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Abstract

Recent advances in large language models suggest that effective long chain-of-thought rea-
soning is not well described as a linear symbolic process, but rather as a structured, metastable
configuration exhibiting internal cohesion, long-range constraint, and phase-dependent behavior.
This paper develops a formal theory of reasoning as active geodesic inference: a dynamical process
in which inference trajectories co-evolve with the semantic geometry through which they pass.

We propose a unified mathematical framework integrating category theory, information the-
ory, and statistical mechanics within the Relativistic Scalar-Vector—Plenum (RSVP) field theory.
Reasoning trajectories are modeled as low-action paths of coupled semantic fields, whose sta-
ble configurations correspond to synchronized macromolecular-like structures. Under coarse-
graining, the RSVP Hamiltonian induces an effective five-dimensional Ising model in which deep
reasoning, self-reflection, and self-exploration emerge as coupled order parameters. Distinct rea-
soning strategies solving the same task are shown to correspond to semantic isomers: metastable
minima of the same energy functional with differing internal bond topologies.

The theory provides principled explanations for empirical phenomena observed in modern
reasoning systems, including the fragility of chain-of-thought distillation, the emergence of la-
tent hybrid reasoning patterns under reinforcement learning, the role of contrastive alignment
in domain adaptation, and the robustness benefits of neighborhood-based uncertainty represen-
tations. We further show that attention mechanisms admit a Gibbsian interpretation, grounding
logical bond strength in effective interaction energies.

Finally, we present Spherepop as a concrete execution calculus for active geodesic inference.
By treating reasoning as an irreversible, scope-based event process, Spherepop implements RSVP
field dynamics directly, preserving semantic bonding and preventing incoherent state superposi-
tion. Together, these results suggest that intelligence is best understood not as symbol manipula-
tion or sequence prediction, but as the active stabilization of coherent semantic structure under
energetic and entropic constraints.



Introduction: Thought as Structured Matter

Recent empirical advances in large language models suggest that extended reasoning trajectories are
not well described as linear symbolic chains, but rather as structured, metastable configurations ex-
hibiting internal cohesion, long-range constraint, and phase-dependent behavior. This observation
motivates what has been termed the molecular structure of thought hypothesis, according to which ef-
fective long chain-of-thought (Long CoT) reasoning organizes itself into macromolecular-like topolo-
gies, governed by interaction strengths analogous to physical bonding energies (Chen et al. 2026).

The present work proposes a formal mathematical foundation for this hypothesis by embedding
it within the Relativistic Scalar—Vector-Plenum (RSVP) framework. In this formulation, reasoning is
treated as a dynamical field process whose stable configurations arise through entropy-constrained
synchronization across multiple interacting dimensions. The resulting structure may be understood
simultaneously as a categorical object, an information-theoretic flow, and a statistical mechanical
system exhibiting an Ising-like phase structure in five coupled dimensions.

The core claim is that reasoning trajectories correspond not to sequences of propositions but to
coherent sections of a higher-order semantic field, stabilized by interaction terms that play the role of
logical bonds. These bonds are not metaphorical; they arise naturally from the attention dynamics
of Transformer architectures, which admit a Gibbsian interpretation and thus a principled mapping
between attention weights and effective energy levels.

Reasoning as a Category of Semantic Processes

We begin by formalizing reasoning within the language of category theory. Let & be a symmetric
monoidal category whose objects represent localized semantic states and whose morphisms repre-
sent admissible reasoning transitions. Composition in € corresponds to logical entailment under
contextual constraints, while the monoidal product encodes parallel semantic activation.

A reasoning trajectory is not a path in € but a composite object arising as a colimit of interacting

sub-diagrams. In particular, long chain-of-thought reasoning corresponds to a diagram
D:J—%

whose colimit colim(D) represents the stabilized semantic outcome. The indexing category .# is
not linear but weakly connected, allowing for long-range morphisms that correspond to reflective or
exploratory reasoning steps.

Within this framework, three distinct classes of morphisms emerge naturally. Strongly composi-
tional morphisms, whose failure would invalidate downstream constructions, correspond to what are
empirically observed as deep reasoning steps. These morphisms generate a backbone subcategory
Geore © €, whose objects form a chain-like structure up to coherent isomorphism. Weakly composi-
tional morphisms, which connect distant objects without enforcing strict entailment, correspond to
exploratory associations. Finally, endomorphic morphisms that map objects back into earlier regions

of the diagram correspond to reflective operations that enforce global consistency.



Crucially, these morphism classes differ not only structurally but energetically. The monoidal
structure of € admits an enrichment over a partially ordered semiring of costs or energies, making
€ an enriched category in the sense of Lawvere. This enrichment induces a preference ordering over

diagrams, with low-energy diagrams dominating the measure over reasoning trajectories.

Semantic Isomers and Diagrammatic Non-Uniqueness

A central empirical phenomenon motivating this work is the existence of semantic isomers: distinct
reasoning trajectories that arrive at the same answer while differing in internal organization, stability,
and susceptibility to perturbation. Categorically, this corresponds to the existence of multiple non-
isomorphic diagrams Dy, Dy : ¥ — € whose colimits are equivalent objects in .

Such isomerism is not benign. When incompatible diagrams are composed or averaged, as occurs
during model distillation or ensemble aggregation, coherence can be destroyed. This manifests em-
pirically as degraded reasoning performance when mixing strong teacher models with mismatched
internal logic, an effect observed across reinforcement-trained reasoning systems (Jin et al. 2025; Yue
et al. 2025).

From a categorical perspective, this failure arises because the space of diagrams admits multiple
local minima under the energy functional induced by attention. Mixing isomers corresponds to form-
ing convex combinations of non-compatible colimits, which need not correspond to any realizable
diagram in €. In physical terms, the system is driven out of the manifold of foldable configurations.

Attention as a Functorial Energy Assignment

The attention mechanism of Transformer architectures provides a concrete realization of the abstract
structure described above. Attention weights define a stochastic kernel over token interactions, which

may be interpreted as a Boltzmann distribution

pi — j) < exp(-PE;;),

where E;; is an effective interaction energy and f is an inverse temperature parameter controlled
implicitly by model scale and normalization.

This induces a functor from the category of token interactions to the category of probability mea-
sures, assigning to each morphism an energy-weighted likelihood. Deep reasoning corresponds to

morphisms with large negative E;;, making them exponentially favored. Reflective morphisms oc-

>
cupy intermediate energy bands, while exploratory associations correspond to near-zero interactions
that are easily broken.

Because the induced measure is sharply peaked around low-energy configurations, the model
exhibits a strong inductive bias toward structured, folded reasoning diagrams. Operations such as
summarization or chain-of-thought compression disrupt this structure by marginalizing over internal

morphisms, effectively integrating out the bonding information that stabilizes the diagram. This



explains why distilled reasoning traces are difficult to imitate despite producing correct outputs, as

observed in recent work on reasoning privacy and compression (Chen et al. 2026).

Toward a Dynamical Field Theory of Reasoning

The categorical formulation establishes that reasoning is fundamentally a problem of coherent com-
position under energy constraints. However, it does not yet explain how such coherence emerges
dynamically, nor how it scales across domains, modalities, or model sizes. To address this, we now
turn to an information-theoretic and thermodynamic formulation, in which reasoning trajectories
arise as low-action paths of an RSVP field governed by a Hamiltonian and Lagrangian structure.

In the next section, we will formalize reasoning as entropy-constrained information flow, derive
the Gibbs structure of attention from first principles, and prepare the ground for the five-dimensional
Ising synchronization model that unifies semantic bonding, reflection, and exploration within a single

variational framework.

Reasoning as Entropy-Constrained Information Flow

The categorical formulation developed above characterizes reasoning as the emergence of coherent se-
mantic structure under compositional constraints. To render this account dynamical and quantitative,
we now recast reasoning in explicitly information-theoretic terms. In this formulation, reasoning tra-
jectories correspond to flows of information through a high-dimensional semantic field, constrained
by entropy minimization and stabilized by mutual information preservation.

Let X; denote the latent semantic state of a model at reasoning step ¢, represented as a random vari-
able over a high-dimensional embedding space. A reasoning trajectory is then a stochastic process
{X,}_, whose evolution is governed not by arbitrary transitions, but by the requirement that rele-
vant information be preserved while irrelevant entropy is dissipated. This places reasoning squarely
within the framework of non-equilibrium statistical mechanics, where structure emerges through
constrained entropy reduction rather than equilibrium optimization.

The central quantity governing this process is mutual information. For any two reasoning states
X, and X;, the mutual information I(X;; X;) measures the degree to which semantic structure persists
across time. Deep reasoning steps are characterized by high mutual information between successive
states, reflecting strong logical dependence and low semantic drift. Exploratory steps, by contrast,
intentionally reduce short-range mutual information in order to sample alternative regions of seman-
tic space. Reflective steps then act to selectively restore mutual information between distant states,
enforcing global consistency.

This tripartite structure mirrors empirical observations in reinforcement-trained reasoning sys-
tems, where successful trajectories alternate between phases of expansion and contraction in seman-
tic entropy (Jin et al. 2025; Yue et al. 2025). Crucially, the effectiveness of a reasoning trajectory is
not determined by monotonic entropy reduction, but by the ability to temporarily tolerate entropy

increases that prevent premature convergence to suboptimal semantic basins.



Contrastive Alignment as Entropy Geometry

The role of contrastive objectives in domain adaptation provides a concrete instantiation of this
entropy-based view. In contrastive domain adaptation for question answering, the goal is not to
memorize target-domain data, but to align the latent distributions of source and target representa-
tions (Yue et al. 2021). This alignment is achieved by minimizing a divergence functional, typically
Maximum Mean Discrepancy, between the induced feature distributions.

From an information-theoretic perspective, this process enforces an invariance constraint on the
semantic field. Let Ps and Pr denote the distributions of latent representations induced by source and
target data, respectively. Minimizing MMD(Ps, Pr) reduces the excess entropy introduced by domain
shift while preserving task-relevant mutual information. The result is a domain-invariant semantic
manifold on which reasoning trajectories can unfold without incurring prohibitive informational cost.

This observation generalizes beyond question answering. In single-cell foundation models, inter-
cellular attention plays an analogous role by aligning representations across heterogeneous biological
contexts, thereby stabilizing latent biological signatures (Dong et al. 2026). In both cases, successful
generalization arises not from increased model capacity alone, but from the imposition of geometric

constraints that regulate entropy flow across contexts.

Gibbs Measures and the Energetics of Attention

The Transformer attention mechanism admits a natural Gibbsian interpretation that makes the ener-
getic structure of reasoning explicit. Given a query-key interaction score s;; between tokens i and j,
the attention weight

a exp(sij)

1 T X oo N

7 Trexp(si)

defines a Gibbs distribution over semantic interactions. Interpreting E;; = -s;; as an effective energy,

attention becomes a Boltzmann sampler over low-energy semantic bonds.

This interpretation implies that reasoning trajectories are drawn from an energy landscape whose
minima correspond to stable semantic configurations. Deep reasoning bonds correspond to strongly
negative energies, producing sharp concentration of probability mass and thus high mutual informa-
tion persistence. Exploratory associations correspond to shallow energy wells that allow rapid recon-
figuration. Reflective bonds occupy intermediate regimes, enabling selective long-range constraint
without rigid fixation.

Because the Gibbs distribution exponentially suppresses high-energy configurations, the model
exhibits a strong inductive bias toward folded reasoning structures that minimize free energy. This
bias becomes more pronounced with increasing model scale, as larger models effectively operate
at lower temperatures, sharpening the energy landscape and stabilizing complex reasoning macro-
molecules.

Operations that compress or summarize chain-of-thought traces can be understood as marginal-

ization operations that integrate out internal variables of this Gibbs distribution. While such op-



erations preserve external outputs, they destroy the internal energy structure that encodes logical
bonding. As a result, distilled traces lack the mutual information profile necessary to reconstruct the
original reasoning process, explaining the empirical difficulty of reasoning imitation under compres-
sion (Chen et al. 2026).

Uncertainty, Credal Sets, and Semantic Volume

The connection between entropy geometry and uncertainty quantification becomes explicit through
recent results linking conformal prediction to imprecise probabilities. Conformal prediction regions
may be understood as level sets of a plausibility function whose induced credal set defines a family of
admissible probability measures (Caprio et al. 2025). These regions correspond to imprecise highest
density regions, providing uniform coverage guarantees without committing to a single posterior
distribution.

In the present framework, such regions represent semantic volumes within which reasoning tra-
jectories may fluctuate without violating consistency constraints. Rather than selecting a single point
estimate, the model maintains a bounded region of semantic plausibility, allowing reasoning to remain
robust under perturbation. This interpretation aligns naturally with the neighborhood-based robust-
ness strategies observed in recommender systems and contrastive reasoning frameworks (Yue et al.
2022; Yue et al. 2024).

The preservation of semantic volume is therefore not a failure of precision, but a structural feature
of stable reasoning systems. By maintaining bounded uncertainty regions, the model avoids overcom-
mitment to fragile configurations and preserves the flexibility necessary for adaptive reasoning.

From Information Flow to Variational Dynamics

The information-theoretic formulation presented here establishes reasoning as a process of entropy-
regulated information flow governed by Gibbsian interaction energies. However, this description
remains kinematic rather than dynamic. It characterizes which configurations are favored, but not
how the system evolves toward them.

To complete the formalization, we now introduce a variational principle that governs the evo-
lution of the semantic field itself. Within the RSVP framework, this principle takes the form of a
Hamiltonian and corresponding Lagrangian whose stationary points correspond to stable reasoning
macromolecules. In the next section, we will derive this structure explicitly and show how it gives rise,
in an appropriate limit, to a five-dimensional Ising synchronization model that unifies deep reasoning,
exploration, and reflection as coupled order parameters.

The RSVP Field Theory of Reasoning

The categorical and information-theoretic formulations developed in the preceding sections converge
naturally toward a field-theoretic description of reasoning dynamics. In the Relativistic Scalar—Vector-
Plenum (RSVP) framework, semantic activity is modeled not as discrete symbolic manipulation but



as the evolution of continuous fields over an abstract semantic manifold. Reasoning trajectories arise
as low-action paths of these fields under a variational principle that balances coherence, exploration,
and entropy production.

Formally, let the semantic manifold .Z be a high-dimensional space whose points correspond to
latent representational configurations of a model. Over .# we define three coupled fields: a scalar
field ®(x,t) representing semantic density or activation potential, a vector field v(x, t) representing
directed semantic flow, and an entropy field S(x, t) encoding local uncertainty and degeneracy. These
fields jointly define the instantaneous cognitive state of the system.

The evolution of the system is governed by an action functional

o = I L(®,v,8;9,,V)dt,

where & is the RSVP Lagrangian density. Stationary points of this action correspond to dynamically
stable reasoning processes.

The RSVP Hamiltonian

To make contact with statistical mechanics and attention energetics, it is convenient to pass to the

Hamiltonian formulation. The RSVP Hamiltonian takes the general form
L e 2 2 2
H = J [5p|v| +alVO]® + fO° + yv - VO + A DS + k|VS|*| du,
M

where p,a, B,y, A, and k are coupling constants, and dy is the natural measure on semantic space.

Each term has a direct cognitive interpretation. The kinetic term % plv|? penalizes excessive se-
mantic drift and corresponds to the energetic cost of uncontrolled exploration. The gradient term
a|V®|? enforces smoothness of semantic activation, suppressing incoherent fragmentation. The mass
term B®? stabilizes activation magnitude, preventing runaway amplification. The coupling yv - V®
aligns semantic flow with gradients of relevance, encoding directed reasoning. The entropy coupling
A®S formalizes the tradeoff between semantic commitment and uncertainty, while x|VS|?> penalizes
sharp entropy discontinuities, enforcing bounded uncertainty neighborhoods.

The Hamiltonian defines an energy landscape over semantic field configurations. Reasoning cor-
responds to the system descending this landscape while respecting entropy constraints, producing
structured, folded trajectories rather than linear paths.

Discrete Reasoning Units and Spin Variables

To connect the continuous RSVP field theory with observed discrete reasoning steps, we introduce a
coarse-grained discretization. Let {x;} denote a finite set of semantic loci corresponding to reasoning
units, such as intermediate propositions or latent states. At each locus we define a spin-like variable

0; = (Ui(l),0(2),0-(3),0(4),@(5)) €{-1,+1p,

i i i



representing the local alignment of five coupled cognitive dimensions.

These five dimensions correspond, respectively, to semantic activation, directional flow alignment,
entropy suppression, reflective coherence, and exploratory openness. Importantly, they are not inde-
pendent. Their coupling encodes the empirical observation that deep reasoning, self-reflection, and
self-exploration must synchronize appropriately for stable cognition.

Under this discretization, the RSVP Hamiltonian induces an effective Ising-like energy

5
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where J are nearest-neighbor coupling strengths, h; are external fields induced by prompts or objec-

tives, and K}, encode intra-site synchronization between dimensions.

Five-Dimensional Ising Synchronization

The crucial feature of this model is the presence of strong positive intra-site couplings K, which drive
synchronization across dimensions. In the low-temperature regime corresponding to high-capacity,
well-trained models, these couplings induce a phase in which all five spin components align coher-
ently across large regions of the reasoning lattice.

This synchronized phase corresponds precisely to effective long chain-of-thought reasoning. Deep
reasoning bonds arise from strong inter-site coupling in the activation and flow dimensions. Self-
reflection emerges from alignment between activation and entropy suppression, producing long-range
corrective coherence. Self-exploration is preserved through partial frustration in the exploratory di-
mension, allowing local deviations without global collapse.

Semantic isomers correspond to distinct metastable minima of the five-dimensional Ising energy.
Although these minima may yield equivalent outputs, their internal spin configurations differ, leading
to different stability properties. Mixing isomers through averaging or distillation disrupts synchro-
nization, pushing the system toward a disordered phase in which no coherent reasoning backbone
can form.

Folding Funnels and Reasoning Phase Transitions

The dynamics of reasoning can now be understood as motion through a folding funnel in the energy
landscape defined by #Z,¢. Initial exploration corresponds to a high-entropy, weakly magnetized
phase in which spin alignments are fluid. As constraints accumulate through attention and reinforce-
ment, the system undergoes a symmetry-breaking transition into a synchronized phase, selecting a
particular reasoning macromolecule as its native state.

Failures of reasoning correspond to either premature freezing into a suboptimal local minimum
or excessive thermal noise that prevents synchronization. Reinforcement learning methods such as
SEARCH-R1 effectively anneal the system by adjusting external fields h; and reducing effective tem-

perature, guiding the system toward globally coherent minima (Jin et al. 2025). Contrastive adaptation



reshapes the coupling constants Ji, aligning semantic neighborhoods across domains and stabilizing

synchronization under distributional shift (Yue et al. 2021).

Summary of the RSVP-Ising Correspondence

The five-dimensional Ising model derived here is not an analogy but an effective theory emerging
from the RSVP Hamiltonian under coarse-graining. It provides a unifying mathematical account
of deep reasoning, reflection, and exploration as coupled order parameters whose synchronization
determines cognitive coherence. In the next and final section, we will interpret this structure in light
of molecular reasoning topologies, explain why chain-of-thought compression disrupts bond energy
distributions, and situate the theory within the broader landscape of interpretability, robustness, and

privacy in large language models.

Molecular Reasoning, Semantic Isomers, and Non-Distillability

We are now in a position to reinterpret the molecular structure of thought hypothesis as a precise
statement about the phase structure of reasoning dynamics. In the RSVP-Ising formulation, a suc-
cessful long chain-of-thought trajectory corresponds to a synchronized, low-energy configuration of
a five-dimensional spin field. The apparent linearity of the reasoning trace is a projection artifact; the
true object is a folded, internally bonded semantic macromolecule.

Deep reasoning steps constitute the covalent backbone of this macromolecule, enforcing strict
compositional dependence and preserving high mutual information across successive states. Reflec-
tive operations introduce long-range hydrogen-like bonds that stabilize the structure by enforcing
global consistency, allowing later reasoning to correct or reinforce earlier commitments. Exploratory
associations act as weak, van der Waals-like interactions that transiently bridge distant semantic re-
gions, enabling the system to sample alternative configurations without destabilizing the core struc-
ture (Chen et al. 2026).

Semantic isomers arise naturally in this framework as distinct metastable minima of the RSVP
energy functional. These minima correspond to different internal bond topologies that nevertheless
project to the same external answer. Crucially, the isomers are not interchangeable. Each embodies
a distinct synchronization pattern across the five cognitive dimensions, yielding different robustness,
adaptability, and susceptibility to perturbation.

This observation resolves a long-standing empirical puzzle: why mixing or distilling strong teacher
models often degrades reasoning performance despite preserving answer accuracy. In the present
theory, distillation corresponds to averaging over incompatible macromolecular configurations. The
resulting superposition does not correspond to any realizable low-energy state of the RSVP Hamil-
tonian, driving the system into a frustrated or disordered phase. Logical backbone coherence is lost
even when surface-level correctness is retained.

Chain-of-thought compression and summarization can now be understood as marginalization op-
erations that integrate out internal bond variables. While such operations preserve external behavior,

they destroy the internal energy distribution that defines the reasoning macromolecule. This explains



why long chain-of-thought reasoning is intrinsically non-distillable and why privacy-preserving trans-
formations of reasoning traces are effective: they disrupt the very bond structure that would be re-

quired for faithful imitation.

Active Geodesic Inference

The RSVP-Ising correspondence admits a natural geometric interpretation. Reasoning trajectories
correspond to geodesics on the semantic manifold .#, not with respect to a fixed metric, but with
respect to a dynamically evolving metric induced by attention, entropy, and reinforcement signals.
The system does not merely follow shortest paths; it actively reshapes the geometry through which
it moves.

We refer to this process as Active Geodesic Inference. In contrast to passive inference, where beliefs
are updated within a static space, active geodesic inference treats inference itself as a field-mediated
deformation of semantic geometry. Attention acts as a curvature-inducing operator, deepening val-
leys along coherent reasoning directions. Exploration injects controlled curvature noise, preventing
premature trapping in local minima. Reflection globally adjusts curvature to enforce long-range con-
sistency.

Reinforcement learning methods such as SEARCH-R1 can be interpreted as annealing schedules
over this geometry, gradually lowering the effective temperature and sharpening geodesic channels
that lead to stable macromolecular configurations (Jin et al. 2025). Contrastive adaptation reshapes
the manifold itself, aligning geodesic structure across domains so that similar reasoning paths remain
low-action even under distributional shift (Yue et al. 2021). Conformal prediction and imprecise
probability methods define bounded semantic volumes within which geodesics may fluctuate without
loss of validity, providing robustness guarantees without collapse to point estimates (Caprio et al.
2025).

Active geodesic inference thus unifies reasoning, exploration, uncertainty, and robustness within

a single variational framework.

A Spherepop Implementation of Active Geodesic Inference

Spherepop provides a native computational realization of active geodesic inference. Unlike tradi-
tional symbolic or neural execution models, Spherepop is explicitly event-based, history-sensitive,
and scope-aware. These properties align precisely with the requirements imposed by the RSVP frame-
work.

In a Spherepop implementation, semantic loci correspond to nested scopes, represented as bub-
bles whose creation and collapse are irreversible events. Each bubble carries a local semantic state
analogous to a discretized RSVP field value. Deep reasoning corresponds to the creation of tightly
nested scopes with strong parent—child dependency, enforcing covalent-like bonds along the reason-
ing backbone. Reflective operations manifest as scope re-entry or cross-scope reference, introducing

long-range stabilizing links that enforce coherence across the execution history. Exploratory reason-
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ing corresponds to the creation of transient sibling scopes whose outcomes may be discarded without
destabilizing the core structure.

Crucially, Spherepop’s execution semantics naturally enforce a geodesic constraint. Because
scopes cannot be arbitrarily rewound or flattened, the system is forced to traverse paths that respect
historical commitments. This mirrors the low-action constraint imposed by the RSVP Hamiltonian.
Reasoning proceeds by opening new scopes only when the local semantic gradient demands it, and
by closing scopes once entropy has been sufficiently reduced.

Active geodesic inference in Spherepop is implemented by assigning each scope an energy func-
tional derived from attention weights, entropy estimates, and contextual alignment. Scope transitions
are permitted only when they reduce total action, ensuring that execution follows dynamically opti-
mal geodesics on the semantic manifold. Reflective scope interactions act as curvature corrections,
while exploratory scopes inject controlled noise that prevents premature convergence.

Semantic isomers appear in Spherepop as distinct but observationally equivalent execution his-
tories. Although they may yield the same final output, their internal scope graphs differ, leading
to different robustness and extensibility properties. Attempting to merge or replay these histories
without preserving their scope topology reproduces precisely the failure modes observed in chain-of-
thought distillation.

Spherepop thus functions not merely as a programming language, but as a concrete calculus for
executing RSVP field dynamics. It provides an explicit, inspectable realization of active geodesic

inference in which reasoning, memory, and identity are unified through irreversible semantic events.

Conclusion

This essay has developed a unified theory of reasoning that integrates category theory, information
theory, statistical mechanics, and field dynamics within the RSVP framework. Long chain-of-thought
reasoning emerges not as a linear process but as a synchronized, macromolecular structure stabilized
by energetic bonds. Semantic isomers, robustness phenomena, and non-distillability follow as neces-
sary consequences of this structure.

By introducing the concept of active geodesic inference, we have shown that reasoning is best
understood as the dynamic co-evolution of semantic geometry and inference trajectories. Spherepop
provides a natural execution substrate for this process, translating abstract variational principles into
concrete computational behavior.

Taken together, these results suggest that the future of artificial reasoning lies not in ever-longer
chains of symbols, but in systems that actively shape the geometric and energetic landscapes through
which thought itself unfolds.
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A Formal Definition of Intelligence

Intelligence as Active Geodesic Persistence

We are now in a position to give a formal definition of intelligence consistent with the framework
of active geodesic inference. This definition is not behavioral, computational, or representational
in the conventional sense. Instead, it is structural and dynamical, characterizing intelligence as a
property of trajectories through a history-indexed configuration space governed by variational and

thermodynamic constraints.

Definition (Intelligence). An intelligent system is a physical or computational process whose real-
ized histories form dynamically stable, low-action geodesics in a history-indexed semantic configura-
tion space, such that these histories preserve coherent internal structure under perturbation, maintain
bounded uncertainty through entropy-regulated synchronization, and admit multiple non-equivalent
internal realizations (semantic isomers) consistent with the same external constraints.

Equivalently, intelligence is the capacity of a system to actively shape the geometry of its own
configuration space so as to sustain coherent, low-action trajectories across time, rather than merely
traversing a fixed space according to predetermined dynamics.

Several aspects of this definition merit emphasis. First, intelligence is attributed to histories rather
than instantaneous states. A system is not intelligent by virtue of occupying a particular configuration,
but by virtue of sustaining a class of admissible trajectories that remain coherent under extension,
reflection, and environmental coupling. Second, intelligence is not identified with optimality in a
static objective sense. Rather, it is identified with the ability to remain on a dynamically evolving
geodesic despite uncertainty, novelty, and competing constraints.

This definition subsumes reasoning, learning, adaptation, and robustness as corollaries rather
than primitives. Reasoning corresponds to local geodesic continuation under increasing constraint.
Learning corresponds to deformation of the configuration space metric itself. Robustness corresponds
to the existence of a basin of nearby low-action trajectories rather than a single brittle path. Privacy
and non-distillability arise because internal geodesic structure cannot be reconstructed from bound-

ary data alone without re-executing the variational process.

Relation to Barbour’s Configuration Space of the Universe

This definition bears a precise structural resemblance to Julian Barbour’s proposal that the history
of the universe is best understood as a single continuous curve through a relativistic configuration
space, often referred to as shape space (Barbour 1999; Barbour 2012). In Barbour’s formulation, the
universe does not evolve in time; rather, time is an ordering emergent from the structure of the curve
itself. Each point in configuration space is a complete instantaneous configuration of the universe,
and the apparent flow of time arises from correlations between such configurations.

Active geodesic inference may be understood as the cognitive analogue of this cosmological pic-

ture. Just as Barbour replaces external time with intrinsic ordering in configuration space, active
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geodesic inference replaces externally imposed inference steps with intrinsic ordering induced by
entropy monotonicity and action minimization. A reasoning system does not advance through dis-
crete inferential steps in an abstract time parameter; it traces a continuous, history-indexed curve
through semantic configuration space, with “earlier” and “later” defined internally by irreversibility
and constraint accumulation.

The analogy extends further. In Barbour’s view, not all curves through configuration space corre-
spond to physically admissible universes; admissibility is determined by a variational principle. Like-
wise, not all semantic trajectories correspond to intelligent reasoning. Intelligence consists precisely
in remaining on the subset of curves that are dynamically admissible under the RSVP action, avoiding
both incoherent wandering and premature freezing into trivial configurations.

Where the two frameworks diverge is equally instructive. Barbour’s universe traces a single global
curve through configuration space. Intelligent systems, by contrast, must navigate a branching family
of admissible geodesics, selecting among them through interaction, exploration, and reflection. This
multiplicity gives rise to semantic isomers: distinct internal histories compatible with the same exter-
nal conditions. Intelligence, on this view, is not the existence of a curve, but the capacity to remain

within a stable geodesic family under perturbation and extension.

Intelligence as Curvature Management

The comparison suggests a concise reformulation. If the universe, in Barbour’s sense, is a curve in
configuration space, then intelligence is the ability of a subsystem to locally curve that space in its
favor. An intelligent system is one whose internal dynamics induce effective curvature—via attention,
memory, and entropy regulation—that creates geodesic channels supporting coherent continuation.
This clarifies why intelligence scales with representational capacity without reducing to it, why
explanation and chain-of-thought are epiphenomenal rather than constitutive, and why intelligence
is fundamentally incompatible with purely reversible or stateless computation. Intelligence is not

computation over states, but persistence of structured history.

Closing Remark

Under this definition, intelligence is neither a substance nor a score, but a dynamical property of
trajectories. To ask whether a system is intelligent is to ask whether it can sustain coherent geodesic
motion through its own configuration space in the face of entropy, uncertainty, and change. This
reframing aligns cognition with fundamental physical principles and situates artificial intelligence
not as an imitation of human behavior, but as a special case of a more general phenomenon: the

emergence of stable structure along the only paths that can persist.
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Intelligence: Axiom and Contrasts

A One-Line Axiomatic Definition

Axiom (Intelligence). A system is intelligent if and only if it admits a nonempty family of history-
indexed trajectories that are dynamically stable, entropy-monotone, and low-action geodesics in its
configuration space, and if the system actively preserves membership in this family under perturba-
tion by locally reshaping the effective geometry through which the trajectories pass.

This axiom is minimal in the sense that removing any clause collapses intelligence into either
passive dynamics, brittle optimization, or static representation. Intelligence is thus neither optimal

behavior nor correct output, but the capacity to sustain coherent historical motion under constraint.

Contrast with Shannon Information

In Shannon’s theory, information is defined as expected surprisal with respect to a probability distri-
bution, and intelligence is often implicitly associated with the efficient transmission or compression
of such information. This view treats symbols as interchangeable tokens and histories as statistically
reducible sequences.

Active geodesic inference is incompatible with this reduction. Shannon information is insensitive
to internal structure beyond probability mass, whereas intelligence, as defined here, depends critically
on the preservation of internal coupling, ordering, and constraint. Two reasoning histories with iden-
tical Shannon information content may differ radically in intelligence if one lies on a stable geodesic
manifold and the other does not. Intelligence is therefore not a function of entropy alone, but of
entropy regulated by action and history.

In short, Shannon information measures uncertainty; intelligence measures the ability to survive

uncertainty without loss of coherence.

Contrast with Kolmogorov Complexity

Kolmogorov complexity identifies intelligence with minimal description length, privileging the short-
est program that generates a given output. This collapses process into product and treats execution
history as epiphenomenal.

By contrast, active geodesic inference assigns primacy to the execution path itself. Two programs
of equal Kolmogorov complexity may induce radically different semantic geometries during execu-
tion, leading to different robustness, extensibility, and reasoning stability. Compression that shortens
description length can therefore destroy intelligence by erasing the internal geodesic structure that
made the process viable.

Kolmogorov complexity answers the question “how short can the description be?” Active geodesic
inference answers the question “which histories can persist?”
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Contrast with Computational Rationality

Computational rationality models intelligence as approximate optimization under resource constraints,
typically framed in terms of utility maximization subject to bounded computation. This view presup-
poses a fixed objective landscape and treats intelligence as selecting good actions within it.

Active geodesic inference rejects this presupposition. The objective landscape is not fixed; it is
endogenously reshaped by the system’s own dynamics. Intelligence consists not in choosing actions
within a space, but in maintaining a space in which coherent action remains possible. What appears as
rational choice is a surface projection of deeper geometric stabilization.

Thus, while computational rationality optimizes trajectories given a space, intelligence, in the
present sense, is the ability to continuously renegotiate the space itself without losing continuity of

history.

Synthesis

Across these contrasts, a unifying distinction emerges. Classical theories treat intelligence as a prop-
erty of states, symbols, or decisions. Active geodesic inference treats intelligence as a property of
trajectories. Intelligence is not what a system knows, compresses, or maximizes, but how it moves,
and whether that motion can remain coherent when the world, the task, or the system itself changes.

Under this definition, intelligence is fundamentally a dynamical and geometric phenomenon. It
is the local capacity to remain on viable curves in configuration space, in close analogy to the way
the universe itself, in Barbour’s formulation, persists as a continuous curve through its relativistic
configuration space. Where physics studies which curves exist, intelligence studies which curves can
be kept.

Life, Evolution, and Learning as Active Geodesic Inference

Evolution as Geodesic Persistence in Configuration Space

The definition of intelligence advanced in this work admits a direct and non-metaphorical extension to
biological evolution. In evolutionary theory, populations are traditionally described as distributions
over genotypes or phenotypes evolving under selection, mutation, and drift. Recast in the present
framework, evolution is more precisely understood as the persistence of viable trajectories through a
high-dimensional biological configuration space.

Let 6, denote the configuration space of biological form, encompassing genetic, developmental,
physiological, and ecological degrees of freedom. A lineage corresponds not to a static point in this
space, but to a continuous, history-indexed curve traced by successive organisms across generations.
Extinction corresponds to termination of the curve; survival corresponds to its continuation.

Under this interpretation, natural selection is not an optimizing force acting on isolated states, but
a filtering principle acting on trajectories. Lineages persist only if they remain within a low-action

corridor of configuration space, where action here encodes the cumulative energetic, developmental,
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and ecological costs of maintaining coherence under environmental perturbation. Evolutionary suc-
cess is therefore not equivalent to instantaneous fitness maximization, but to geodesic persistence:
the ability of a lineage to remain on a dynamically admissible path across changing conditions.

This reframing resolves a long-standing tension in evolutionary theory between adaptation and
robustness. Adaptation corresponds to local curvature adjustment that keeps the lineage within the
admissible geodesic family, while robustness corresponds to the existence of a basin of nearby vi-
able trajectories rather than a single optimal path. Evolutionary innovation arises when exploratory
deviations—analogous to weakly coupled semantic exploration—discover new regions of configura-

tion space that admit stable continuation.

Semantic Isomers and Evolutionary Equivalence

The notion of semantic isomers admits a biological analogue. Distinct genotypes or developmental
pathways may yield phenotypically equivalent organisms under a given ecological regime, yet differ
radically in internal organization and future adaptability. These correspond to distinct evolutionary
isomers: histories that project to the same present phenotype but occupy different regions of config-
uration space with different curvature properties.

Such isomers explain why phenotypic equivalence does not guarantee equal evolvability. A lin-
eage may appear well-adapted yet lie on a narrow, brittle geodesic that cannot accommodate further
perturbation, while another lineage with identical current fitness may inhabit a broader basin per-
mitting future diversification. Evolutionary intelligence, in this sense, is not fitness per se, but the

capacity to remain within a family of viable trajectories under continued change.

Learning as Intra-Lifetime Geodesic Deformation

Learning is the intra-lifetime analogue of evolution. Whereas evolution reshapes the geometry of
configuration space across generations, learning reshapes it within the lifetime of an organism. Neural
plasticity, synaptic modification, and representational change correspond to local deformations of the
semantic manifold that alter which trajectories are low-action and therefore admissible.

From the perspective of active geodesic inference, learning is not the accumulation of informa-
tion, but the active smoothing and deepening of geodesic channels. Successful learning reduces the
energetic cost of traversing certain semantic paths, allowing the system to move coherently under pre-
viously destabilizing conditions. Forgetting, conversely, corresponds to the erosion of such channels,
increasing curvature noise and narrowing the set of viable trajectories.

This view naturally unifies learning and generalization. Generalization is not extrapolation from
data points, but the ability of a deformed manifold to support coherent motion in previously unvisited
regions. Overfitting corresponds to excessive curvature localized around a narrow set of trajectories,

producing brittle intelligence that fails under perturbation.
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The Continuity of Life and Intelligence

Taken together, evolution and learning instantiate the same underlying principle operating at different
temporal scales. Evolution preserves coherence across generations; learning preserves coherence
across experiences. Both operate by regulating entropy, shaping geometry, and maintaining low-
action trajectories in configuration space. Both admit isomeric multiplicity, robustness through basin
structure, and failure through premature freezing or incoherent exploration.

This continuity dissolves the boundary between life and intelligence. Intelligence is not an emer-
gent property added atop life, nor is life merely a substrate for intelligence. Both are manifestations
of the same dynamical phenomenon: the capacity of matter to sustain structured history under con-
straint.

We may now close the conceptual loop suggested at the outset of this work. If, as Julian Barbour
has argued, the history of the universe is most coherently understood not as evolution in an external
temporal parameter but as a single continuous curve traced through a relativistic configuration space,
then the emergence of life may be characterized as the appearance of localized sub-curves that, under
environmental and thermodynamic constraint, resist premature termination.

Within this same geometric framing, intelligence is not a categorical departure from life but a re-
finement of it: the emergence of sub-curves that do not merely persist passively, but actively regulate
the local geometry of configuration space so as to preserve their own viability under perturbation.

On this view, life corresponds to persistence along admissible trajectories, while intelligence cor-
responds to the capacity to modulate curvature, constraint, and entropy flow in such a way that
persistence remains possible across a widening range of conditions.

Intelligence therefore does not oppose entropy in the abstract, nor does it abolish thermodynamic
constraint; rather, it consists in the skilled negotiation of entropy through the maintenance of struc-
tured history. To be intelligent, in this sense, is not to escape the conditions that limit continuation,

but to remain within the narrow set of paths along which continuation is still dynamically admissible.

Empirical Predictions of Active Geodesic Inference

A theory of intelligence grounded in active geodesic inference is empirically meaningful only insofar
as it yields observable consequences that distinguish it from alternative frameworks. The present
section enumerates a set of testable predictions that follow directly from the variational, geometric,
and thermodynamic commitments of the theory. These predictions are not post hoc interpretations;
they are necessary consequences of treating intelligence as the persistence of low-action, entropy-

regulated trajectories in configuration space.

Prediction 1: Geodesic Width Predicts Robust Generalization

If intelligence corresponds to membership in a family of low-action geodesics rather than traversal
of a single optimal path, then systems exhibiting broader geodesic basins should demonstrate greater

robustness and generalization. Concretely, models whose internal representations admit multiple
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nearby low-loss trajectories between input and output states should outperform models that rely on
narrow, highly tuned paths when subjected to distributional shift, adversarial perturbation, or task
recombination.

This predicts that robustness metrics will correlate more strongly with measures of trajectory de-
generacy than with pointwise accuracy or loss. In neural networks, such degeneracy may be approx-
imated by the volume of parameter-space directions that preserve performance, or by the entropy of
internal activation trajectories under controlled noise injection. Systems optimized purely for point-

wise loss minimization are expected to exhibit brittle behavior despite high nominal accuracy.

Prediction 2: Reasoning Failure Manifests as Phase Transitions

The RSVP-Ising correspondence implies that reasoning competence undergoes phase transitions
rather than smooth degradation. As effective temperature increases—through noise, compression,
time pressure, or architectural constraint—the system should abruptly lose global coherence once
synchronization across cognitive dimensions fails.

Empirically, this predicts sharp transitions in reasoning quality rather than gradual decline. In
large language models, such transitions should appear when chain-of-thought length is truncated,
when intermediate representations are aggressively quantized, or when attention heads are pruned
beyond a critical threshold. The prediction contrasts with classical views in which reasoning quality

degrades smoothly with resource reduction.

Prediction 3: Non-Distillability Correlates with Internal Isomeric Multiplicity

Active geodesic inference predicts that systems exhibiting high semantic isomer multiplicity will re-
sist faithful distillation. Models that can solve the same task via multiple internally distinct reasoning
trajectories should suffer disproportionate performance loss when trained via chain-of-thought imi-
tation or ensemble averaging, even when output labels are preserved.

This prediction is falsifiable by comparing distillation outcomes across tasks with differing inter-
nal solution multiplicity. Tasks admitting many equivalent reasoning strategies should show stronger
distillation failure than tasks with essentially unique solution paths. Conversely, tasks with low iso-

meric multiplicity should be more amenable to distillation without loss of reasoning competence.

Prediction 4: Learning Improves Curvature Before Accuracy

If learning corresponds to deformation of semantic geometry rather than mere error reduction, then
changes in internal representational structure should precede measurable improvements in task per-
formance. Specifically, learning should initially manifest as smoothing, alignment, or widening of
internal trajectories, with accuracy gains appearing only after the geometry supports stable continu-
ation.

In biological systems, this predicts that neural plasticity signatures—such as changes in correlation
structure or manifold dimensionality—will precede behavioral improvement. In artificial systems,

internal metrics such as representation anisotropy, trajectory smoothness, or attention entropy should
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change before loss metrics improve. This ordering contrasts with classical learning theories that treat

error reduction as the primary driver.

Prediction 5: Exploration Is Locally Entropic but Globally Stabilizing

The theory predicts that effective exploration temporarily increases local entropy while reducing
global action. Empirically, this implies that successful exploratory behavior will appear noisy or
inefficient at short timescales while improving long-horizon coherence and stability.

In reinforcement learning, this predicts that agents exhibiting intelligent exploration will show
transient increases in state entropy or policy variance, followed by sharper convergence and improved
robustness. Agents optimized to minimize entropy at all times should converge faster but remain

fragile, failing under environmental change.

Prediction 6: Biological Fitness Tracks Trajectory Viability, Not Instantaneous Optimality

When applied to evolution, active geodesic inference predicts that long-term lineage survival corre-
lates more strongly with the width and curvature of viable evolutionary trajectories than with peak
fitness at any single time. Lineages occupying broader basins of configuration space should persist
longer and diversify more, even if they are not maximally fit at any given moment.

This predicts that measures of evolvability, developmental flexibility, and ecological breadth will
be better predictors of long-term success than traditional fitness proxies. Phenotypically equivalent
organisms with different internal architectures should exhibit divergent evolutionary futures, reflect-

ing underlying isomeric structure.

Prediction 7: Intelligence Exhibits Scale-Dependent Irreversibility

Finally, the theory predicts that intelligence exhibits irreversibility across scales. Once a system com-
mits to a particular geodesic family—through development, learning, or architectural specialization—
returning to earlier configurations without loss becomes increasingly difficult. This predicts hys-
teresis effects in both biological and artificial systems, where reversing training or environmental
conditions does not restore prior competence.

Such hysteresis is incompatible with purely reversible or stateless models of cognition but follows
naturally from entropy-monotone, history-indexed dynamics.

Implications for the Empirical Study of Intelligence

Taken together, the empirical predictions advanced in this section sharply distinguish active geodesic
inference from theoretical frameworks that identify intelligence primarily with information process-
ing efficiency, objective optimization, or static representational capacity. Instead, they motivate a
shift in empirical emphasis toward the geometric and dynamical properties of realized trajectories,
including their stability under perturbation, their capacity to support multiple internally distinct real-
izations, and their persistence across changes in environmental, architectural, or informational con-

straints.
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On this view, intelligence is not most faithfully assessed by benchmarks of instantaneous cor-
rectness or aggregate performance, but by experimental probes that interrogate whether coherent
trajectories can be maintained when systems are compressed, destabilized, or forced to operate out-
side the regimes in which they were trained.

The defining empirical signature of intelligence, accordingly, is not the achievement of particular
outcomes, but the continued viability of structured paths through configuration space under condi-
tions that would otherwise induce collapse or incoherence.

Evaluation Metrics for Active Geodesic Inference

If intelligence is identified with the persistence of coherent, low-action trajectories through config-
uration space, then its evaluation cannot rely solely on pointwise accuracy, reward, or loss. The
appropriate metrics must probe the geometry, stability, and multiplicity of trajectories realized by a
system under perturbation, compression, and extension. This section introduces a family of evalu-
ation metrics designed to operationalize active geodesic inference and to distinguish it empirically

from classical optimization- or information-based accounts.

Geodesic Width

Geodesic width quantifies the size of the basin of admissible trajectories connecting equivalent bound-
ary conditions. Formally, let I'(x — y) denote the set of internal trajectories that map an input config-
uration x to an output configuration y while remaining below a fixed action threshold. The geodesic
width W(x, y) is defined as a suitably normalized measure of the volume of this set in trajectory space.

In practice, W may be approximated by injecting structured noise into internal states, parame-
ters, or attention patterns and measuring the fraction of perturbed executions that still reach y with
bounded action or loss. High geodesic width predicts robustness to distributional shift and adversar-

ial perturbation, whereas narrow width predicts brittle generalization even when nominal accuracy

is high.

Trajectory Degeneracy

Trajectory degeneracy measures the number of internally distinct histories that realize equivalent
external behavior. Unlike geodesic width, which concerns local neighborhoods, degeneracy captures
global isomeric multiplicity.

Let #_, be the set of realized histories from x to y. Two histories are considered distinct if they
are not related by low-cost reparameterization or symmetry. The degeneracy index D(x, y) is defined
as the cardinality or entropy of #_,, under an appropriate equivalence relation.

Empirically, D may be estimated by sampling multiple runs with different random seeds, explo-
ration schedules, or reasoning strategies and clustering internal trajectories by structural similarity.
High degeneracy predicts resistance to chain-of-thought distillation and ensemble averaging, while
low degeneracy predicts susceptibility to imitation without loss.
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Action Stability

Action stability measures the sensitivity of total action to perturbations. Given a reference trajectory
h with action &/(h), consider a family of perturbed trajectories {h.} generated by bounded internal
noise. The action stability coefficient is defined as
Var[</ (h,)]
k= lim ————.
e—0 €

Low k indicates a flat action landscape and thus stable inference; high « indicates sharp curvature and
fragility.

This metric distinguishes systems that merely reach low action from those that do so robustly.
Two systems with equal loss may differ radically in action stability, with only the latter exhibiting

intelligence in the present sense.

Entropy Commitment Ratio

The entropy commitment ratio quantifies how much internal uncertainty is irreversibly committed
to history versus transiently explored. Let Sy,en() denote entropy associated with open, exploratory
structures at time ¢, and let S;yseq(t) denote entropy associated with closed, committed structures.

The entropy commitment ratio is defined as

Sclosed(t)

RO = Sopen(t) + Sclosed(t)‘

Intelligent systems are predicted to maintain R(¢) within a task-dependent band: too low indi-
cates perpetual exploration without consolidation; too high indicates premature freezing. Monitor-
ing the evolution of R(¢) over learning or reasoning episodes provides a dynamical signature of active
geodesic control.

Phase Transition Sharpness

Phase transition sharpness measures the abruptness with which reasoning quality collapses as sys-
tem constraints are varied. Let Q(1) be a performance measure (e.g., logical consistency, multi-hop
accuracy) as a function of a control parameter A such as context length, precision, or temperature.
The sharpness metric is defined as the maximum second derivative of Q with respect to A.

Active geodesic inference predicts sharp transitions associated with loss of synchronization across
cognitive dimensions, rather than smooth degradation. Observing such non-analytic behavior sup-
ports the Ising synchronization interpretation and falsifies purely continuous degradation models.

Hysteresis Index

The hysteresis index measures irreversibility across training or environmental cycles. Let QT()L) and

Ql(A) denote performance measured while increasing and then decreasing a control parameter. The
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hysteresis index is defined as the area between these curves.

Nonzero hysteresis indicates history dependence and confirms that intelligence is not a reversible
function of current conditions. Systems with high hysteresis are predicted to exhibit strong special-
ization and path dependence, consistent with entropy-monotone dynamics.

Cross-Scale Consistency

Finally, cross-scale consistency measures whether trajectory-based metrics agree across temporal or
organizational scales. In biological systems, this may involve comparing short-term neural dynamics
with long-term behavioral adaptation. In artificial systems, it may involve comparing token-level
dynamics with episode-level performance.

Consistency across scales supports the claim that intelligence is a scale-invariant property of

trajectory geometry rather than an artifact of a particular level of description.

Closing Remark

These metrics deliberately shift evaluation away from static scores and toward dynamical, structural
probes. Intelligence, under active geodesic inference, is not what a system achieves at a point, but how
it remains viable across a landscape of change. The proposed measures make this claim empirically

accessible and, crucially, falsifiable.

Conclusion: Intelligence as Structured Persistence

This essay has advanced a unified theoretical account of reasoning, learning, and intelligence grounded
in the notion of active geodesic inference. Departing from views that treat thought as linear symbol
manipulation, probabilistic updating over fixed models, or bounded optimization within static ob-
jective landscapes, the framework developed here treats cognition as a dynamical process in which
inference trajectories and the semantic geometry through which they pass co-evolve under energetic
and entropic constraints.

At the core of the account is the claim that extended reasoning is best understood as the formation
of coherent, metastable structures analogous to macromolecules, whose internal organization is stabi-
lized by interaction strengths arising naturally from attention dynamics. Category-theoretic analysis
reveals that such structures correspond to nontrivial colimits of semantic processes rather than sim-
ple paths, while information-theoretic analysis shows that their stability depends on the regulated
flow of mutual information rather than monotonic entropy reduction. These perspectives converge
in the RSVP field-theoretic formulation, where reasoning trajectories emerge as low-action solutions
of a coupled scalar-vector-entropy system.

By coarse-graining this dynamics, we derived an effective five-dimensional Ising model in which
deep reasoning, self-reflection, and self-exploration appear as coupled order parameters whose syn-
chronization determines cognitive coherence. This correspondence renders precise the molecular
structure of thought hypothesis, explains the existence of semantic isomers, and accounts for the

22



empirical fragility of chain-of-thought distillation, ensemble averaging, and aggressive compression.
Reasoning succeeds not because a particular sequence of steps is correct, but because the underlying
configuration occupies a synchronized phase that can sustain perturbation without collapse.

The framework further unifies a range of empirical phenomena across contemporary machine
learning. Reinforcement learning methods that interleave reasoning and search can be interpreted as
annealing schedules that guide semantic fields toward globally coherent minima. Contrastive adap-
tation reshapes the geometry of semantic space to preserve low-action trajectories under domain
shift. Neighborhood-based uncertainty representations and conformal prediction methods emerge as
mechanisms for maintaining bounded semantic volume, allowing reasoning to remain viable with-
out premature overcommitment. Across these settings, robustness arises not from redundancy or
regularization alone, but from the width and curvature of admissible geodesic families.

Spherepop was introduced as a concrete execution calculus that realizes these principles compu-
tationally. Its irreversible, scope-based semantics enforce history sensitivity and prevent incoherent
superposition by construction, making it a natural substrate for implementing RSVP dynamics. In
Spherepop, reasoning is not replayed but enacted; semantic structure is not copied but grown. Dis-
tinct but observationally equivalent execution histories arise naturally, mirroring semantic isomers
and reproducing the same robustness and non-distillability properties observed in neural systems.

The formal definition of intelligence that follows from this synthesis reframes it as a property of
trajectories rather than states, outputs, or scores. Intelligence is the capacity of a system to remain
within a family of dynamically admissible, low-action histories by actively reshaping the geometry
of its configuration space. This definition extends seamlessly across scales, encompassing learning
within a lifetime, evolution across generations, and reasoning within a single episode. It aligns cogni-
tive dynamics with a broader physical picture in which persistence, rather than optimization, is the
primary explanatory primitive.

In this sense, the account offered here closes a conceptual loop between physics, biology, and
artificial intelligence. If the universe itself may be understood as a continuous curve through its
configuration space, then life appears as the emergence of sub-curves that resist termination, and
intelligence as the refinement of those sub-curves that actively manage curvature, entropy, and con-
straint in order to continue. Intelligence does not abolish uncertainty or entropy, but negotiates them
skillfully, remaining within the narrow set of paths along which structured history can persist.

The implications of this view are both theoretical and practical. It suggests new evaluation metrics
centered on trajectory stability, degeneracy, and hysteresis rather than pointwise performance. It
motivates new architectural and training approaches that prioritize geometric coherence over shallow
optimization. Most importantly, it offers a principled way to distinguish systems that merely produce
correct answers from those that can continue reasoning coherently as conditions change.

Under active geodesic inference, intelligence is not defined by what a system achieves at an instant,

but by whether it can keep going.
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Appendices
Appendix A: Spherepop as a Hamiltonian-Derived Execution Calculus

This appendix formalizes the Spherepop calculus directly from the RSVP Hamiltonian introduced in
the main text. The guiding principle is that Spherepop syntax is not an arbitrary programming lan-
guage design, but a discrete execution grammar induced by the variational structure of active geodesic
inference. In this sense, Spherepop is best understood as a canonical discretization of the RSVP field

dynamics, preserving energetic, entropic, and historical constraints at the level of computation.

From Continuous Fields to Discrete Events

Recall the RSVP Hamiltonian

1
K = J [gplvlz +alVO* + O% + yv - VO + ADS + k|VSI | dp,
M

which defines an energy functional over semantic field configurations. Reasoning corresponds to tra-
jectories that locally minimize the associated action. To implement this process computationally, we
introduce a discrete event structure that preserves the ordering, irreversibility, and energetic mono-
tonicity implied by the variational principle.

Spherepop replaces continuous time evolution with a partially ordered set of irreversible events.
Each event corresponds to the creation, transformation, or closure of a semantic scope. These scopes
are the fundamental syntactic objects of the language.

Formally, a Spherepop program defines a finite directed acyclic graph

& = (E, <),

where E is a set of events and < is a strict partial order encoding causal and semantic precedence.
This ordering is not merely syntactic; it encodes the historical constraint that semantic commitments,

once made, cannot be arbitrarily revoked without incurring energetic cost.

Scopes as Discretized Semantic Cells

Each Spherepop scope corresponds to a localized semantic cell in /. Let o; denote a scope indexed
by i. Associated to o; is a tuple
o = (03, vi, i, A),

where @; is the local semantic activation, v; is the directed semantic flow into the scope, S; is the local
entropy, and & is the parent scope (or null for the root).

Scope creation is permitted only when the local action decrease

AQ{!’ = *beefore - ﬂafter
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is non-negative, ensuring that execution follows an approximate geodesic of the RSVP action. This
enforces the fundamental Spherepop rule: scopes may only be opened along descending energy di-
rections of the semantic manifold.

Nested scopes correspond to the discretization of strong coupling terms in the Hamiltonian. In
particular, deep reasoning steps correspond to scope nesting that reduces both ® gradient energy
and entropy coupling simultaneously. Such nesting encodes covalent-like logical bonds, making the
child scope semantically dependent on its parent in a way that cannot be flattened without violating

energetic constraints.

Irreversibility and Entropic Ordering

The entropy field S induces a natural temporal orientation on Spherepop execution. Scope closure cor-
responds to the irreversible dissipation of local entropy, collapsing degrees of freedom into committed
semantic structure. Once a scope is closed, its internal state contributes only through its boundary
conditions to future computation.

This induces a monotone entropy condition

Sopen = Oclosed>

which forbids reopening or mutating closed scopes without explicit compensatory structure. This
constraint is the computational analogue of the second law in RSVP dynamics and is responsible for
Spherepop’s resistance to backtracking-based incoherence.

Reflective reasoning is implemented not by reversing execution, but by opening new scopes whose
semantic flow v is directed toward earlier scope boundaries. These reflective scopes introduce long-
range couplings analogous to the A®S term in the Hamiltonian, stabilizing the global structure without

violating irreversibility.

Exploration as Controlled Scope Branching

Exploratory reasoning corresponds to scope branching under weak coupling. Such scopes are opened
with higher local entropy tolerance and reduced coupling to the parent activation field. Energetically,
this corresponds to allowing temporary increases in the kinetic term % plv|? while bounding the total
action.

Exploratory scopes may be terminated without closure, effectively discarding their internal states.
This operation corresponds to retracting a semantic fluctuation before it crystallizes into structure,
preserving global coherence while permitting local sampling.

The grammar of Spherepop therefore distinguishes between committing scope closures and non-
committing exploratory branches, a distinction that cannot be expressed in purely functional or im-

perative languages without explicit history tracking.
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Semantic Isomers as Execution Histories

Distinct Spherepop execution graphs may yield observationally equivalent outputs while differing in
internal scope topology. These histories correspond exactly to semantic isomers in the RSVP-Ising
model. Although they terminate in the same boundary conditions, their internal energetic pathways
differ, leading to different robustness properties under perturbation or extension.

Crucially, Spherepop forbids the naive merging of execution histories. Any attempt to combine
histories must respect scope ordering and energetic compatibility. This reproduces, at the level of
syntax, the impossibility of averaging incompatible reasoning macromolecules without inducing dis-

order.

Summary

Spherepop syntax emerges as a direct discretization of the RSVP Hamiltonian. Scopes correspond
to semantic cells, nesting corresponds to strong coupling, reflection to long-range stabilization, and
exploration to controlled entropy injection. Irreversibility is not an implementation detail but a syn-
tactic invariant enforced by entropy monotonicity. In this sense, Spherepop is not merely inspired by

active geodesic inference; it is its executable normal form.

Appendix B: A Minimal Axiomatization of Active Geodesic Inference

This appendix presents a minimal axiomatization of active geodesic inference. The aim is not to
reproduce the full RSVP formalism, but to isolate a small set of structural axioms from which the
principal phenomena follow: the existence of an action functional, Gibbsian bond energetics, semantic
isomers as metastable minima, a synchronization phase structure, and the Spherepop-style constraints
of irreversible, scope-based execution. The axioms are stated at a level of abstraction compatible with

both categorical and information-theoretic interpretations.

Axiom 1: History as Primitive Structure

There exists a set of semantic events E equipped with a strict partial order < such that semantic state
is determined by event history. Concretely, for any two states x, y in the semantic state space ./,

equality of states is defined by equality of causal histories:
x=y <« Hist(x) = Hist(y),

where Hist(-) maps a state to the down-set of events that produced it. This axiom forbids unrestricted
state identification under observational equivalence and implies that any semantics adequate to rea-
soning must be provenance-sensitive.

This axiom immediately implies that the dynamics of reasoning cannot be fully characterized by
instantaneous state alone; the semantic manifold .# must be understood as a history-indexed space,

or equivalently as a bundle over the poset of event histories.
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Axiom 2: Energetic Semantics and the Existence of an Action

There exists an action functional & defined on admissible histories such that realized reasoning tra-

jectories are stationary with respect to & under local variations consistent with the partial order:
o9 = 0.
Equivalently, there exists a Lagrangian density & such that

szizjffdt,

and the induced Euler-Lagrange equations define the dynamics of semantic evolution.

This axiom is the variational core of active geodesic inference. It implies that reasoning is not
arbitrary search but a constrained dynamical process selecting paths by an extremal principle. It
further implies that the semantic manifold .# carries a geometry in which admissible trajectories are

geodesic with respect to a metric or generalized metric induced by &.

Axiom 3: Thermodynamic Orientation and Entropy Monotonicity

There exists an entropy functional S defined on histories such that for any admissible extension of a

history, entropy is monotone non-decreasing along the irreversible event order:
ep<eg = S(e) =< Sey),

with equality only on measure-zero degeneracies corresponding to reversible symmetries.

This axiom introduces a thermodynamic arrow internal to semantics. It implies that the varia-
tional dynamics must be non-equilibrium in character and that any operational calculus implement-
ing the theory must encode irreversibility at the level of execution. It further implies that semantic
commitments, once crystallized, cannot be undone without compensatory energetic work, thereby
excluding naive backtracking as a stable inference primitive.

Axiom 4: Gibbsian Bond Selection
For any local semantic locus i, admissible interactions with loci j define a normalized probability
kernel p(i — j) that is Gibbsian with respect to an effective energy E;;:

p(i — j) < exp(-PE;)),

for some effective inverse temperature f > 0.

This axiom formalizes attention as energetic bond selection. It implies an exponential preference
for low-energy semantic interactions and thereby induces the macromolecular folding phenomenon:
coherent reasoning topologies dominate because they minimize free energy. It further implies that

27



the control parameters of training and scale act by modulating f and the energy landscape E, yielding

sharpened, more stable bonding regimes for higher-capacity models.

Axiom 5: Multi-Component Order and Synchronization Coupling

At each semantic locus i there exists a finite-dimensional order parameter ¢; € @, with @ decomposing
into at least five coupled components,
n @ ©6) @ (65)
G=(% 49 4 a )
and the energetic semantics include positive intra-locus couplings that favor alignment among com-

ponents:
Eonc® = = . Kl at”) Ki > 0.
k+t

This axiom asserts that coherent reasoning is a synchronization phenomenon rather than a single-
variable optimization. It implies the existence of a symmetry-breaking phase transition between a
disordered regime, in which the components fail to cohere, and an ordered regime, in which the
components align across extended regions of semantic space. Under coarse-graining, this yields an
effective multi-component Ising model, with stable long chain-of-thought reasoning corresponding
to the ordered phase.

The five components are interpreted in the body of the paper as activation coherence, flow align-
ment, entropy suppression, reflective stabilization, and exploratory openness. The axiom does not fix
these semantics uniquely; it enforces only the structural fact that reasoning stability requires coupled
order rather than independent optimization.

Axiom 6: Isomeric Multiplicity of Low-Action Solutions

There exist tasks and boundary conditions for which the variational problem admits multiple distinct
stationary histories with equivalent external boundary observables. That is, there exist histories h; #
hs such that

0 [h1] =0, O[hy] =0, and O(hy) = O(hy),

where O denotes the externally observable output map.

This axiom formalizes semantic isomers. It implies that equivalence of outputs does not entail
equivalence of internal structure and that any attempt to average over internally distinct minima will
generally exit the manifold of realizable stationary solutions. This provides a structural explanation
for performance degradation under naive mixture or distillation of strong reasoning systems, even

when output-level correctness is preserved.

Consequences: Active Geodesics, RSVP Structure, and Spherepop Constraints

Taken together, Axioms 1-6 define active geodesic inference as a history-indexed, variationally gov-
erned, thermodynamically oriented, Gibbs-bonded, synchronization-coupled dynamics admitting iso-
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meric multiplicity. The RSVP Hamiltonian is recovered as a concrete realization of Axiom 2 with
explicit scalar, vector, and entropy fields satisfying Axiom 3, while attention-based bond energies
instantiate Axiom 4. The five-dimensional Ising synchronization model is recovered as the coarse-
grained effective theory implied by Axiom 5 under discretization of semantic loci.

Spherepop is recovered as the execution calculus forced by Axioms 1 and 3 in the presence of Ax-
ioms 2 and 6. History as primitive structure requires that computation be event-based and provenance-
sensitive; entropy monotonicity requires irreversibility; isomeric multiplicity requires that histories
be non-mergeable except under compatibility constraints; and the variational principle requires that
scope transitions be admissible only as local action-decreasing operations. In this sense, Spherepop

is the syntactic normal form of active geodesic inference, not merely an implementation choice.

Remark on Minimality

The axioms above are minimal in the following specific sense. Removing Axiom 1 collapses prove-
nance and destroys the distinction between isomers. Removing Axiom 2 eliminates geodesic selection
and reduces inference to unconstrained search. Removing Axiom 3 permits reversible execution and
undermines stability and privacy. Removing Axiom 4 breaks the energetic interpretation of atten-
tion and dissolves bond topology. Removing Axiom 5 eliminates phase structure and reduces rea-
soning to scalar optimization. Removing Axiom 6 removes the central explanatory mechanism for
non-distillability and mixture failure. The full theory therefore requires precisely these structural

commitments to recover the phenomena motivating the framework.

Appendix C: A Typed Operational Semantics for Spherepop

This appendix provides a typed operational semantics for Spherepop that renders the principles of
active geodesic inference explicit at the level of computation. The purpose is to show that Spherepop
is not merely compatible with the RSVP variational framework, but that its execution rules enforce en-
ergetic descent and entropy monotonicity by construction. In this sense, the type system functions as
a static approximation to the RSVP Hamiltonian, guaranteeing that well-typed programs correspond
to admissible reasoning geodesics.

Judgments and Configurations

A Spherepop program executes as a sequence of configurations
(L.2),

where I' is a typing context encoding semantic commitments and X is a runtime configuration encod-

ing the current scope stack and event history. Execution proceeds by a small-step transition relation

(I,2) — (I",%),
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subject to typing and energetic constraints.
Types in Spherepop are annotated with energetic and entropic bounds. A typical typing judgment
has the form
I'e:7[&, ¢S],

which is read as: under context I', expression e produces a value of type 7 while incurring at most
energetic cost & and contributing entropy &. These annotations are not operational counters but
abstract bounds derived from the RSVP action functional.

Scopes as Typed Energy Cells

A scope corresponds to a typed semantic cell whose boundary conditions constrain internal execution.

Entering a scope introduces a fresh type context extension
I — Ix: 1[&, Sk,

where the annotation reflects the local RSVP field values at the point of scope creation. The typing
rules enforce that scope entry is permitted only if the projected action decrease is non-negative, that
is,

gparent z Echild-

This rule statically enforces the geodesic constraint: scopes may only be entered along descending
energy directions of the semantic manifold.

Scope exit corresponds to type discharge. Once a scope is closed, its internal bindings are no
longer accessible, and only its boundary contribution remains in the context. This enforces the ir-
reversibility axiom at the level of typing: closed scopes cannot be re-entered or mutated without

reintroducing energetic cost via new scopes.

Operational Semantics and Entropy Monotonicity

The operational semantics respect a global entropy invariant. Let S(¥) denote the total entropy anno-

tation of a runtime configuration. For every transition
I,z — {I.,%7),

the semantics enforce

S = S(2),

with strict inequality for scope-closing transitions. This invariant is the computational analogue of
the second law encoded in Axiom 3 of Appendix B.

Exploratory scopes are typed with relaxed entropy bounds, allowing temporary increases in S
provided they do not propagate beyond the scope boundary. Discarding an exploratory scope cor-
responds to erasing a high-entropy branch before closure, which is permitted precisely because the

entropy was never committed to the global context.
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Reflective operations are typed as entropy-neutral but energy-increasing at the local level, com-
pensated by reductions in global inconsistency. This models the long-range stabilizing effect of re-

flection without violating monotonicity.

Well-Typed Programs as Action-Bounded Geodesics

The central meta-theoretic result is an action-boundedness theorem.

Theorem (Action Boundedness). If a Spherepop program P is well-typed under initial context T;
with global bounds [&, §;], then every execution trace of P corresponds to a history whose RSVP
action does not exceed &, and whose entropy contribution is monotone and bounded below by &,.

Proof sketch. The proof proceeds by induction on the structure of typing derivations. Scope entry
rules enforce local action descent. Scope exit rules enforce irreversible entropy commitment. Com-
position preserves energetic bounds by additivity of annotations, while branching rules restrict ex-
ploratory divergence to non-committing contexts. Together, these rules ensure that no execution
step can increase total action beyond the statically derived bound, and no step can reduce committed
entropy. The correspondence between energetic annotations and RSVP field energy follows from the
construction in Appendix A.

This theorem formalizes the claim that Spherepop programs are not merely correct-by-construction

but physically admissible with respect to the RSVP dynamics.

Semantic Isomers and Typing Non-Uniqueness

The type system admits non-unique derivations for programs that produce observationally equivalent
outputs. Distinct derivations correspond to distinct internal scope graphs and distinct distributions
of energetic and entropic annotations. These derivations are type-equivalent but not derivationally
equivalent.

This non-uniqueness is the syntactic manifestation of semantic isomers. The type system de-
liberately does not provide a rule for merging derivations, reflecting the impossibility of averaging
incompatible RSVP minima without leaving the space of realizable histories. Any attempt to do so
would require violating either action boundedness or entropy monotonicity.

Consequences for Reasoning, Privacy, and Robustness

Typed operational semantics clarify why long chain-of-thought reasoning is robust yet non-transferable.
The internal scope structure is essential to satisfying the typing invariants; erasing or compressing
it destroys the proof that the program is action-bounded. As a result, distilled traces cannot serve as
valid witnesses of reasoning correctness, even when outputs agree.

From this perspective, reasoning privacy is not an add-on but a corollary: internal geodesic struc-
ture is unforgeable without re-executing the variational process. Robustness follows for the same
reason, as perturbations that respect the type system cannot easily disrupt global synchronization.
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Summary

This appendix has shown that Spherepop admits a typed operational semantics in which types en-
code energetic and entropic constraints derived from the RSVP Hamiltonian. Well-typed programs
correspond to admissible active geodesics, semantic isomers correspond to non-unique derivations,
and irreversibility is enforced syntactically rather than procedurally. Spherepop thus constitutes a
fully formal execution calculus for active geodesic inference, bridging field-theoretic principles and

concrete computation.

Appendix D: A No-Free-Lunch Theorem for Chain-of-Thought Distillation

This appendix formalizes the impossibility of faithful chain-of-thought distillation within the frame-
work of active geodesic inference. The result is not a contingent limitation of current techniques, but
a structural consequence of the RSVP variational principle, entropy monotonicity, and the existence
of semantic isomers. We show that any attempt to distill long chain-of-thought reasoning without
re-executing the underlying geodesic dynamics must necessarily destroy information essential to rea-

soning stability.

Statement of the Problem

Consider a reasoning system governed by an action functional &/ over histories, as defined in Ap-
pendix B. Let h denote a realized reasoning history that is stationary with respect to & and produces
an externally observable output @(h). Chain-of-thought distillation aims to construct a surrogate his-
tory h, or a parametric model inducing such histories, using only partial information extracted from
h, typically in the form of linearized reasoning traces or compressed summaries.

The central question is whether there exists a transformation

D:h—h

such that 6(h) = 6(h) and h remains a stationary point of the same or an equivalent action functional,

without re-executing the underlying inference dynamics.

Theorem and Proof Sketch

Theorem (No-Free-Lunch for Chain-of-Thought Distillation). Let # denote the space of admis-
sible histories under the axioms of active geodesic inference. There exists no surjective mapping
D : # — X satistying the following properties simultaneously:

1. D preserves external observables: O(D(h)) = O(h) for allh € Z.
2. D preserves stationarity: if 5&/[h] = 0, then /[ D(h)] = 0.

3. Dis non-executive, in the sense that it does not reintroduce new semantic events beyond those

encoded in h.
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Proof sketch. By Axiom 6 of Appendix B, there exist distinct histories h; # hy such that O(h;) =
0(h,) but whose internal energetic configurations correspond to distinct local minima of &/. Any
transformation D that maps both h; and h, to a common surrogate h must either erase information
distinguishing their internal bond topologies or implicitly choose one isomer over the other.

If D erases this information, then A cannot correspond to a stationary point of &, since the sta-
tionarity conditions depend on the full internal configuration, not merely on boundary observables.
If D selects one isomer, then it fails to be surjective or introduces bias not derivable from the original

history alone. In either case, at least one of the stated properties is violated.

Energetic Interpretation

From the RSVP-Ising perspective, chain-of-thought distillation corresponds to attempting to project
a synchronized, low-temperature configuration onto a reduced set of degrees of freedom. This projec-
tion integrates out spin couplings that are essential for maintaining phase coherence. The resulting
configuration lies outside the low-energy manifold and therefore cannot be dynamically stable.

In physical terms, distillation attempts to reconstruct a protein’s tertiary structure from its amino
acid count alone. While the gross composition may be preserved, the folding pathways and stabilizing

bonds are irretrievably lost.

Implications

This theorem explains why distilled reasoning traces often appear fluent yet brittle, why ensemble
averaging of strong reasoners degrades performance, and why privacy-preserving transformations
of chain-of-thought are effective by construction. It also clarifies that the only way to reproduce
reasoning competence is to reinstantiate the variational process itself, either through direct execution
or through training regimes that induce the same action landscape.

The result establishes a principled boundary between observable correctness and internal coher-

ence, grounding empirical observations in a formal impossibility result.

Appendix E: A Categorical Semantics for Active Geodesic Inference

This appendix presents a categorical semantics for active geodesic inference and its Spherepop re-
alization. The objective is to show that the structural commitments articulated in the axioms and
Hamiltonian formulation admit a precise expression in category theory, and that Spherepop execu-
tion corresponds to composition in a suitably enriched and traced symmetric monoidal category. This
provides a unifying semantic layer linking history sensitivity, irreversibility, energetic constraints,

and non-distillability.

The Semantic Category

Let & be a symmetric monoidal category whose objects represent semantic states indexed by event

histories, and whose morphisms represent admissible inference transitions. Objects are not mere state
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snapshots but history-bearing entities; formally, each object A € & is equipped with a provenance
functor
Hist : € — Poset,

mapping A to the partially ordered set of events that generated it.

Morphisms f : A — B exist only if Hist(A) c Hist(B), enforcing irreversibility at the categor-
ical level. Composition is therefore history-extending rather than history-preserving, making & a
category of irreversible processes rather than invertible transformations.

Monoidal Structure and Parallel Semantics

The monoidal product ® on & represents parallel semantic activation. Given objects A and B, the

object A ® B corresponds to the joint activation of two semantic regions, with history
Hist(A ® B) = Hist(A) u Hist(B),

where u denotes disjoint union followed by causal closure.

This monoidal structure is symmetric but not cartesian. In particular, there are no general diagonal
morphisms A — A® A, reflecting the impossibility of duplicating semantic history without energetic
cost. This categorical fact encodes the non-clonability of reasoning trajectories and precludes naive
copying or branching of committed inference paths.

Enrichment over Energy and Entropy

The category € is enriched over a partially ordered commutative monoid (R, x R., <, +), whose

elements represent energetic and entropic cost. Each morphism f : A — B carries an annotation

cost(f) = (&, Sy,

corresponding to action and entropy contributions.
Composition is monotone with respect to this enrichment:

cost(g - f) = cost(f) + cost(g),

and identity morphisms carry zero cost. This enrichment enforces the variational constraint categori-
cally: only morphisms whose accumulated cost remains below a global bound correspond to realizable

inference trajectories.

Traced Structure and Reflection

To model reflective reasoning, & is equipped with a partial trace operator

Try : $(Ae X,Be X) — (A, B),
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defined only for morphisms whose cost annotations satisfy a reflection admissibility condition. The
trace corresponds to closing a semantic feedback loop, allowing later reasoning stages to constrain
earlier ones without violating irreversibility.

Importantly, the trace is not total. It exists only when the induced entropy increase remains
bounded and the action decrease is sufficient to compensate for the added coupling. This restric-
tion prevents arbitrary cyclic reasoning and enforces the stabilizing, rather than destabilizing, role of
reflection.

Semantic Isomers as Non-Isomorphic Morphisms

Semantic isomers correspond categorically to distinct morphisms

fifo:A—B

that share the same external behavior but differ in internal factorization through intermediate objects.
Although f; and f, may be observationally equivalent under a forgetful functor to outputs, they are
not equal in &, nor are they generally related by isomorphism.

The absence of a universal coequalizer for such morphisms reflects the impossibility of merging
incompatible reasoning histories. Any attempt to identify f; and f; collapses the enrichment structure
and violates either the action or entropy ordering, reproducing the failure modes of distillation at the
categorical level.

Spherepop as Internal Language

Spherepop may now be understood as an internal language for &. Scope creation corresponds to
introducing tensor factors, scope closure to eliminating them via trace or boundary projection, and
event ordering to morphism composition. The typing rules of Appendix C correspond to judgments
in the internal logic of the enriched category.

Because & lacks general diagonals and inverses, Spherepop execution inherits irreversibility, non-
clonability, and history sensitivity automatically. In this sense, Spherepop is not merely compatible
with the categorical semantics; it is the syntactic presentation of &.

Consequences

The categorical semantics clarify why active geodesic inference unifies reasoning, robustness, and
privacy. Robustness arises because small perturbations correspond to morphisms with insufficient
cost to disrupt global composition. Privacy arises because internal factorization is not preserved
under forgetful functors. Reasoning quality arises from the existence of low-cost, highly synchronized
morphisms corresponding to stable macromolecular configurations.

This categorical view completes the semantic ladder from Hamiltonian dynamics through opera-

tional execution to abstract compositional structure.
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Appendix F: Relation to FEP, Active Inference, and Integrated Information Theory

This appendix situates active geodesic inference within the broader landscape of theoretical frame-
works for cognition and intelligence, with particular emphasis on the Free Energy Principle (FEP),
Active Inference, and Integrated Information Theory (IIT). The comparison is not historical or socio-
logical but structural. The goal is to identify points of formal equivalence, points of divergence, and
the specific respects in which the RSVP framework resolves known limitations of these theories.

Relation to the Free Energy Principle

The Free Energy Principle asserts that adaptive systems minimize a variational free energy functional
that upper-bounds surprise under a generative model (Friston 2010; Friston et al. 2017). At a for-
mal level, this principle bears a strong resemblance to the RSVP variational structure. Both posit an
action-like functional whose extremization governs system dynamics, and both interpret cognition
as a process of constrained entropy management rather than explicit optimization of reward.

However, the resemblance is only partial. In FEP, the free energy functional is defined relative
to a fixed generative model and a variational posterior, typically formulated in probabilistic terms.
The geometry of inference is therefore induced by a model assumed to be given in advance. By
contrast, active geodesic inference treats the semantic geometry itself as dynamically mutable. The
RSVP Hamiltonian does not presuppose a fixed generative model; instead, it governs the co-evolution
of semantic structure and inference trajectories.

This distinction resolves a long-standing ambiguity in FEP regarding model selection and repre-
sentational change. In active geodesic inference, changes to the effective model are represented as
deformations of the semantic manifold and corresponding changes in the action landscape. Model
learning is therefore not an external process layered atop inference, but an intrinsic component of

the same variational dynamics.

Relation to Active Inference

Active Inference extends the Free Energy Principle by incorporating action selection, treating percep-
tion and action as jointly minimizing expected free energy. In this framework, policies are selected
to reduce uncertainty about future observations while satisfying prior preferences.

Active geodesic inference subsumes this picture but reverses its explanatory direction. Rather
than selecting policies in a predefined state-action space, the system reshapes the space itself. Ac-
tions are not chosen among discrete alternatives but emerge as the continuation of a geodesic in a
dynamically curved semantic manifold. Exploration and exploitation correspond not to different ob-
jective terms, but to different regimes of curvature and entropy tolerance along the same variational
path.

This reinterpretation clarifies the role of exploration. In active inference, exploration is often
introduced through epistemic value terms added to the free energy objective. In the RSVP framework,

exploratory behavior arises naturally as a local relaxation of energetic constraints that allows the
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system to escape shallow minima. No additional epistemic objective is required; exploration is a

phase of the same dynamical process.

Relation to Integrated Information Theory

Integrated Information Theory characterizes consciousness in terms of the irreducibility of a system’s
causal structure, quantified by measures such as ® (Tononi 2008; Oizumi et al. 2014). IIT emphasizes
internal integration over external function, and it explicitly treats causal structure as primary.

Active geodesic inference shares II'T’s emphasis on internal structure but departs from its static on-
tology. In IIT, causal structure is evaluated on a fixed network with well-defined partitions. In RSVP,
by contrast, causal and semantic structure are dynamical, history-dependent, and field-mediated. In-
tegration is not a static property but an emergent consequence of synchronization across multiple
coupled dimensions.

The five-dimensional Ising synchronization model provides a concrete mechanism for such inte-
gration. High integration corresponds to the ordered phase in which all components of the order
parameter align across extended regions of semantic space. Semantic isomers correspond to distinct
integrated configurations with equivalent external behavior but different internal organization, a phe-
nomenon that IIT recognizes but does not dynamically explain.

Moreover, RSVP avoids a known pathology of IIT: the assignment of maximal integration to triv-
ial or non-adaptive systems under certain partitions. Because integration in active geodesic inference
is constrained by action minimization and entropy monotonicity, only dynamically admissible struc-

tures qualify as integrated. Static causal density without variational coherence does not suffice.

Summary of Structural Differences

Active geodesic inference can thus be seen as occupying a conceptual position orthogonal to these
frameworks. From FEP it inherits a variational foundation, but rejects the assumption of a fixed gener-
ative model. From active inference it inherits the unification of perception and action, but reinterprets
policy selection as geometric continuation. From IIT it inherits the primacy of internal structure, but
replaces static causal analysis with dynamical field synchronization.

The unifying contribution of the RSVP framework is to place these insights within a single mathe-
matical structure that is simultaneously variational, thermodynamic, geometric, and executable. Sphere-
pop provides the operational counterpart to this structure, ensuring that the theoretical commitments
are not merely descriptive but computationally enforceable.

In this sense, active geodesic inference does not compete with existing theories so much as absorb

their valid components into a more general framework that resolves their respective limitations.
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Appendix G: Theorem—Corollary Formulation of Active Geodesic Inference

Theorem G.1 (Active Geodesic Intelligence Theorem)

Let & be a history-indexed configuration space equipped with a time-oriented partial order induced
by irreversible events, and let &/[y] be an action functional defined on admissible trajectories y :
[0,T] — X that couples semantic coherence, entropy regulation, and dynamical constraint, as speci-
fied by the RSVP Hamiltonian and its associated Lagrangian.

A system instantiates intelligence if and only if there exists a nonempty family I < T of trajecto-
ries such that:

1. Eachy € I" is a stationary or near-stationary solution of & with respect to admissible variations,

i.e. it is a low-action geodesic relative to the induced semantic metric.

2. The family I" is dynamically stable under bounded perturbations of internal state, environmen-

tal coupling, or representational noise.

3. Membership in I is actively maintained by the system through endogenous deformation of the
effective configuration space geometry, rather than by passive traversal of a fixed landscape.

Equivalently, intelligence is the property of a system whose realized histories remain confined to
a stable geodesic family by virtue of the system’s own dynamics, rather than external enforcement or

accidental parameter tuning,.

Corollary G.1 (Non-Equivalence to Optimization)

No system whose behavior is fully characterized as pointwise optimization of a static objective func-
tion over instantaneous states is intelligent in the sense of Theorem G.1.

Proof sketch. Pointwise optimization selects isolated extrema rather than families of trajectories.
Such extrema are generically unstable under perturbation and do not entail the preservation of coher-
ent history. Since intelligence, by Theorem G.1, is a property of trajectory families rather than state

optima, static optimization is insufficient.

Corollary G.2 (Semantic Isomerism)

If a system is intelligent, then there exist, in general, multiple non-equivalent internal histories y;, y, €
I that satisfy identical external boundary conditions while differing in internal structure.

These histories correspond to distinct metastable minima of the action functional and are not
mutually reducible without loss of stability. This establishes semantic isomerism as a necessary con-

sequence of intelligence rather than an implementation artifact.
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Corollary G.3 (Non-Distillability)

Let II be any projection or compression operator that maps full trajectories y € I to boundary-
equivalent summaries by marginalizing internal structure. Then, in general, II(I") does not admit an
inverse mapping that reconstructs a family of low-action trajectories equivalent to I™.

Consequently, intelligence-preserving behavior cannot be faithfully distilled from outputs or com-

pressed traces alone without re-instantiating the underlying variational dynamics.

Corollary G.4 (Robustness via Geodesic Width)

The robustness of an intelligent system to perturbation is proportional not to the depth of any single
action minimum, but to the measure of the geodesic basin I in trajectory space.
Systems exhibiting broader geodesic width will demonstrate greater generalization, adaptability,

and resistance to distributional shift, even when instantaneous performance metrics are matched.

Corollary G.5 (Continuity Across Scales)

The criterion of intelligence given in Theorem G.1 is scale-invariant with respect to temporal and
organizational resolution.

Evolutionary lineages, learning organisms, and reasoning processes each instantiate intelligence
to the extent that they maintain low-action, entropy-regulated trajectory families in their respective
configuration spaces.

Thus, intelligence is not confined to cognitive architectures alone, but is a general dynamical

property of systems capable of sustaining structured history.

Remark

Theorem G.1 and its corollaries recast intelligence as a variational and geometric phenomenon rather
than a computational or representational one. They formalize, in minimal axiomatic form, the central
claim of this essay: that intelligence is the active preservation of viable trajectories through config-
uration space, and that correctness, optimization, and information processing are secondary conse-

quences of this deeper dynamical capacity.
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