POLYXAN-RSVP STARSPACE
A Formal Specification for a Xanadu—RSVP Social
Hyperstructure
with Multi-Galaxy Semantic Dynamics and Generative Field
Algorithms

Flyxion System Specification Draft

2025

Abstract

This document specifies the Polyxan—-RSVP Starspace System: a hybrid Xanadu-style hy-
permedia architecture, an RSVP generative substrate (Scalar—Vector—Entropy fields) driving
semantic and dynamical evolution, and a starspace MMO interface in which each user occupies
a partially isolated galaxy region. We define content atoms, spans, typed bidirectional links, me-
dia quines generated by a Polycompiler, semantic force embeddings, user-galaxy sheaves, RSVP
field evolution, and the global g-reset operator. We give a Lagrangian formulation of RSVP
fields on semantic space and their coupling to the hypergraph, a category-theoretic architecture,
an operational semantics for resets, a database schema and API sketch, simulation pseudocode,
UML diagrams, and verification-oriented invariants suitable for mechanized proof assistants.

Contents

[System Overview|

2 Core Data Types|

[3 Polycompiler and Media Quines|

[4 Semantic Latent Space and Star Map|

[6 Galaxy-Shard Architecture|

User Ships, Projection, and Anonymity|

[7

The g-Key Reset Operator and Autoblink]|

0

10

10
10
11
11

11

4 Verification-On IT : [Proof Sketdl 12

(14.1 Invariant: Link Bidirectionality| 12
[14.2 Invariant: Sheat Compatibility of Galaxy Views|. 12
[14.3 Safety Property: Reset Preserves Connectivity] 12
[14.4 Coq/Lean-Style Theorem Template|. 12
15 Conclusionl 13

1

System Overview

The Polyxan—RSVP Starspace system integrates:

2

2.1

A Xanadu-style hypergraph of Content Atoms with fine-grain spans.

The RSVP generative field system: scalar ®, vector v, entropy S, producing semantic
gradients, cluster morphologies, and viewpoint curvature over a latent semantic manifold.

A semantic latent space embedded in R? as a star map, with N-body relaxation guided by
RSVP fields.

A galaxy-shard universe: each user u sees a localized galaxy generated as a sheaf section
over the global semantic space X.

A ship-projection MMO layer: users appear as anonymous triangular ships; projections
are holographic and non-destructive.

A global reset operator triggered by holding key g for five seconds, recomputing the em-
bedding and galaxy layouts under RSVP constraints.

Autoblink stability constraints to keep certain users’ local patches approximately invariant
through resets.

Core Data Types

Content Atoms

A Content Atom is the basic unit of meaning, regardless of media type. Formally:

Atom := {id : N, media : M, payload : B, tags: P(T), version € N, polyGroup € NU {@&}}.

Here M is the set of media types (text, audio, video, image, code, composite), B is a blob reference
(to object storage or stream), and T is a tag alphabet (topics, languages, etc.).

2.2 Spans

A Span provides fine-grained addressability.

Span = (spanld, atomlId, s, €)

with s < e and s, e representing byte or time offsets within the payload.

2.3 Typed Links

A Typed Link is an edge:

L = (linkId, from, to, 7, creator, t)
where:
e from, to are Spans or Atoms.
e 7 € A is a link type (reply, critique, support, transclusion, translation, summary, remix, etc.).

e creator is the persona that authored the link.

e t is a timestamp.

We maintain bidirectionality by ensuring that for each L : X — Y, adjacency structures store both
outgoing and incoming references.

3 Polycompiler and Media Quines

The Polycompiler is a system service:

Polycompile : Atom x ¥ — Atom

where ¥ is a specification of the target modality or transformation (e.g. (summary, 1-minute video),
(translation, es_MX), etc.).

All media variants {A,} of a seed Atom A share a common polyGroup identifier g.

[Media Quine] A media quine is a polyGroup G of Atoms such that for every A; € G there exists o
with Polycompile(4;,0) ~ A; for some A; € G, up to a specified semantic equivalence relation =.

4 Semantic Latent Space and Star Map

Each semantic entity = (Atom, PolyGroup, Persona, Topic cluster) has an embedding:
Zy € R

This embedding is constructed from:

e multimodal content encoders (fmm),
e graph-structural features (typed links, centrality),

e RSVP field values (®,v,S) at the node.
We then define a projection:
7:R?— R3
which is a parametric, time-stable projection onto coordinates interpreted as star positions:

Xy := 7(2g).

An N-body relaxation step adjusts x, to satisfy aesthetic and semantic constraints (e.g. cluster
compactness, repulsion between blocked regions), while preserving the relative ordering implied by
z, and the RSVP fields.

5 Galaxy-Shard Architecture

Let X denote the global semantic manifold (the embedding space). For each user u, define a center
z,, corresponding to the persona embedding, and an open neighborhood:

U, := Br(z,) C X
for some radius R in the latent metric. The galaxy map for user w is:

Gy = {(xg,z) |z € X, 2, € Uy,}.

Semantic isolation arises because traveling from U, to another user v’s neighborhood U, requires
multiple in-game steps: ship movement at finite speed across x-space.

6 User Ships, Projection, and Anonymity

Each persona p is displayed in its own galaxy as a triangular ship at position:

xp = m(2p).

When p projects into another user’s galaxy, a ghost ship representation appears (triangle with no
explicit username), subject to privacy rules.

[Holographic Projection] A holographic projection from user u to galaxy v is a morphism:
PrOju*}U : g’v - gv

that augments G, with an anonymous ship entity s,, allowing u to observe G, but not mutate its
contents.

All content created during projection is anchored in u’s own galaxy (contexts, groups), but may
link to spans originating from G,,.

7 The g-Key Reset Operator and Autoblink

Holding key g for 5 seconds triggers a Reset Fuvent:

Reset : ¥ — Y/

where ¥ is the full system state: embeddings z;, field values (®,v,S), layout positions x,, and
galaxy views G,.

7.1 Global Reset Transformation

We can formalize reset as:

with the following constraints:

e R, respects RSVP dynamics (Section , so embeddings adjust according to updated fields.

e R, is a new N-body relaxation seeded by 7.

7.2 Autoblink Constraint

Users with autoblink enabled impose a local stability constraint:

I, — xull <€

for some small € > 0. In the relaxation solver, these points become soft constraints or pinned nodes;
other stars flow around them.

8 RSVP—-Polyxan Lagrangian

We now define a Lagrangian for the RSVP fields over the semantic manifold X and couple it to
the Polyxan content graph.

8.1 Fields and Densities

Let X be a Riemannian manifold representing semantic space with metric g. Over X we define:

P:XxR-R, v:XxR->TX, S:XxR—R.

Define a node density p : X — R>(induced by the content graph, e.g. via kernel smoothing
over embeddings. Define a link curvature scalar k : X — R that measures non-local connectivity
complexity (e.g. triangle density, motif structure).

8.2 Action Functional

We propose an action:

A[®,v, S| :/dt/ dug L(®,0,2, VP, v, Vv, S, VS;p, k)
R Jx

with Lagrangian density:

- La072 - % ve)?
T\t 2

scalar kinetic/elastic

1 2
+ 5192 = Vv

vector field kinetic/elastic

+ Lasz - Svsye
g\t 2

entropy field smoothing

- V(q)a v, Sa P H)a

where V' is a potential encoding:

attraction of ® to high-density regions (cluster formation),

e negentropic flows (alignment of v with V®),

entropy minimization in well-structured semantic neighborhoods,

penalties for excessive curvature x (graph over-complexity).

Variation of A yields Euler—-Lagrange equations for the fields, which can be discretized on the
embedding graph.

8.3 Coupling to Graph Nodes

Each Atom z sits at an embedding z, € X. We define the field values at node x by restriction:
O, (t) = ®(z4,t), etc. A simple discrete evolution for embeddings is:

dz;,
% = —aV®(zy,t) + v(2zy,t) — YV S(2g, 1),

where «, 3,7 are hyperparameters governing attraction to semantic wells, vector-flow drift, and
entropy smoothing.

9 Category-Theoretic Architecture

We now sketch a categorical view.

9.1 Content Category

Define a category C:

e Objects: Content Atoms and Spans.

e Morphisms: Typed Links L : X — Y.

Composition is given by path concatenation when link types are composable; identity morphisms
are trivial self-links.

9.2 Polycompiler as Endofunctor

The Polycompiler induces an endofunctor:

Poly : C — C

that:

e on objects: sends an Atom A to a PolyGroup object, or to a specific media variant A,.

e on morphisms: lifts links along media quine equivalences, preserving semantic type when
possible.

9.3 RSVP Functor

Define a functor:

RSVP:C — F

where F is a category of field configurations, e.g.:

e objects: triples (®,v,.S) defined on finite subsets of X,

e morphisms: restriction maps and field reparameterizations.

RSVP maps content/link structure into field source terms (e.g. node densities, curvature contribu-
tions), and in turn field evolution feeds back into embedding updates.

9.4 Galaxy Sheaf

Over X we define a presheaf ¥:

¢ (U) = {all galaxy renderings over U}

with restriction maps pyy : 9(U) — 4 (V) for V C U.
[Sheaf Condition (Sketch)] If:

e the projection 7 is deterministic and smooth,
e RSVP fields are continuous on X,

e content IDs and links are globally unique,
then ¢ is a sheaf: compatible local views glue uniquely to a global galaxy rendering.

Idea. Galaxy renderings are determined by (z;,7) and field values. Compatibility on overlaps
corresponds to agreeement on shared nodes and their local layout under the same 7 and field
configuration. Uniqueness follows from determinism of the layout algorithm. O

10 Operational Semantics of g-Reset

We describe small-step semantics for the g key in a simplified form.

10.1 State

Let a system state be:
¥ =(,Z,X,F,U)
where:

e C = content graph (Atoms, Spans, Links),
e Z = {z,} embeddings,

e X = {x,} layout positions,

F = (®,v,S) RSVP fields,

e U = user metadata (autoblink flags, ship positions).

10

10.2 Events

We introduce an event GPress(u,t) for a user u holding g from time ¢ to t + A.

We define two rules:

Broadcast Rule (short press). If 0 < A < 5s:

GPress(u,A)
—_—

by >

where ¥ has U’ updated to broadcast u’s current ship position in nearby galaxies for some time
window, but no change to Z, X, F'.

Reset Rule (long press). If A > 5s:

GPress(u,A)
—_—

E 2//

where:

7" = R.(Z,F,C)

F" =Rp(F,C)

X// — Rz(Z//’ F//7Z/{)

U" =U (up to transient fields)

and R, respects autoblink constraints by pinning or softly constraining selected user positions.

11 Database Schema and API Sketch

11.1 Relational/Core Schema (Sketch)

Tables (conceptual):

atoms(id, media_type, payload ref, version, poly_group-id, created_at, author_id)

e spans(id, atom_id, start, end)

links(id, from_span_id, to_span_id, link type, creator_id, created at)
e poly groups(id, root_atom id)

e personas(id, user_id, name, avatar_atom_id)

11

embeddings(entity_id, entity_type, vector)

e galaxy views(user_id, center_embedding, params, last_updated)

rsvp_fields(patch_id, phi_params, v_params, s_params)

reset_events(id, trigger user_id, at_time)

Embeddings can be stored in a vector-capable store or separate service.

11.2 API Sketch

Representative endpoints (REST or gRPC-ish):

e GET /atoms/{id} - fetch Atom metadata and (optionally) payload.
e POST /atoms — create Atom.

e POST /links — create Typed Link.

e POST /polycompile — request Polycompiler to generate variants.

e GET /galaxy/{userId} — fetch GalaxyView for user.

e POST /galaxy/{userId}/project — project to another user’s galaxy.

e POST /events/gpress — notify backend of g press; backend decides whether to broadcast or
reset.

e GET /embeddings/{entityId} — fetch embedding(s).

e POST /rsvp/step — advance RSVP fields and embeddings by one timestep.
12 Simulation Appendix: RSVP Dynamics on the Graph
We sketch a discrete-time simulation to evolve RSVP fields and embeddings.

12.1 Discrete State

Let G = (V, E) be the content graph (nodes V' = entities, edges E = links). At each node i € V'
we maintain:

t t t t
o, v, S, zZ.

79 79 7

12

12.2 Update Equations (Example)

For time step At:

O = @l + At | Do Y (D! — A ®; + folpi ki) |
Jr~t

SIHA = SE+ At [Ds> (SE— S + fspirki) |
j~i

V§+At:Vf—|—At DZV—V — Vol - ,

Joi

zi2 = 2l + At (—aV®] + pvi — 7V S]),

where j ~ i denotes neighbors in the graph, and p;, k; are local density/curvature estimates.

12.3 Pseudocode

for t in range(T):
compute local graph Laplacians, densities, curvatures
for i in V:

lap_Phi[i] = sum(Phi[j] - Phi[i] for j in neighbors[i])
lap_S[il = sum(S[j] - S[i] for j in neighbors[i])
lap_v[il] = sum(v[j] - v[i] for j in neighbors[i])
rho[i] = density_estimate (i)

kappal[il] = curvature_estimate (i)

update fields

for i in V:
Phi[i] += dt * (D_Phi * lap_Phil[il] lambda_Phi * Phi[i] + f_Phi(rhol[il,kappal
S[il += dt * (D_S * lap_S[i] + f_S(rho[i],kappalil))
v[i] += dt * (D_v * lap_v[i] - grad_Phi[i] - eta * v[il])

update embeddings
for i in V:
z[i] += dt * (-alpha * grad_Phi[i] + beta * v[i] - gamma * grad_S[il)

The projection x; = 7(z;) and N-body relaxation are performed periodically (e.g. every K timesteps
or after a reset).

13 Additional UML Sketches

13.1 Sequence: Polycompile and Reset

The following is a textual UML-style sequence sketch (you can convert to tikz-uml as desired):

13

14 Verification-Oriented Invariants and Proof Sketches

We outline properties suitable for formal verification (e.g. Coq/Lean).

14.1 Invariant: Link Bidirectionality

Property. For every stored TypedLink L with (from = X, to = Y'), the adjacency indices satisfy:
Y € suce(X) <= X € pred(Y).

Sketch. By construction: insertion of links is atomic and updates both succ and pred indices.
Deletion is symmetric. Inductive reasoning over link operations proves preservation. O

14.2 Invariant: Sheaf Compatibility of Galaxy Views
Property. For any two users u,v with U, N U, # &:

pUumUv(Gu) = pUuﬂUv(Gv);

where G,, € 9(U,), G, € 9(U,) are galaxy views derived from the same global embedding/-
field configuration.

14.3 Safety Property: Reset Preserves Connectivity
Property. A g-reset does not change the content graph:
C' =,

i.e. Atoms, Spans, and Links are unchanged.

Sketch. By definition of Reset, only Z, X, F' are recomputed. No content insertion/deletion occurs.
Thus connectivity is preserved. O

14.4 Coq/Lean-Style Theorem Template

In a Cog-like pseudo-syntax:

Record State := {
C : ContentGraph;

: Embeddings;

: Layout;

: Fields;

: UserMeta;

a T < N

14

Inductive step : State -> State -> Prop :=
| StepGShort : forall s s’,

g_press_short s s’ —>

step s s’
| StepGLong : forall s s’,

g_press_long s s’ ->

step s s’.

Theorem reset_preserves_graph :
forall s s’,
step s s’ ->
Cs’” =C s.

A similar structure can encode invariants about autoblink pinning:

Definition autoblink_invariant (s s’ : State) : Prop :=
forall u, autoblink u = true ->
dist (ship_pos s u) (ship_pos s’ u) <= eps.

15 Conclusion

We have specified a unified architecture for Polyxan—-RSVP Starspace: a Xanadu-inspired
hypermedia graph coupled to RSVP fields, projected into a semantic starspace with user-local
galaxies, ships, holographic projections, and a global g-reset operator. We provided a Lagrangian
for the RSVP fields, a category-theoretic framing, sheaf-theoretic consistency conditions for
galaxy views, an operational semantics for reset events, a database and API sketch, simulation
pseudocode, UML sketches, and verification-oriented invariants. This document is intended as a

scaffold for both theoretical refinement and practical implementation.

15

	System Overview
	Core Data Types
	Content Atoms
	Spans
	Typed Links

	Polycompiler and Media Quines
	Semantic Latent Space and Star Map
	Galaxy-Shard Architecture
	User Ships, Projection, and Anonymity
	The g-Key Reset Operator and Autoblink
	Global Reset Transformation
	Autoblink Constraint

	RSVP–Polyxan Lagrangian
	Fields and Densities
	Action Functional
	Coupling to Graph Nodes

	Category-Theoretic Architecture
	Content Category
	Polycompiler as Endofunctor
	RSVP Functor
	Galaxy Sheaf

	Operational Semantics of g-Reset
	State
	Events

	Database Schema and API Sketch
	Relational/Core Schema (Sketch)
	API Sketch

	Simulation Appendix: RSVP Dynamics on the Graph
	Discrete State
	Update Equations (Example)
	Pseudocode

	Additional UML Sketches
	Sequence: Polycompile and Reset

	Verification-Oriented Invariants and Proof Sketches
	Invariant: Link Bidirectionality
	Invariant: Sheaf Compatibility of Galaxy Views
	Safety Property: Reset Preserves Connectivity
	Coq/Lean-Style Theorem Template

	Conclusion

