
Introduction to Keras
Francois Chollet
March 9th, 2018

Outline (45 min + questions)

- What’s Keras?
- What’s special about it?
- TensorFlow integration

- How to use Keras
- 3 API styles
- An image captioning example

- Distributed, multi-GPU, and TPU training
- Eager execution (a.k.a define-by-run, a.k.a. dynamic graphs)

What’s Keras?

Keras: an API for specifying & training differentiable programs

GPU CPU TPU

TensorFlow / CNTK / MXNet / Theano / ...

Keras API

Keras is the official high-level API of
TensorFlow

● tensorflow.keras (tf.keras) module
● Part of core TensorFlow since v1.4
● Full Keras API
● Better optimized for TF
● Better integration with TF-specific

features
○ Estimator API
○ Eager execution
○ etc.

GPU CPU TPU

TensorFlow

tf.keras

Who makes Keras? Contributors and backers

What’s special about Keras?

● A focus on user experience.
● Large adoption in the industry and research community.
● Multi-backend, multi-platform.
● Easy productization of models.

250,000
Keras developers

> 2x
Year-on-year growth

Industry traction

etc...

Startup-land traction

Hacker News jobs board mentions - out of 964 job postings

Research traction

The Keras user experience

Keras is an API designed for human beings, not machines. Keras follows best
practices for reducing cognitive load: it offers consistent & simple APIs, it minimizes the number of
user actions required for common use cases, and it provides clear and actionable feedback upon user
error.

This makes Keras easy to learn and easy to use. As a Keras user, you are more
productive, allowing you to try more ideas than your competition, faster -- which in turn helps you win
machine learning competitions.

This ease of use does not come at the cost of reduced flexibility: because
Keras integrates with lower-level deep learning languages (in particular TensorFlow), it enables you to
implement anything you could have built in the base language. In particular, as tf.keras, the Keras API
integrates seamlessly with your TensorFlow workflows.

Keras is multi-backend, multi-platform

- Develop in Python, R
- On Unix, Windows, OSX

- Run the same code with…
- TensorFlow
- CNTK
- Theano
- MXNet
- PlaidML
- ??

- CPU, NVIDIA GPU, AMD GPU, TPU...

Largest array of options for productizing
models

- TF-Serving
- In-browser, with GPU acceleration (WebKeras, Keras.js, WebDNN…)
- Android (TF, TF Lite), iPhone (native CoreML support)
- Raspberry Pi
- JVM

Go build cool AR apps with Keras + TF + CoreML + ARKit

How to use
Keras:
An introduction

Three API styles

- The Sequential Model
- Dead simple
- Only for single-input, single-output, sequential layer stacks
- Good for 70+% of use cases

- The functional API
- Like playing with Lego bricks
- Multi-input, multi-output, arbitrary static graph topologies
- Good for 95% of use cases

- Model subclassing
- Maximum flexibility
- Larger potential error surface

The Sequential API

The functional API

Model subclassing

Remember: use
the right tool (API)
for the job!

Example: building a
video captioning model

Toy video-QA problem

> “What is the man doing?”
> packing

> “What color is his shirt?”
> blue

video

frame frame frame

CNN CNN CNN

LSTM LSTM

Embed

Concat

Classifier

question

answer word

video

frame frame frame

CNN CNN CNN

LSTM

video vector

from frames
to a vector

video

frame frame frame

CNN CNN CNN

LSTM LSTM

Embed

question

video vector question
vector

video

frame frame frame

CNN CNN CNN

LSTM LSTM

Embed

Concat

Classifier

question

answer word

video
as 5D tensor

TimeDistributed

question
as integer sequence

answer word
as one-hot vector

InceptionV3

LSTM LSTM

Embedding

Concat

Dense

Dense

Turning frames into a vector,
with pre-trained representations

import keras
from keras import layers
from keras.applications import InceptionV3

video = keras.Input(shape=(None, 150, 150, 3), name='video')
cnn = InceptionV3(weights='imagenet',

 include_top=False,
 pooling='avg')

cnn.trainable = False
frame_features = layers.TimeDistributed(cnn)(video)
video_vector = layers.LSTM(256)(frame_features)

Turning frames into a vector,
with pre-trained representations

import keras
from keras import layers
from keras.applications import InceptionV3

video = keras.Input(shape=(None, 150, 150, 3), name='video')
cnn = InceptionV3(weights='imagenet',

include_top=False,
pooling='avg')

cnn.trainable = False
frame_features = layers.TimeDistributed(cnn)(video)
video_vector = layers.LSTM(256)(frame_features)

Turning frames into a vector,
with pre-trained representations

import keras
from keras import layers
from keras.applications import InceptionV3

video = keras.Input(shape=(None, 150, 150, 3), name='video')
cnn = InceptionV3(weights='imagenet',

include_top=False,
pooling='avg')

cnn.trainable = False
frame_features = layers.TimeDistributed(cnn)(video)
video_vector = layers.LSTM(256)(frame_features)

Turning frames into a vector,
with pre-trained representations

import keras
from keras import layers
from keras.applications import InceptionV3

video = keras.Input(shape=(None, 150, 150, 3), name='video')
cnn = InceptionV3(weights='imagenet',

include_top=False,
pooling='avg')

cnn.trainable = False
frame_features = layers.TimeDistributed(cnn)(video)
video_vector = layers.LSTM(256)(frame_features)

Turning frames into a vector,
with pre-trained representations

import keras
from keras import layers
from keras.applications import InceptionV3

video = keras.Input(shape=(None, 150, 150, 3), name='video')
cnn = InceptionV3(weights='imagenet',

include_top=False,
pooling='avg')

cnn.trainable = False
frame_features = layers.TimeDistributed(cnn)(video)
video_vector = layers.LSTM(256)(frame_features)

Turning a sequence of words into a vector

question = keras.Input(shape=(None,), dtype='int32', name='question')
embedded_words = layers.Embedding(input_voc_size, 256)(question)
question_vector = layers.LSTM(128)(embedded_words)

Predicting an answer word

x = layers.concatenate([video_vector, question_vector])
x = layers.Dense(128, activation=tf.nn.relu)(x)
predictions = layers.Dense(output_voc_size,
 activation='softmax',

 name='predictions')(x)

Setting up the training configuration

model = keras.models.Model([video, question], predictions)
model.compile(optimizer=tf.AdamOptimizer(),
 loss=keras.losses.categorical_crossentropy)

model.fit_generator(data_generator,
 steps_per_epoch=1000,
 epochs=100)

Distributed,
multi-GPU,
& TPU training

Distributed

● Uber’s Horovod
● Estimator API (TF built-in option)
● Dist-Keras (Spark)

○ Also Elephas (Spark)

Built-in multi-GPU support

TPU support

Training + inference

Via Estimator API

Eager execution

Understanding deferred (symbolic)
vs. eager (imperative)

Deferred: you use Python to build a computation graph that gets executed later

Eager: the Python runtime is the execution runtime (like Numpy)

In short:

● Symbolic tensors don’t have a value in your Python code (yet)
● Eager tensors have a value in your Python code
● With eager execution, you can use value-dependent dynamic topologies

(tree-RNNs)

The Keras functional API and Sequential API work with eager execution

Eager execution allows you to write imperative custom layers

Maximum flexibility: imperative Model subclassing

That’s it.
Thank you!

