
Scope as Geometry in Time-Bound Systems
A History-First Foundation for Computation and Meaning

Flyxion

January 15, 2026

Abstract

This essay introduces Spherepop as a historical and geometric foundation for computation,
meaning, and identity. Rather than beginning from timeless axioms, static states, or global sets,
Spherepop takes irreversible events as primary. Scope is treated not as a syntactic convenience
but as a real structural boundary whose creation and collapse alters what is subsequently possible.
Evaluation is therefore inseparable from history. By making the order, nesting, and destruction
of scopes explicit, Spherepop provides a framework in which meaning emerges from action, iden-
tity is constituted by provenance, and computation becomes a traceable process rather than an
abstract mapping. The aim of this essay is not to present a full formal calculus, but to motivate
Spherepop as a necessary response to long-standing mismatches between how real systems be-
have and how they are typically modeled.

1 Introduction

Modern formal systems are remarkably successful at describing static relationships and reversible
transformations. Mathematics, logic, and computer science have all benefited from abstractions that
suppress time, discard history, and treat evaluation as an instantaneous relation between inputs and
outputs. Yet the systems we increasingly rely upon—social platforms, collaborative software, dis-
tributed computation, and even personal digital archives—are not well described by such abstractions.
They are historical systems. Their behavior depends not merely on what is present, but on how it
came to be present, in what order, and through which irreversible commitments.

Spherepop begins from the observation that history is not metadata. It is not an optional annota-
tion that can be erased without consequence. In real systems, actions commit futures by eliminating
alternatives. Once a message is sent, a contract signed, a name taken, or a scope closed, the space of
possible continuations is permanently altered. Traditional formalisms typically model this by layer-
ing logs, timestamps, or version control atop an otherwise ahistorical core. Spherepop instead treats
irreversibility as foundational.

At the heart of Spherepop is a simple but radical shift in perspective. Scope is not merely a syntac-
tic region that can be entered and exited without consequence. Opening a scope creates possibilities

1



that did not previously exist, and closing it destroys possibilities that will never exist again. Evalua-
tion is therefore an event, not a relation. Computation does not merely compute a value; it performs
an irreversible act that leaves a trace.

This shift has consequences for how meaning is understood. In many contemporary systems,
meaning is treated as a label attached to content, an attribute that can be copied, reposted, or recon-
textualized without loss. The resulting proliferation of duplicates, impersonations, and decontextu-
alized fragments is not an accident of implementation but a consequence of modeling identity and
meaning as state rather than history. Spherepop proposes an alternative in which two entities are
identical if and only if they share the same history of events. Identity is therefore not asserted but
earned through provenance.

The name Spherepop is intentionally concrete. It evokes the familiar act of popping nested bubbles,
whether in play, in parsing parentheses, or in resolving expressions. This act captures something
essential about real computation: one must find an innermost scope, commit to resolving it, and
accept that the resolution permanently removes alternatives. The future depends on the order in
which these bubbles are popped. There is no global rewind.

In what follows, Spherepop will be developed as a conceptual framework rather than immediately
as a formal language. The goal of this introduction is to establish why a history-first approach is
necessary, and why existing abstractions struggle to accommodate it. Subsequent sections will show
how geometric scope, irreversible events, and explicit evaluation order can be unified into a coherent
foundation for computation, meaning, and social systems alike.

2 The Limits of State and the Erasure of History

The dominant abstractions of computation are state-based. Whether expressed as mutable variables,
immutable values, or transitions between configurations, most formal systems ultimately describe
computation as movement between states that are, in principle, interchangeable if they are extension-
ally equal. Two states that agree on all observable values are treated as the same, regardless of how
they were reached. This assumption underwrites referential transparency, equational reasoning, and
a large portion of modern programming language theory.

Yet this erasure of history is precisely what makes such abstractions ill-suited to many contem-
porary domains. In collaborative systems, for example, two documents with identical content but
different edit histories are not interchangeable. Authorship, authority, trust, and accountability de-
pend on provenance. Similarly, in social systems, two accounts presenting identical information are
not equivalent if one was established through long participation and the other through impersonation.
Treating these as the same state collapses distinctions that are socially and operationally essential.

Attempts to repair this mismatch typically involve adding auxiliary structures. Logs record past
actions. Version control systems track diffs. Audit trails reconstruct sequences of events after the
fact. While effective in practice, these mechanisms are conceptually secondary. They treat history
as something layered atop a primary state machine rather than as the substrate from which meaning
arises. As a result, history can often be truncated, squashed, or rewritten without violating the formal

2



core of the system, even when such operations are socially or semantically catastrophic.
Spherepop rejects this layering. In Spherepop, there is no authoritative state independent of its

construction. What exists is an irreversible sequence of events, each of which introduces or destroys
scope. The notion of a final state is replaced by that of a replayable history. To know what something
is, one must know what has happened to bring it into being.

This perspective also clarifies why reversibility is a dangerous ideal when applied indiscriminately.
Many formal systems prize reversibility because it simplifies reasoning. If every step can be undone,
then errors are harmless and exploration is safe. However, real commitments are not reversible. One
cannot un-sign a contract, un-leak information, or un-say a statement that has been heard. Mod-
eling such actions as reversible steps misrepresents their effects and encourages architectures that
underestimate risk.

In Spherepop, irreversibility is not a flaw but a feature. Each pop operation collapses a scope and
commits to a particular outcome, excluding others forever. This mirrors not only computation but
cognition itself. Human reasoning proceeds by resolving subproblems, making decisions, and moving
forward without the ability to fully rewind. Memory does not store all alternatives equally; it records
what was chosen.

The geometric intuition of nested spheres is crucial here. A scope is not merely a region of text
or a frame on a stack. It is a boundary that separates what is currently possible from what is not.
Entering a sphere creates a local universe of possibilities. Popping it destroys that universe, leaving
behind a trace of what occurred within. Computation, on this view, is the controlled destruction of
possibility space.

This framing allows Spherepop to unify phenomena that are typically treated separately. Parsing
an expression, evaluating a function, committing a transaction, or forming an identity all involve
the same structural act: opening a space of potential, resolving it through action, and accepting the
consequences of that resolution. By insisting that these acts are first-class and irreversible, Spherepop
provides a foundation that aligns more closely with lived experience and real systems than do models
built around timeless equivalence.

The next section will turn from critique to construction, introducing scope as a geometric object
and explaining why nested spheres provide a more faithful model of computation than linear syntax
alone.

3 Scope as Geometry Rather Than Syntax

In most formal languages, scope is introduced as a syntactic device. Parentheses, indentation, or de-
limiters indicate where a variable may be referenced or where an expression begins and ends. Once
parsing is complete, however, this structure largely disappears. Evaluation proceeds over abstract syn-
tax trees or intermediate representations in which scope is no longer a lived boundary but a resolved
bookkeeping detail. The act of entering or leaving a scope is not itself an event with consequences;
it is merely an artifact of notation.

Spherepop takes a different approach. Scope is treated as a geometric object whose creation and

3



destruction are semantically significant. A sphere is not merely a container for expressions but a
region of potential action. Entering a sphere opens a local world in which certain bindings, relations,
and possibilities exist. Popping a sphere collapses that world, yielding a result while permanently
eliminating the alternatives that were once available within it.

This geometric interpretation resolves a subtle but pervasive tension in traditional models. In con-
ventional calculi, abstraction and application are symmetric operations. A function can be applied,
reduced, and re-expanded conceptually without loss. The boundaries of abstraction are treated as
transparent, and beta-reduction is reversible in the sense that the original expression can be recon-
structed from its reduct. While this symmetry is mathematically elegant, it obscures the asymmetry
of real action. One may consider possibilities freely, but once one acts, the world changes.

By contrast, Spherepop assigns directionality to scope. Opening a sphere introduces indetermi-
nacy. Popping it resolves that indeterminacy irreversibly. This distinction mirrors the difference
between deliberation and commitment. Before a decision, many futures coexist. After it, only one
remains. The geometry of spheres makes this asymmetry explicit.

The usefulness of this model becomes apparent when considering nested scopes. In traditional
syntax, nested parentheses simply indicate precedence. In Spherepop, nested spheres represent em-
bedded domains of potential that must be resolved from the inside outward. One cannot meaningfully
pop an outer sphere until the inner spheres it contains have been addressed, because their unresolved
indeterminacies infect the larger context. This enforces a natural evaluation order grounded not in
arbitrary rules but in structural necessity.

Crucially, this order is notmerely computational but historical. The sequence inwhich spheres are
popped determines the resulting history, and therefore the identity of the outcome. Two computations
that differ only in the order of independent pops may lead to observationally distinct histories even if
they produce extensionally similar values. Spherepop therefore refuses to collapse these distinctions.
Order matters because history matters.

This geometric view also clarifies why scope boundaries are sites of meaning. When a sphere is
popped, the result is not just a value but a trace of how that value came to be. In a history-aware
system, this trace can be preserved, inspected, and reasoned about. Meaning is no longer an intrinsic
property of a token but an emergent property of the path that produced it. A result carries with it the
memory of the scopes that were opened and closed in its construction.

Seen in this light, many familiar problems in computing and social systems appear as failures
to respect scope geometry. Variable capture errors, context collapse in social media, and ambiguous
authorship all arise when boundaries that should be meaningful are flattened or ignored. Spherepop’s
insistence on explicit, irreversible scope transitions provides a way to model and avoid such failures
by construction.

The next section will extend this geometric account of scope into a historical account of identity,
showing how equivalence, sameness, and reference can be grounded not in static properties but in
shared event structure.

4



4 Identity as Event History

In classical logic and mathematics, identity is primitive. Two symbols are identical if they are the
same symbol; two values are equal if they satisfy an equality relation defined over their type. This
notion of sameness is timeless and context-free. It presumes that identity can be asserted without
reference to process, origin, or history. Such assumptions are indispensable in formal reasoning, yet
they become liabilities when applied to systems whose meaning depends on provenance.

Spherepop replaces primitive identity with historical identity. An entity is what has happened
to bring it into being. Two entities are the same if and only if they share the same history of events.
This is not a metaphor but a structural commitment. In a Spherepop system, there is no authoritative
notion of equality independent of the event log that produced the entities under comparison. Identity
is therefore not a static predicate but a question of trace equivalence.

This shift resolves a number of long-standing ambiguities. Consider duplication. In a state-based
system, copying a value produces an identical value. In a historical system, copying is itself an event,
and the copy necessarily has a different history from the original. The two may be observationally
similar, but they are not identical. This distinction matters whenever attribution, responsibility, or
trust is at stake. A reproduced message is not the same as the original utterance; a repost is not the
same as authorship.

Reference, under this view, becomes inherently historical. To refer to something is to point not
merely to a value but to a particular trajectory through the space of events. This explains why refer-
ences can decay, become ambiguous, or fracture when history is ignored. Systems that allow identi-
fiers to be reassigned, overwritten, or aliased without preserving provenance invite confusion because
they sever the link between name and history. Spherepop avoids this by making references stable han-
dles whose meaning is inseparable from the events that introduced and transformed them.

Equivalence, in Spherepop, is therefore induced rather than assumed. Two entities may be de-
clared equivalent through explicit events that merge their histories, but such equivalence is always
the result of action, never a background assumption. This mirrors social and scientific practice. We
decide that twomeasurements refer to the same phenomenon, or that two accounts belong to the same
person, through processes of verification and reconciliation. These decisions have consequences and
can themselves be contested or revised. Spherepop models this explicitly by treating equivalence as
a historical relation, not a timeless truth.

The implications for computation are profound. Many optimizations and abstractions rely on
collapsing equivalent states or values. While efficient, such collapses are only sound when history is
irrelevant. Spherepop makes the cost of such erasures explicit. To identify two histories is to assert
that their differences no longer matter, an assertion that must be justified rather than assumed. This
discipline encourages systems that are conservative in their claims of sameness and precise in their
handling of difference.

Identity as history also aligns naturally with human cognition. People understand themselves
and others not as static bundles of attributes but as narratives. Trust accumulates through consistent
behavior over time. Betrayal is not a state but an event that irreversibly alters relationships. By

5



grounding identity in event structure, Spherepop provides a formal language that resonates with
these intuitions while remaining precise.

With identity reconceived as historical trace, the role of replay becomes central. To know what
something is, one must be able to replay how it came to be. The next section will therefore examine
replay as a foundational operation, and explain why Spherepop treats the event log, rather than any
derived state, as the primary object of computation.

5 Replay as Foundation

Once identity is grounded in event history rather than static state, replay ceases to be an auxiliary
mechanism and becomes foundational. In a Spherepop system, the authoritative object is not a snap-
shot of the world at a givenmoment but the irreversible sequence of events that produced it. Any state
that can be observed is derived, provisional, and in principle discardable. What cannot be discarded
is the history itself.

This inversion resolves a tension that has long existed in system design. Traditional systems
maintain mutable state for efficiency and attach logs for accountability. When discrepancies arise
between state and log, the log is consulted as a record of what should have happened, but it is rarely
treated as the definitive source of truth. Spherepop reverses this priority. The log is truth; state is a
cache.

Determinism in Spherepop follows naturally from this stance. Given an initial empty world and
a prefix of the event history, the resulting derived structure is uniquely determined. There is no
dependence on hidden variables, ambient context, or execution timing. Replay is therefore not merely
a debugging aid but the primary mode of execution. To run a Spherepop system is to replay its history.

This form of determinism differs subtly from that of traditional pure functions. In a functional
language, determinismmeans that the same input yields the same output. In Spherepop, determinism
means that the same history yields the same world. Inputs are not values but events, and outputs are
not values but evolved structures. The emphasis shifts from mapping to evolution.

Replay also provides a principled account of introspection. Because all authoritative change is
recorded as explicit events, it is always possible to ask why something is the way it is. The answer is
not an opaque internal state but a sequence of actions that can be inspected, audited, and reasoned
about. This property is indispensable for systems that must support accountability, explanation, and
trust.

Importantly, replay does not imply inefficiency or rigidity. Derived views can be cached, indexed,
or visualized in any number of ways without compromising the authoritative history. One may com-
pute summaries, projections, or speculative overlays, all of which can be discarded and recomputed
at will. What is forbidden is the silent mutation of meaning. Every authoritative change must pass
through the same event interface and become part of the shared history.

This discipline has ethical as well as technical implications. Systems that obscure their histories
make it difficult to assign responsibility or contest outcomes. By contrast, a replayable system makes
power legible. Decisions are no longer hidden behind mutable state or proprietary algorithms; they

6



are visible as events that occurred in a particular order. Spherepop thus aligns technical determinism
with social accountability.

Replay also clarifies the role of speculation. One may branch, explore alternatives, or simu-
late futures by constructing hypothetical event sequences, but such branches remain explicitly non-
authoritative until committed. This mirrors human reasoning. We imagine possibilities freely, but
the world only changes when we act. Spherepop enforces this distinction structurally, preventing
speculative reasoning from silently contaminating reality.

With replay established as the foundation, Spherepop can be extended beyond abstract compu-
tation into concrete architectures. The next section will outline how these principles naturally give
rise to event-sourced languages, operating systems, and collaborative environments in which time,
causality, and meaning remain explicit rather than implicit.

6 From Calculus to Substrate

The principles developed thus far do not merely suggest a new programming language or formal
calculus. They imply a different conception of what a computational system is. If history is author-
itative, if scope transitions are irreversible events, and if identity is constituted by provenance, then
computation can no longer be treated as a transient process acting upon an external store. It becomes
instead a sustained interaction with an evolving semantic substrate.

In this sense, Spherepop is best understood not as a language layered atop an operating system,
but as a candidate foundation for one. Traditional operating systems abstract over processes, files,
and threads, all of which presume mutable state and implicit causality. Time is present but poorly
structured, often reduced to timestamps or scheduling artifacts. Meaning, when it exists at all, is
external to the system’s core abstractions.

Spherepop replaces these primitives with events, scopes, and relations. The basic unit of change
is not a process step but an irreversible commitment recorded in a log. Objects exist not as memory
locations but as stable references introduced by events. Relations are not inferred from structure but
explicitly declared and historically traceable. The system’s role is not to manage mutable resources
but to interpret a growing history in a deterministic and inspectable way.

This shift resolves a long-standing tension between computation and collaboration. Conventional
systems struggle to support multiple observers acting concurrently without sacrificing consistency
or intelligibility. Locks, transactions, and conflict-resolution protocols attempt to impose order on
inherently temporal interactions. Spherepop instead embraces temporality. All actions are ordered,
all consequences are recorded, and all participants reason over the same historical substrate. Concur-
rency becomes a matter of interleaving events rather than reconciling divergent states.

The geometric notion of scope plays a crucial role here. Local reasoning is achieved by open-
ing spheres within which speculative or contextual actions may occur. These spheres can be nested,
shared, or discarded, but they do not affect the authoritative history until they are popped. This pro-
vides a principled mechanism for isolation without opacity. One may reason locally without mutating
the global world, and one may commit globally without erasing the record of local deliberation.

7



Seen in this light, familiar computational constructs acquire new interpretations. A function is
not merely a mapping but a sphere that, when popped, produces a value and a trace. A transaction
is not a block of atomic mutations but a sequence of events whose boundaries are explicit and whose
consequences are replayable. Even user interfaces become views over history rather than controllers
of hidden state. Interaction is reinterpreted as the proposal and acceptance of events.

The same architecture extends naturally to social and semantic domains. A discussion is a se-
quence of utterances, each of which alters the space of possible replies. A community is a shared
history of commitments and resolutions. Moderation is not the silent deletion of state but the intro-
duction of events that explain and justify boundary enforcement. In all cases, legitimacy flows from
traceability.

Spherepop therefore collapses distinctions that are often treated as fundamental. Computation,
communication, and coordination become different aspects of the same underlying process: the struc-
tured accumulation of irreversible events within nested scopes. By providing a calculus in which these
structures are explicit, Spherepop offers a foundation for systems that remain intelligible as they scale
in complexity and participation.

7 Comparative Analysis: What Spherepop Keeps, What It Refuses

Spherepop is often misrecognized as a decorative reformulation of familiar ideas: a visual metaphor
for parentheses, an event-sourcing slogan, or a stylistic alternative to existing calculi. These resem-
blances are real, but they are not the point. The comparative value of Spherepop lies in the precise
places where it refuses the usual identifications and thereby forces different commitments about time,
causality, and equivalence.

The nearest historical neighbor is the 𝜆-calculus. In the 𝜆 tradition, abstraction and application
are treated as fundamental, and 𝛽-reduction expresses computation as substitution. Spherepop pre-
serves this core insight while rejecting its usual ontological interpretation. In standard presentations,
𝜆-terms represent timeless mathematical objects, and reduction is a normalization procedure that
discards the path taken. Spherepop retains the structural role of abstraction and application but in-
sists that the reduction step is not merely a logical consequence. It is an irreversible event whose
occurrence belongs to the meaning of the result. In other words, the 𝜆-calculus is commonly read as
describing what computation is; Spherepop reads it as describing one component of how computation
happens. This shift is exactly what makes replay central rather than incidental, because the system
must preserve the record of which 𝛽-steps actually occurred and in what order.

This difference becomes sharper when one considers observational equivalence. Traditional func-
tional semantics aggressively quotients terms by extensional equality, often treating two programs as
the same if they compute the same function. Spherepop refuses this collapse whenever provenance
matters. Two results that are extensionally equal but historically distinct remain distinct entities un-
less an explicit equivalence-inducing action identifies them. The calculus thereby models a practice
familiar to science, law, and everyday social life: sameness is not a background axiom but a negotiated
conclusion.

8



Concurrency invites comparisonwith process calculi, especiallyMilner’s 𝜋-calculus. The 𝜋-calculus
does not merely add parallelism; it treats interaction and communication as primary, with names as
mobile carriers of connectivity. Spherepop can encode many 𝜋-like phenomena, but it relocates the
conceptual center of gravity. In 𝜋-style formalisms, concurrency is native and time is often implicit in
the interleaving semantics. In Spherepop, time is explicit as a totalized or otherwise disciplined event
order, and concurrency appears as structured composition whose traces remain available for replay.
This is not an aesthetic preference; it is a response to the practical problem that concurrent systems
are not only required to run but also to be explained, audited, and repaired. By making causal order
an explicit artifact, Spherepop treats explainability as part of the semantics rather than a debugging
afterthought.

Probabilistic computation provides a third axis of comparison. Contemporary probabilistic pro-
gramming often treats randomness as an external source, a sampling primitive that disrupts refer-
ential transparency but remains conceptually separable from the structural calculus of the language.
Spherepop’s design, by contrast, internalizes probabilistic branching as a first-class construct whose
interaction with composition is itself part of the theory, as in the core presentation of probabilistic
Choice and its relationship to structured composition and semantics in a distributional setting. �0�
This matters because probability in real systems is rarely an isolated draw; it is a multiplicative field of
risks and uncertainties that combine under parallel composition. Spherepop’s insistence on composi-
tional probability is therefore not simply a feature request. It is a claim about the shape of uncertainty
in systems whose histories are entangled.

The comparison with event sourcing and databases is equally illuminating. Event-sourced archi-
tectures already elevate logs over mutable state, and the database community has long studied transac-
tion logs, write-ahead logging, and replay for recovery. Spherepop overlaps with these traditions but
differs in two crucial respects. First, event sourcing in practice is frequently justified pragmatically,
as a way to reconstruct state or support audit trails, while still allowing the authoritative meaning
of the system to be described as a mutable state machine. Spherepop makes the opposite move: it
treats the log as the primary semantic object and any state as a derived view that may be dropped and
recomputed without semantic loss. This discipline appears explicitly in Spherepop OS design goals
emphasizing deterministic replay, total causal order, and view–cause separation as architectural ax-
ioms rather than conveniences. �1� Second, event-sourced systems often allow multiple independent
logs reconciled by eventual consistency. Spherepop’s emphasis, at least in its conservative OS for-
mulation, prioritizes a single authoritative causal order precisely because the system aims to make
explanation and accountability straightforward rather than statistically likely.

These differences become sharperwhen comparing Spherepop to CRDT-based collaboration. CRDTs
are engineered to ensure convergence without coordination, and their elegance lies in algebraic prop-
erties that guarantee eventual agreement. Spherepop is not hostile to these ideas, but it does not treat
convergence as the primary good. Instead, it treats intelligibility of history as primary. A system
that converges while obscuring how it converged is, from Spherepop’s point of view, epistemically
incomplete. The question is not only whether collaborators arrive at the same value, but whether they
share a common account of what happened, including the order and boundaries of commitments that

9



produced the value.
Version control systems offer another tempting analogy. Git, for example, is widely understood as

a history-preserving substrate for collaboration. Yet Git’s history is optional in a way Spherepop’s his-
tory is not. Commits can be rebased, squashed, rewritten, and force-pushed, and these operations are
often treated as routine hygiene. Spherepop’s normative stance differs: history is not a convenience
for developers but the basis of identity and trust. A rewrite of history is not merely a different narra-
tive but a semantic event of great consequence that must itself be explicit, inspectable, and causally
legible. This perspective is mirrored in the Spherepop OS and utility ecosystem conception in which
utilities are constrained to preserve deterministic replay and avoid hidden state, treating proposals
and views as distinct strata rather than allowing silent mutation under the guise of tooling. �2�

Finally, Spherepop differs from conventional operating system design at the level of primitive
abstractions. Traditional kernels prioritize processes, threads, virtual memory, and files, with seman-
tics distributed across mutable structures and side-effecting system calls. Spherepop OS inverts this
by treating the append-only event substrate as primary, forcing all authoritative change to occur as
explicit events, and treating geometry, layout, and speculation as layered, non-causal structure. �3�
This is not merely an implementation strategy; it is a philosophical commitment that aligns operating
system architecture with the same history-first semantics advocated by the calculus.

Taken together, these comparisons locate Spherepop as neither a minor variation nor a universal
replacement, but as a deliberate choice of foundational emphasis. Where existing paradigmsminimize
history to simplify reasoning, Spherepop preserves history to make reasoning accountable. Where ex-
isting paradigms quotient by extensional equality, Spherepop demands explicit equivalence-inducing
acts. Where existing paradigms treat replay as a debugging tool, Spherepop treats replay as the pri-
mary execution mode. The cost is that certain optimizations and identifications become nontrivial.
The benefit is that systems built on Spherepop remain legible under collaboration, conflict, uncer-
tainty, and time.

8 Cause and View as a Semantic Boundary

A recurring theme in the preceding analysis is the distinction between what happens and what is seen.
Many systems acknowledge this distinction informally, speaking of internal state versus presentation,
or of model versus view. Spherepop elevates this separation to a semantic boundary with formal
consequences. Cause and view are not merely layers of implementation; they are different kinds of
objects, governed by different rules, and conflating them leads to both technical and social pathologies.

In Spherepop, causes are events. An event is an irreversible commitment that alters the space of
what is possible thereafter. Events are ordered, replayable, and authoritative. They introduce objects,
establish relations, induce equivalences, and collapse scopes. Every event leaves a trace, and nothing
that matters semantically can occur without passing through the event interface. This is the sense in
which Spherepop is conservative: it restricts where meaning may change.

Views, by contrast, are derived. A view is any representation computed from a prefix of the event
history. It may be visual, textual, statistical, or structural. It may summarize, project, compress, or

10



rearrange. Crucially, it has no causal force. Dropping a view, recomputing it, or replacing it with an-
other view does not change the underlying meaning of the system. Views may be wrong, misleading,
or partial without endangering semantic integrity, because they are explicitly non-authoritative.

This boundary resolves a subtle but pervasive failure mode in complex systems. When views
are allowed to feed back implicitly into causes, the system becomes difficult to reason about. Caches
silently influence behavior, heuristics masquerade as facts, and visual affordances mutate semantics
without leaving a trace. Such feedback loops are often unintentional, yet they accumulate until the
system’s behavior can no longer be explained in terms of its nominal rules.

Spherepop prevents this collapse by construction. Any influence of observation on reality must
be made explicit as an event. If a summary motivates a decision, that decision appears as an event,
not as a hidden mutation induced by the summary itself. This discipline restores a clear chain of
responsibility. One can always distinguish between what was observed, what was inferred, and what
was committed.

The boundary between cause and view also clarifies the role of interpretation. Different observers
may construct different views over the same history, emphasizing different aspects or answering
different questions. This plurality does not threaten coherence because it does not fracture authority.
All observers reason from the same event substrate, even if they render it differently. Disagreement
therefore becomes productive rather than destabilizing: it concerns interpretation, not reality.

This principle has immediate consequences for interface design. In a Spherepop-aligned system,
interfaces do not issue commands that directly mutate hidden state. Instead, they propose events. The
user’s action is recorded as a commitment, and any resulting change in meaning is traceable to that
commitment. Undo, redo, and branching are reinterpreted accordingly. One does not erase events;
one introduces new events that contextualize, supersede, or negate earlier ones. The past remains
intact even as its consequences evolve.

The same logic applies to automation and intelligence. An algorithm may analyze history, gener-
ate predictions, or recommend actions, but these outputs remain views until an explicit event incor-
porates them into the authoritative history. This avoids the common trap in which learned models
silently reshape reality by altering rankings, exposures, or defaults without leaving a clear causal
record. In Spherepop, such influence must be legible.

By enforcing a strict separation between cause and view, Spherepop unifies the calculus-level
distinction between scope creation and scope collapsewith the system-level distinction between event
and observation. Both are expressions of the same underlying idea: meaning changes only at explicit
boundaries, and everything else is interpretation.

This boundary completes the conceptual arc of the essay. Spherepop begins by rejecting the
erasure of history, reconceives scope as a geometric and irreversible structure, grounds identity in
event traces, elevates replay to a primary operation, and culminates in a semantic discipline that
distinguishes what happens from how it is seen. The result is not a single tool but a foundation upon
which tools can be built without losing their footing in time.

A final concluding section can now articulate the scope of Spherepop’s claims, its limitations, and
the kinds of systems for which such a foundation is not optional but necessary.

11



9 Conclusion: A Discipline for Time-Bound Systems

Spherepop does not propose a universal replacement for existing formalisms, nor does it claim that
all computation must be historical in the same way. Its claim is narrower and, for that reason, more
demanding. It asserts that whenever meaning, identity, accountability, or trust depend on how things
came to be, history cannot be treated as secondary. In such systems, abstractions that erase prove-
nance are not merely simplifying assumptions; they are sources of structural error.

The core contribution of Spherepop is therefore a discipline rather than a single technique. It
insists that irreversible events are the only legitimate source of semantic change, that scope bound-
aries are real and consequential, and that equivalence must be induced rather than assumed. From
these commitments follow a series of architectural consequences: replay replaces state as the primary
execution model; views are explicitly non-authoritative; and identity is grounded in trace rather than
appearance.

These commitments impose costs. Certain optimizations become harder to justify. Some familiar
equivalences must be re-earned through explicit action. Systems built on Spherepop may appear
conservative when compared to architectures that privilege convenience or performance. Yet this
conservatism is deliberate. It reflects an understanding that complexity, once it reaches social or
collaborative scale, cannot be safely managed by abstractions that hide time and erase causality.

Spherepop’s geometric treatment of scope provides a unifying intuition across domains that are
usually siloed. Parsing, evaluation, deliberation, coordination, and commitment are revealed as in-
stances of the same structural act: opening a bounded space of possibility and irreversibly collapsing
it. By making this act explicit, Spherepop allows systems to remain intelligible even as they grow in
size, heterogeneity, and longevity.

The framework is therefore best read as an invitation to re-examine where existing systems qui-
etly rely on ahistorical assumptions. In programming languages, this may concern the treatment of
reduction and equivalence. In operating systems, it concerns the primacy of mutable state over causal
trace. In social platforms, it concerns identity, authorship, and moderation. In each case, the question
Spherepop asks is the same: what commitments are being made, and where are they recorded?

Spherepop does not eliminate ambiguity, conflict, or uncertainty. Instead, it makes them visible.
By preserving history rather than collapsing it, the framework accepts that disagreement and revision
are intrinsic to meaningful systems. What it refuses is silent mutation and untraceable authority. In
doing so, it aligns formal rigor with human intuitions about responsibility and consequence.

In this sense, Spherepop is less a calculus of computation than a calculus of commitment. It offers
a way to build systems that remember what they have done, understand why they are as they are, and
remain open to correction without pretending that the past can be undone. For systems that must
endure in time, this is not a luxury. It is a prerequisite.

12



A Appendix A: Methodological Commitments

This appendix clarifies the methodological stance underlying Spherepop and distinguishes it from
both purely formal and purely empirical approaches. Spherepop is neither an axiomatic reconstruc-
tion of computation fromminimal primitives nor a descriptive theory derived from observing existing
systems. Instead, it occupies an intermediate position: it begins from structural mismatches repeat-
edly encountered in real systems and asks what formal commitments would be required to avoid them
by construction.

The guiding methodological choice is to treat irreversible action as primitive. Rather than assum-
ing reversibility and adding constraints to simulate irreversibility, Spherepop assumes irreversibility
and derives reversible reasoning as a special case. This inversion explains many of its unusual design
decisions, including the insistence on replay, the refusal of implicit equivalence, and the elevation of
scope boundaries to semantic events.

A second commitment is conservatism about meaning. Spherepop does not attempt to infer se-
mantics from behavior, patterns, or optimization objectives. Meaning enters the system only through
explicit events. This is not a denial that inference is useful, but a decision about where authority lies.
Inference produces views; commitment produces causes. The methodology therefore draws a sharp
line between explanation and action.

Finally, Spherepop adopts a constructive stance toward abstraction. Abstractions are not free. To
abstract is to deliberately ignore distinctions that may later prove important. Spherepop requires that
such erasures be explicit and historically traceable. This makes abstraction a first-class act rather than
an ambient assumption.

B Appendix B: Relation to Formal Calculi

Although this essay has avoided formal presentation, Spherepop admits precise formulation at the
level of calculus. In its core form, Spherepop can be presented as an extension of typed lambda calculus
in which abstraction and application are reinterpreted as Sphere and Pop, and in which additional
primitives support structured composition and branching.

What distinguishes the Spherepop calculus from familiar extensions is not the presence of these
primitives but their interpretation. Reduction is treated as an event rather than a mere rewrite. Com-
position preserves trace. Branching internalizes uncertainty rather than externalizing it as an oracle.
The formal systems developed in related work demonstrate that these commitments can be made
without sacrificing type safety, compositional semantics, or adequacy.

It is important to emphasize that the calculus is not the foundation but an expression of deeper
commitments. One could imagine alternative syntaxes or type systems that respect the same semantic
discipline. What matters is not the surface form but the preservation of history, scope geometry, and
explicit commitment.

13



C Appendix C: Replay, Speculation, and Branching

Replay in Spherepop should not be confusedwith simple re-execution. Replay is interpretation. Given
a prefix of events, the system deterministically reconstructs all derived structure. This allows ob-
servers to join late, rewind analysis, or compute alternative views without affecting authority.

Speculation is supported through branching histories that are explicitlymarked as non-authoritative.
Such branches allow exploration of counterfactuals, planning, and deliberation. Crucially, specula-
tive branches do not silently merge back into reality. If a speculative outcome is to matter, it must be
committed through an explicit event. This preserves the asymmetry between imagining and acting.

Branching therefore does not undermine determinism. Determinism applies to replay of a given
history, not to the selection of which history to commit. Spherepop accommodates choice without
obscuring causality.

D Appendix D: Limitations and Non-Goals

Spherepop does not aim to optimize for all use cases. Systems that are purely numerical, ephemeral, or
uninterested in representational accountability may find its commitments excessive. The framework
is intentionally unsuited to domains where history is treated as disposable.

Spherepop also does not attempt to solve alignment, governance, or coordination by fiat. It pro-
vides tools for making commitments visible and contestable, but it does not prescribe which com-
mitments should be made. Ethical and political questions remain external, though they are better
illuminated by a system that preserves trace.

Finally, Spherepop does not claim that all meaningful equivalence can or should be avoided.
Rather, it insists that equivalence be enacted rather than assumed. This introduces friction, but it
is the friction of deliberation rather than the friction of ambiguity.

E Appendix E: Future Directions

Future work on Spherepop divides naturally into three directions. The first is formal refinement, in-
cluding richer type systems, categorical semantics, and proof of additional meta-theoretic properties.
The second is architectural exploration, extending event-sourced operating systems, collaborative en-
vironments, and semantic tooling grounded in Spherepop’s discipline. The third is empirical study,
examining how history-first systems affect user behavior, trust, and long-term coherence.

These directions are intentionally interdependent. Formal systems must remain accountable to
lived experience, and empirical systems must remain grounded in explicit semantics. Spherepop’s
central wager is that these demands are not opposed but mutually reinforcing.

The appendices close where the essay began: with the assertion that history is not metadata. If
Spherepop succeeds, it will not be because it replaces existing tools, but because it makes it harder to
forget what has been done, and therefore harder to pretend that meaning can be rewritten without
consequence.

14



References

[1] A. Church. An unsolvable problem of elementary number theory. American Journal of Mathe-
matics, 58(2):345–363, 1936.

[2] A. M. Turing. On computable numbers, with an application to the Entscheidungsproblem. Pro-
ceedings of the London Mathematical Society, 42(2):230–265, 1936.

[3] R. Milner. Communicating and Mobile Systems: The 𝜋-Calculus. Cambridge University Press,
Cambridge, 1999.

[4] B. C. Pierce. Types and Programming Languages. MIT Press, Cambridge, MA, 2002.

[5] E. Moggi. Notions of computation and monads. Information and Computation, 93(1):55–92, 1991.

[6] S. Mac Lane. Categories for the Working Mathematician. Springer, 2nd edition, 1998.

[7] S. Awodey. Category Theory. Oxford University Press, 2nd edition, 2010.

[8] L. Lamport. The part-time parliament. ACM Transactions on Computer Systems, 16(2):133–169,
1998.

[9] M. Kleppmann. Designing Data-Intensive Applications. O’Reilly Media, Sebastopol, CA, 2017.

[10] C. E. Shannon. A mathematical theory of communication. Bell System Technical Journal, 27:379–
423, 623–656, 1948.

[11] C. A. E. Goodhart. Problems of monetary management: The U.K. experience. In Papers in
Monetary Economics, Reserve Bank of Australia, 1975.

[12] D. T. Campbell. Assessing the impact of planned social change. Evaluation and Program Planning,
2(1):67–90, 1979.

[13] M. Strathern. “Improving Ratings”: Audit in the British University System. European Review,
5(3):305–321, 1997.

[14] J. Z. Muller. The Tyranny of Metrics. Princeton University Press, Princeton, 2018.

[15] G. Fauconnier and M. Turner. The Way We Think: Conceptual Blending and the Mind’s Hidden
Complexities. Basic Books, New York, 2002.

[16] S. Brand. How Buildings Learn: What Happens After They’re Built. Viking, New York, 1994.

[17] T. Needham. Visual Complex Analysis. Oxford University Press, Oxford, 1997.

[18] K. M. Fant. Computer Science Reconsidered. Addison-Wesley, Boston, 2000.

[19] K. M. Fant. Logically Determined Design: Clockless System Design with NULL Convention Logic.
Wiley-IEEE Press, Hoboken, NJ, 2004.

15



[20] D. R. Hofstadter. Gödel, Escher, Bach: An Eternal Golden Braid. Basic Books, New York, 1979.

[21] D. R. Hofstadter. Surfaces and Essences: Analogy as the Fuel and Fire of Thinking. Basic Books,
New York, 2013.

[22] A. Gopnik. The Philosophical Baby: What Children’s Minds Tell Us About Truth, Love, and the
Meaning of Life. Farrar, Straus and Giroux, New York, 2009.

[23] A. Gopnik. Childhood as a Solution to Explore-Exploit Tensions. Philosophical Transactions of the
Royal Society B, 375(1803), 2020.

16


	Introduction
	The Limits of State and the Erasure of History
	Scope as Geometry Rather Than Syntax
	Identity as Event History
	Replay as Foundation
	From Calculus to Substrate
	Comparative Analysis: What Spherepop Keeps, What It Refuses
	Cause and View as a Semantic Boundary
	Conclusion: A Discipline for Time-Bound Systems
	Appendix A: Methodological Commitments
	Appendix B: Relation to Formal Calculi
	Appendix C: Replay, Speculation, and Branching
	Appendix D: Limitations and Non-Goals
	Appendix E: Future Directions

