aleatoric uncertainty can further be categorized into homoscedastic and
heteroscedastic uncertainties:

Homoscedastic uncertainty relates to the uncertainty that a particular task
might cause. It stays constant for different inputs.

Heteroscedastic uncertainty depends on the inputs to the model, with some
inputs potentially having more noisy outputs than others.

 

―――
Credits: Yarin Gal, Uncertainty in Deep Learning, 2016. 15 / 52

https://pdfs.semanticscholar.org/55cd/9e1bb7ce02cd2bb01b364e7b331fcc1ef2c7.pdf


Regression with uncertainty
Consider training data , with

,

.

We model aleatoric uncertainty in the output by modelling the conditional
distribution as a Normal distribution,

where  and  are parametric functions to be learned, such as neural

networks.

In particular, we do not wish to learn a function  that would only

produce point estimates.

(x, y) ∼ P (X , Y )

x ∈ Rp

y ∈ R

p(y∣x) = N (y; μ(x), σ (x)),2

μ(x) σ (x)2

 = f(x)ŷ
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Homoscedastic aleatoric uncertainty

x μ

σ2

NN N

y

θ

p
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We have,

[Q] What if  was �xed?

arg  p(d∣θ, σ )
θ,σ2

max 2

= arg   p(y  ∣x  , θ, σ )
θ,σ2

max
x  ,y  ∈di i

∏ i i
2

= arg    exp −  

θ,σ2
max

x  ,y  ∈di i

∏
 σ2π

1
(

2σ2

(y  − μ(x  ))i i
2

)

= arg    + log(σ) + C
θ,σ2
min

x  ,y  ∈di i

∑
2σ2

(y  − μ(x  ))i i
2

σ2
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Heteroscedastic aleatoric uncertainty

x
μ

NN N

y

θ

p

σ2
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Same as for the homoscedastic case, except that that  is now a function of :

What is the role of ?

What about ?

σ2 x  i

  

arg  p(d∣θ)
θ

max

= arg   p(y  ∣x  , θ)
θ

max
x  ,y  ∈di i

∏ i i

= arg    exp −  

θ
max

x  ,y  ∈di i

∏
 σ(x  )2π i

1
(

2σ (x  )2
i

(y  − μ(x  ))i i
2

)

= arg    + log(σ(x  )) + C
θ

min
x  ,y  ∈di i

∑
2σ (x  )2

i

(y  − μ(x  ))i i
2

i

2σ (x  )2
i

log(σ(x  ))i

20 / 52



Multimodality
 

Modelling  as a unimodal Gaussian is not always a good idea!

(and it would be even worse to have only point estimates for !)

p(y∣x)

y
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Gaussian mixture model

A Gaussian mixture model (GMM) de�nes instead  as a mixture of 

Gaussian components,

where  for all  and .

p(y∣x) K

p(y∣x) =  π  N (y; μ  , σ  ),
k=1

∑
K

k k k
2

0 ≤ π  ≤ 1k k  π  = 1∑k=1
K

k
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Mixture density network

A mixture density network is a neural network implementation of the Gaussian
mixture model.

x

μk

NN N

y

θ

pkσ2
k

πk

k = 1, ..., K

∑ p
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Illustration

Let us consider training data generated randomly as

with .

y  = x  + 0.3 sin(4πx  ) + ϵ  i i i i

ϵ  ∼ Ni
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The data can be �t with a 2-layer network producing point estimates for .

[demo]

y

―――
Credits: David Ha, Mixture Density Networks, 2015. 25 / 52

http://otoro.net/ml/mixture/index.html
http://blog.otoro.net/2015/06/14/mixture-density-networks/


If we �ip  and , the network faces issues since for each input, there are

multiple outputs that can work. It produces some sort of average of the correct
values. [demo]

x  i y  i

―――
Credits: David Ha, Mixture Density Networks, 2015. 26 / 52

http://otoro.net/ml/mixture/inverse.html
http://blog.otoro.net/2015/06/14/mixture-density-networks/


A mixture density network models the data correctly, as it predicts for each input
a distribution for the output, rather than a point estimate. [demo]

―――
Credits: David Ha, Mixture Density Networks, 2015. 27 / 52

http://otoro.net/ml/mixture/mixture.html
http://blog.otoro.net/2015/06/14/mixture-density-networks/


Epistemic uncertainty
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Epistemic uncertainty accounts for uncertainty in the model parameters.

It captures our ignorance about which model generated the collected data.

It can be explained away given enough data (why?).

It is also often referred to as model uncertainty.

―――
Credits: Kendall and Gal, What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?, 2017. 29 / 52

https://papers.nips.cc/paper/7141-what-uncertainties-do-we-need-in-bayesian-deep-learning-for-computer-vision.pdf


Bayesian neural networks
To capture epistemic uncertainty in a neural network, we model our ignorance
with a prior distribution  over its weights.

Then we invoke Bayes for making predictions.

 
 

      

p(ω)
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The prior predictive distribution at  is given by integrating over all possible

weight con�gurations,

Given training data  and , a Bayesian

update results in the posterior

The posterior predictive distribution is then given by

x

p(y∣x) = p(y∣x, ω)p(ω)dω.∫

X = {x  , ...,x  }1 N Y = {y  , ..., y  }1 N

p(ω∣X,Y) =  .
p(Y∣X)

p(Y∣X, ω)p(ω)

p(y∣x,X,Y) = p(y∣x, ω)p(ω∣X,Y)dω.∫
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Bayesian neural networks are easy to formulate, but notoriously dif�cult to
perform inference in.

This stems mainly from the fact that the marginal  is intractable to

evaluate, which results in the posterior  not being tractable

either.

Therefore, we must rely on approximations.

p(Y∣X)
p(ω∣X,Y)
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Variational inference
Variational inference can be used for building an approximation  of the

posterior .

As before (see Lecture 6), we can show that minimizing

with respect to the variational parameters , is identical to maximizing the

evidence lower bound objective (ELBO)

q(ω; ν)
p(ω∣X,Y)

KL(q(ω; ν)∣∣p(ω∣X,Y))

ν

ELBO(ν) = E  log p(Y∣X, ω) − KL(q(ω; ν)∣∣p(ω)).q(ω;ν) [ ]
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The integral in the ELBO is not tractable for almost all , but it can be minimized

with stochastic gradient descent:

1. Sample .

2. Do one step of maximization with respect to  on

In the context of Bayesian neural networks, this procedure is also known as
Bayes by backprop (Blundell et al, 2015).

q

∼ q(ω; ν)ω̂

ν

(ν) = log p(Y∣X, ) − KL(q(ω; ν)∣∣p(ω))L̂ ω̂
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Dropout
Dropout is an empirical technique that was �rst proposed to avoid over�tting in
neural networks.

At each training step (i.e., for each sample within a mini-batch):

Remove each node in the network with a probability .

Update the weights of the remaining nodes with backpropagation.

p
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At test time, either:

Make predictions using the trained network without dropout but rescaling
the weights by the dropout probability  (fast and standard).

Sample  neural networks using dropout and average their predictions

(slower but better principled).

p

T
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Why does dropout work?

It makes the learned weights of a node less sensitive to the weights of the
other nodes.

This forces the network to learn several independent representations of the
patterns and thus decreases over�tting.

It approximates Bayesian model averaging.
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Dropout does variational inference

What variational family  would correspond to dropout?

Let us split the weights  per layer,  where  is

further split per unit 

Variational parameters  are split similarly into , with 

.

Then, the proposed  is de�ned as follows:

where  denotes a (multivariate) Dirac distribution centered at .

q

ω ω = {W  , ...,W  },1 L W  i

W  = {w  , ...,w  }.i i,1 i,q  i

ν ν = {M  , ...,M  }1 L

M  = {m  , ...,m  }i i,1 i,q  i

q(ω; ν)

q(ω; ν)

q(W  ;M )i i

q(w  ;m )i,k i,k

=  q(W  ;M  )
i=1

∏
L

i i

=  q(w  ;m  )
k=1

∏
q  i

i,k i,k

= pδ  (w  ) + (1 − p)δ  (w  )0 i,k m  i,k i,k

δ  (x)a a
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That is,  are obtained by setting columns

of  to zero with probability .

This is strictly equivalent to dropout, i.e.
removing units from the network with
probability .

Given the previous de�nition for , sampling parameters  is

done as follows:

Draw binary  for each layer  and unit .

Compute , where  denotes a matrix

composed of the columns .

q = {  , ...,  }ω̂ Ŵ1 ŴL

z  ∼ Bernoulli(1 − p)i,k i k

 =M  diag([z  ]  )Ŵi i i,k k=1
q  i M  i

m  i,k

 Ŵi

M  i p

p
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Therefore, one step of stochastic gradient descent on the ELBO becomes:

1. Sample   Randomly set units of the network to zero 

Dropout.

2. Do one step of maximization with respect to  on

∼ q(ω; ν)ω̂ ⇔ ⇔

ν = {M  }i

(ν) = log p(Y∣X, ) − KL(q(ω; ν)∣∣p(ω)).L̂ ω̂
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Maximizing  is equivalent to minimizing

Is this equivalent to one minimization step of a standard classi�cation or
regression objective? Yes!

The �rst term is the typical objective (see Lecture 2).

The second term forces  to remain close to the prior .

If  is Gaussian, minimizing the  is equivalent to  regularization.

If  is Laplacian, minimizing the  is equivalent to  regularization.

(ν)L̂

− (ν) = − log p(Y∣X, ) + KL(q(ω; ν)∣∣p(ω))L̂ ω̂

q p(ω)
p(ω) KL ℓ  2

p(ω) KL ℓ  1
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Conversely, this shows that when training a network with dropout with a
standard classi�cation or regression objective, one is actually implicitly doing
variational inference to match the posterior distribution of the weights.
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Uncertainty estimates from dropout

Proper epistemic uncertainty estimates at  can be obtained in a principled way

using Monte-Carlo integration:

Draw  sets of network parameters  from .

Compute the predictions for the  networks, .

Approximate the predictive mean and variance as follows:

x

T  ω̂t q(ω; ν)

T {f(x;  )}  ω̂t t=1
T

E  yp(y∣x,X,Y) [ ]

V  yp(y∣x,X,Y) [ ]

≈   f(x;  )
T

1

t=1

∑
T

ω̂t

≈ σ +   f(x;  ) − y2

T

1

t=1

∑
T

ω̂t
2 Ê [ ]2
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Yarin Gal's demo.
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http://mlg.eng.cam.ac.uk/yarin/blog_3d801aa532c1ce.html


Pixel-wise depth regression

―――
Credits: Kendall and Gal, What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?, 2017. 46 / 52

https://papers.nips.cc/paper/7141-what-uncertainties-do-we-need-in-bayesian-deep-learning-for-computer-vision.pdf


Bayesian In�nite Networks
Consider the 1-layer MLP with a hidden layer of size  and a bounded activation

function :

Assume Gaussian priors , ,  and 

.

q

σ

f(x)

h (x)j

= b +  v  h  (x)
j=1

∑
q

j j

= σ a  +  u  x  ( j

i=1

∑
p

i,j i)

v  ∼ N (0, σ  )j v
2 b ∼ N (0, σ  )b

2 u  ∼ N (0, σ  )i,j u
2

a  ∼ N (0, σ  )j a
2
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For a �xed value , let us consider the prior distribution of  implied by

the prior distributions for the weights and biases.

We have

since  and  are statistically independent and  has zero mean by

hypothesis.

The variance of the contribution of each hidden unit  is

which must be �nite since  is bounded by its activation function.

We de�ne , and is the same for all .

x(1) f(x )(1)

E[v  h  (x )] = E[v  ]E[h  (x )] = 0,j j
(1)

j j
(1)

v  j h  (x )j
(1) v  j

h  j

V[v h (x )]j j
(1) = E[(v  h  (x )) ] − E[v  h  (x )]j j

(1) 2
j j

(1) 2

= E[v  ]E[h  (x ) ]j
2

j
(1) 2

= σ  E[h  (x ) ],v
2

j
(1) 2

h  j

V (x ) = E[h  (x ) ](1)
j

(1) 2 j
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What if ?

By the Central Limit Theorem, as , the total contribution of the hidden

units, , to the value of  becomes a Gaussian with variance 

.

The bias  is also Gaussian, of variance , so for large , the prior distribution 

 is a Gaussian of variance .

q → ∞

q → ∞
 v  h  (x)∑j=1

q
j j f(x )(1)

qσ  V (x )v
2 (1)

b σ  b
2 q

f(x )(1) σ  + qσ  V (x )b
2

v
2 (1)
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Accordingly, for , for some �xed , the prior  converges to a

Gaussian of mean zero and variance  as .

For two or more �xed values , a similar argument shows that, as 

, the joint distribution of the outputs converges to a multivariate

Gaussian with means of zero and covariances of

where  and is the same for all .

σ  = ω  qv v
−  2

1
ω  v f(x )(1)

σ  + ω  σ  V (x )b
2

v
2

v
2 (1) q → ∞

x , x , ...(1) (2)

q → ∞

  

E[f(x )f(x )](1) (2) = σ  +  σ  E[h  (x )h  (x )]b
2

j=1

∑
q

v
2

j
(1)

j
(2)

= σ  + ω  C(x , x )b
2

v
2 (1) (2)

C(x , x ) = E[h  (x )h  (x )](1) (2)
j

(1)
j

(2) j
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This result states that for any set of �xed points , the joint

distribution of  is a multivariate Gaussian.

In other words, the in�nitely wide 1-layer MLP converges towards a Gaussian
process.

 

(Neal, 1995)

x ,x , ...(1) (2)

f(x ), f(x ), ...(1) (2)
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The end.
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Today
Can you fool neural networks?

Adversarial attacks

Adversarial defenses
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We have seen that deep networks achieve super-human performance on a large
variety of tasks.

Soon enough, it seems like:

neural networks will replace your doctor;

neural networks will drive your car;

neural networks will compose the music you listen to.

But is that the end of the story?
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Adversarial attacks
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Adversarial examples
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(Szegedy et al, 2013)

Intriguing properties of neural networks

"We can cause the network to misclassify an image by applying a certain hardly
perceptible perturbation, which is found by maximizing the network’s prediction
error. In addition, the speci�c nature of these perturbations is not a random artifact
of learning: the same perturbation can cause a different network, that was trained
on a different subset of the dataset, to misclassify the same input."

The existence of the adversarial negatives appears to be in contradiction with the
network’s ability to achieve high generalization performance. Indeed, if the
network can generalize well, how can it be confused by these adversarial negatives,
which are indistinguishable from the regular examples?"
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(Left) Original images. (Middle) Adversarial noise. (Right) Modi�ed images. 
All are classi�ed as 'Ostrich'.

―――
Credits: Szegedy et al, Intriguing properties of neural networks, 2013. 7 / 44

https://arxiv.org/abs/1312.6199


―――
Credits: Szegedy et al, Intriguing properties of neural networks, 2013. 8 / 44

https://arxiv.org/abs/1312.6199


Fooling a logistic regression model

―――
Credits: Andrej Karpathy, Breaking Linear Classi�er on ImageNet, 2015. 9 / 44

https://karpathy.github.io/2015/03/30/breaking-convnets/


Many machine learning models are subject to adversarial examples, including:

Neural networks

Linear models

Logistic regression

Softmax regression

Support vector machines

Decision trees

Nearest neighbors
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Fooling language understanding models

(Jia and Liang, 2017)
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Fooling deep structured prediction models

(Cisse et al, 2017)
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(Cisse et al, 2017)
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Adversarial examples in the physical world

Adversarial examples can be printed out on normal paper and photographed with
a standard resolution smartphone and still cause a classi�er to, in this case, label a
“washer” as a “safe”.

―――
Credits: Kurakin et al, Adversarial examples in the physical world, 2016. 14 / 44

https://arxiv.org/pdf/1607.02533.pdf


Adversarial Examples In The Physical World - Adversarial Examples In The Physical World - Adversarial Examples In The Physical World - ………
Watch later Share
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https://www.youtube.com/watch?v=zQ_uMenoBCk
https://www.youtube.com/channel/UCsshJhCHLQ7I2iDYo4HJB4g


Physical Adversarial ExamplePhysical Adversarial ExamplePhysical Adversarial Example
Watch later Share
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https://www.youtube.com/watch?v=oeQW5qdeyy8
https://www.youtube.com/channel/UCXZCJLdBC09xxGZ6gcdrc6A


Synthesizing Robust Adversarial Examples: ASynthesizing Robust Adversarial Examples: ASynthesizing Robust Adversarial Examples: A………
Watch later Share
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https://www.youtube.com/watch?v=YXy6oX1iNoA
https://www.youtube.com/channel/UCVUjbx3geURyv6xfKC9d-LQ


Adversarial patch

(Brown et al, 2017)
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(Szegedy et al, 2013)

Creating adversarial examples
 
 

Locality assumption

"The deep stack of non-linear layers are a way for the model to encode a non-
local generalization prior over the input space. In other words, it is assumed that
is possible for the output unit to assign probabilities to regions of the input space
that contain no training examples in their vicinity.

It is implicit in such arguments that local generalization—in the very proximity of
the training examples—works as expected. And that in particular, for a small

enough radius  in the vicinity of a given training input , an  satisfying

 will get assigned a high probability of the correct class by the model."

ϵ > 0 x x+ r
∣∣r∣∣ < ϵ
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r
min

subject to

ℓ(y  , f(x+ r; θ))target

∣∣r∣∣ ≤ L
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Fast gradient sign method

Take a step along the direction of the sign of the gradient at each pixel,

where  is the magnitude of the perturbation.

r = ϵ sign(∇  ℓ(y  , f(x; θ))),x target

ϵ
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The panda on the right is classi�ed as a 'Gibbon' (Goodfellow et al, 2014).
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(Su et al, 2017)

One pixel attacks

  

 

r
min

subject to

ℓ(y  , f(x+ r; θ))target

∣∣r∣∣  ≤ d0
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Universal adversarial perturbations

(Moosavi-Dezfooli et al, 2016)
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Adversarial defenses
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Security threat
Adversarial attacks pose a serious security threat to machine learning systems
deployed in the real world.

Examples include:

fooling real classi�ers trained by remotely hosted API (e.g., Google),

fooling malware detector networks,

obfuscating speech data,

displaying adversarial examples in the physical world and fool systems that
perceive them through a camera.
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What if one puts adversarial patches on road signs? 
Say, for a self-driving car?
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Hypothetical attacks on self-driving cars

―――
Credits: Adversarial Examples and Adversarial Training (Goodfellow, 2016) 28 / 44

https://berkeley-deep-learning.github.io/cs294-dl-f16/slides/2016_10_5_CS294-131.pdf


Origins of the vulnerability

―――
Credits: Breaking things easy (Papernot and Goodfellow, 2016) 29 / 44

http://www.cleverhans.io/security/privacy/ml/2016/12/15/breaking-things-is-easy.html


Conjecture 1: Over�tting

Natural images are within the correct regions, but are also suf�ciently close to
the decision boundary.
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Conjecture 2: Excessive linearity

The decision boundary for most ML models, including neural networks, are near
piecewise linear.

Then, for an adversarial sample , its dot product with a weight vector  is such

that

The adversarial perturbation causes the activation to grow by .

For , if  has  dimensions and the average magnitude of an

element is , then the activation will grow by .

Therefore, for high dimensional problems, we can make many in�nitesimal
changes to the input that add up to one large change to the output.

x̂ w

w = w x+w r.T x̂ T T

w rT

r = ϵsign(w) w n

m ϵmn
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Empirical observation: neural networks produce nearly linear responses over .ϵ
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Defense
Data augmentation

Adversarial training

Denoising / smoothing
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Adversarial training

Generate adversarial examples (based on a given attack) and include them as
additional training data.

Expensive in training time.

Tends to over�t the attack used during training.
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Denoising

Train the network to remove adversarial perturbations before using the
input.

The winning team of the defense track of the NIPS 2017 competition trained
a denoising U-Net to remove adversarial noise.

 

―――
Credits: Liao et al, Defense against Adversarial Attacks Using High-Level Representation Guided Denoiser, 2017. 35 / 44

http://bigml.cs.tsinghua.edu.cn/~jun/pub/adversarial-defense.pdf


―――
Credits: Das et al, Shield: Fast, Practical Defense and Vaccination for Deep Learning using JPEG Compression, 2018. 36 / 44

https://arxiv.org/pdf/1802.06816.pdf


Hiding information

Attacks considered so far are white-box attacks, for which the attack has full
access to the model.

What if instead the model internals remain hidden?

Are models prone to black-box attacks?
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(1) The adversary queries the target remote ML system for labels on inputs of its
choice.

(2) The adversary uses the labeled data to train a local substitute of the remote
system.

―――
Credits: Papernot et al, Practical Black-Box Attacks against Machine Learning, 2016. 38 / 44

https://arxiv.org/pdf/1602.02697.pdf


(3) The adversary selects new synthetic inputs for queries to the remote ML
system based on the local substitute's output surface sensitivity to input
variations.

―――
Credits: Papernot et al, Practical Black-Box Attacks against Machine Learning, 2016. 39 / 44

https://arxiv.org/pdf/1602.02697.pdf


Transferrability

Adversarial examples are transferable across ML models!

―――
Credits: Papernot et al, Practical Black-Box Attacks against Machine Learning, 2016. 40 / 44

https://arxiv.org/pdf/1602.02697.pdf


(Carlini and Wagner, 2017)

Failed defenses

"In this paper we evaluate ten proposed defenses and demonstrate that none of
them are able to withstand a white-box attack. We do this by constructing
defense-speci�c loss functions that we minimize with a strong iterative attack
algorithm. With these attacks, on CIFAR an adversary can create imperceptible
adversarial examples for each defense.

By studying these ten defenses, we have drawn two lessons: existing defenses lack
thorough security evaluations, and adversarial examples are much more dif�cult to
detect than previously recognized."
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(Kurakin, Goodfellow and Bengio, 2018)

"No method of defending against adversarial examples is yet completely
satisfactory. This remains a rapidly evolving research area."
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Fooling both computers and humans

What do you see?

―――
Credits: Elsayed et al, Adversarial Examples that Fool both Computer Vision and Time-Limited Humans, 2018. 43 / 44

https://arxiv.org/abs/1802.08195


     

By building neural network architectures that closely match the human visual
system, adversarial samples can be created to fool humans.

―――
Credits: Elsayed et al, Adversarial Examples that Fool both Computer Vision and Time-Limited Humans, 2018. 44 / 44

https://arxiv.org/abs/1802.08195


That's all folks!
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