
POLYXAN–RSVP STARSPACE
A Formal Specification for a Xanadu–RSVP Social

Hyperstructure
with Multi-Galaxy Semantic Dynamics and Generative Field

Algorithms

Flyxion System Specification Draft

2025

Abstract

This document specifies the Polyxan–RSVP Starspace System: a hybrid Xanadu-style hy-
permedia architecture, an RSVP generative substrate (Scalar–Vector–Entropy fields) driving
semantic and dynamical evolution, and a starspace MMO interface in which each user occupies
a partially isolated galaxy region. We define content atoms, spans, typed bidirectional links, me-
dia quines generated by a Polycompiler, semantic force embeddings, user-galaxy sheaves, RSVP
field evolution, and the global g-reset operator. We give a Lagrangian formulation of RSVP
fields on semantic space and their coupling to the hypergraph, a category-theoretic architecture,
an operational semantics for resets, a database schema and API sketch, simulation pseudocode,
UML diagrams, and verification-oriented invariants suitable for mechanized proof assistants.

Contents

1 System Overview 1

2 Core Data Types 2

2.1 Content Atoms . 2

2.2 Spans . 2

2.3 Typed Links . 2

3 Polycompiler and Media Quines 3

4 Semantic Latent Space and Star Map 3

5 Galaxy-Shard Architecture 4

1

6 User Ships, Projection, and Anonymity 4

7 The g-Key Reset Operator and Autoblink 4

7.1 Global Reset Transformation . 5

7.2 Autoblink Constraint . 5

8 RSVP–Polyxan Lagrangian 5

8.1 Fields and Densities . 5

8.2 Action Functional . 5

8.3 Coupling to Graph Nodes . 6

9 Category-Theoretic Architecture 6

9.1 Content Category . 7

9.2 Polycompiler as Endofunctor . 7

9.3 RSVP Functor . 7

9.4 Galaxy Sheaf . 8

10 Operational Semantics of g-Reset 8

10.1 State . 8

10.2 Events . 9

11 Database Schema and API Sketch 9

11.1 Relational/Core Schema (Sketch) . 9

11.2 API Sketch . 10

12 Simulation Appendix: RSVP Dynamics on the Graph 10

12.1 Discrete State . 10

12.2 Update Equations (Example) . 11

12.3 Pseudocode . 11

13 Additional UML Sketches 11

13.1 Sequence: Polycompile and Reset . 11

2

14 Verification-Oriented Invariants and Proof Sketches 12

14.1 Invariant: Link Bidirectionality . 12

14.2 Invariant: Sheaf Compatibility of Galaxy Views . 12

14.3 Safety Property: Reset Preserves Connectivity . 12

14.4 Coq/Lean-Style Theorem Template . 12

15 Conclusion 13

1 System Overview

The Polyxan–RSVP Starspace system integrates:

• A Xanadu-style hypergraph of Content Atoms with fine-grain spans.

• The RSVP generative field system: scalar Φ, vector v, entropy S, producing semantic
gradients, cluster morphologies, and viewpoint curvature over a latent semantic manifold.

• A semantic latent space embedded in R3 as a star map, with N-body relaxation guided by
RSVP fields.

• A galaxy-shard universe: each user u sees a localized galaxy generated as a sheaf section
over the global semantic space X.

• A ship-projection MMO layer: users appear as anonymous triangular ships; projections
are holographic and non-destructive.

• A global reset operator triggered by holding key g for five seconds, recomputing the em-
bedding and galaxy layouts under RSVP constraints.

• Autoblink stability constraints to keep certain users’ local patches approximately invariant
through resets.

2 Core Data Types

2.1 Content Atoms

A Content Atom is the basic unit of meaning, regardless of media type. Formally:

Atom := {id : N, media : M, payload : B, tags : P(T), version ∈ N, polyGroup ∈ N ∪ {∅}}.

Here M is the set of media types (text, audio, video, image, code, composite), B is a blob reference
(to object storage or stream), and T is a tag alphabet (topics, languages, etc.).

3

2.2 Spans

A Span provides fine-grained addressability.

Span = (spanId, atomId, s, e)

with s < e and s, e representing byte or time offsets within the payload.

2.3 Typed Links

A Typed Link is an edge:

L = (linkId, from, to, τ, creator, t)

where:

• from, to are Spans or Atoms.

• τ ∈ Λ is a link type (reply, critique, support, transclusion, translation, summary, remix, etc.).

• creator is the persona that authored the link.

• t is a timestamp.

We maintain bidirectionality by ensuring that for each L : X → Y , adjacency structures store both
outgoing and incoming references.

3 Polycompiler and Media Quines

The Polycompiler is a system service:

Polycompile : Atom× Σ→ Atom

where Σ is a specification of the target modality or transformation (e.g. (summary, 1-minute video),
(translation, es MX), etc.).

All media variants {Aσ} of a seed Atom A share a common polyGroup identifier g.

[Media Quine] A media quine is a polyGroup G of Atoms such that for every Ai ∈ G there exists σ
with Polycompile(Ai, σ) ≈ Aj for some Aj ∈ G, up to a specified semantic equivalence relation ≈.

4

4 Semantic Latent Space and Star Map

Each semantic entity x (Atom, PolyGroup, Persona, Topic cluster) has an embedding:

zx ∈ Rd.

This embedding is constructed from:

• multimodal content encoders (fmm),

• graph-structural features (typed links, centrality),

• RSVP field values (Φ,v, S) at the node.

We then define a projection:

π : Rd → R3

which is a parametric, time-stable projection onto coordinates interpreted as star positions:

xx := π(zx).

An N-body relaxation step adjusts xx to satisfy aesthetic and semantic constraints (e.g. cluster
compactness, repulsion between blocked regions), while preserving the relative ordering implied by
zx and the RSVP fields.

5 Galaxy-Shard Architecture

Let X denote the global semantic manifold (the embedding space). For each user u, define a center
zu corresponding to the persona embedding, and an open neighborhood:

Uu := BR(zu) ⊂ X

for some radius R in the latent metric. The galaxy map for user u is:

Gu := {(xx, x) | x ∈ X, zx ∈ Uu}.

Semantic isolation arises because traveling from Uu to another user v’s neighborhood Uv requires
multiple in-game steps: ship movement at finite speed across x-space.

5

6 User Ships, Projection, and Anonymity

Each persona p is displayed in its own galaxy as a triangular ship at position:

xp = π(zp).

When p projects into another user’s galaxy, a ghost ship representation appears (triangle with no
explicit username), subject to privacy rules.

[Holographic Projection] A holographic projection from user u to galaxy v is a morphism:

Proju→v : Gv → Gv

that augments Gv with an anonymous ship entity su, allowing u to observe Gv but not mutate its
contents.

All content created during projection is anchored in u’s own galaxy (contexts, groups), but may
link to spans originating from Gv.

7 The g-Key Reset Operator and Autoblink

Holding key g for 5 seconds triggers a Reset Event :

Reset : Σ→ Σ′

where Σ is the full system state: embeddings zx, field values (Φ,v, S), layout positions xx, and
galaxy views Gu.

7.1 Global Reset Transformation

We can formalize reset as:

z′x = Rz(zx,Φ,v, S), x′x = Rx(z′x),

with the following constraints:

• Rz respects RSVP dynamics (Section 8), so embeddings adjust according to updated fields.

• Rx is a new N-body relaxation seeded by z′x.

6

7.2 Autoblink Constraint

Users with autoblink enabled impose a local stability constraint:

‖x′u − xu‖ ≤ ε

for some small ε > 0. In the relaxation solver, these points become soft constraints or pinned nodes;
other stars flow around them.

8 RSVP–Polyxan Lagrangian

We now define a Lagrangian for the RSVP fields over the semantic manifold X and couple it to
the Polyxan content graph.

8.1 Fields and Densities

Let X be a Riemannian manifold representing semantic space with metric g. Over X we define:

Φ : X × R→ R, v : X × R→ TX, S : X × R→ R.

Define a node density ρ : X → R≥0 induced by the content graph, e.g. via kernel smoothing
over embeddings. Define a link curvature scalar κ : X → R that measures non-local connectivity
complexity (e.g. triangle density, motif structure).

8.2 Action Functional

We propose an action:

A[Φ,v, S] =
∫

R
dt

∫
X
dµg L(Φ, ∂tΦ,∇Φ,v,∇v, S,∇S; ρ, κ)

with Lagrangian density:

7

L =
1
2

(∂tΦ)2 −
c2

Φ

2
‖∇Φ‖2︸ ︷︷ ︸

scalar kinetic/elastic

+
1
2
‖∂tv‖2 −

c2
v

2
‖∇v‖2︸ ︷︷ ︸

vector field kinetic/elastic

+
1
2

(∂tS)2 −
c2
S

2
‖∇S‖2︸ ︷︷ ︸

entropy field smoothing

− V (Φ,v, S; ρ, κ),

where V is a potential encoding:

• attraction of Φ to high-density regions (cluster formation),

• negentropic flows (alignment of v with ∇Φ),

• entropy minimization in well-structured semantic neighborhoods,

• penalties for excessive curvature κ (graph over-complexity).

Variation of A yields Euler–Lagrange equations for the fields, which can be discretized on the
embedding graph.

8.3 Coupling to Graph Nodes

Each Atom x sits at an embedding zx ∈ X. We define the field values at node x by restriction:
Φx(t) = Φ(zx, t), etc. A simple discrete evolution for embeddings is:

dzx
dt

= −α∇Φ(zx, t) + β v(zx, t)− γ∇S(zx, t),

where α, β, γ are hyperparameters governing attraction to semantic wells, vector-flow drift, and
entropy smoothing.

9 Category-Theoretic Architecture

We now sketch a categorical view.

8

9.1 Content Category

Define a category C:

• Objects: Content Atoms and Spans.

• Morphisms: Typed Links L : X → Y .

Composition is given by path concatenation when link types are composable; identity morphisms
are trivial self-links.

9.2 Polycompiler as Endofunctor

The Polycompiler induces an endofunctor:

Poly : C→ C

that:

• on objects: sends an Atom A to a PolyGroup object, or to a specific media variant Aσ.

• on morphisms: lifts links along media quine equivalences, preserving semantic type when
possible.

9.3 RSVP Functor

Define a functor:

RSVP : C→ F

where F is a category of field configurations, e.g.:

• objects: triples (Φ,v, S) defined on finite subsets of X,

• morphisms: restriction maps and field reparameterizations.

RSVP maps content/link structure into field source terms (e.g. node densities, curvature contribu-
tions), and in turn field evolution feeds back into embedding updates.

9

9.4 Galaxy Sheaf

Over X we define a presheaf G :

G (U) = {all galaxy renderings over U}

with restriction maps ρUV : G (U)→ G (V) for V ⊂ U .

[Sheaf Condition (Sketch)] If:

• the projection π is deterministic and smooth,

• RSVP fields are continuous on X,

• content IDs and links are globally unique,

then G is a sheaf: compatible local views glue uniquely to a global galaxy rendering.

Idea. Galaxy renderings are determined by (zx, π) and field values. Compatibility on overlaps
corresponds to agreeement on shared nodes and their local layout under the same π and field
configuration. Uniqueness follows from determinism of the layout algorithm.

10 Operational Semantics of g-Reset

We describe small-step semantics for the g key in a simplified form.

10.1 State

Let a system state be:

Σ = (C,Z,X, F,U)

where:

• C = content graph (Atoms, Spans, Links),

• Z = {zx} embeddings,

• X = {xx} layout positions,

• F = (Φ,v, S) RSVP fields,

• U = user metadata (autoblink flags, ship positions).

10

10.2 Events

We introduce an event GPress(u, t) for a user u holding g from time t to t+ ∆.

We define two rules:

Broadcast Rule (short press). If 0 < ∆ < 5s:

Σ
GPress(u,∆)−−−−−−−→ Σ′

where Σ′ has U ′ updated to broadcast u’s current ship position in nearby galaxies for some time
window, but no change to Z,X, F .

Reset Rule (long press). If ∆ ≥ 5s:

Σ
GPress(u,∆)−−−−−−−→ Σ′′

where:

Z′′ = Rz(Z, F, C)
F ′′ = RF (F, C)
X′′ = Rx(Z′′, F ′′,U)
U ′′ = U (up to transient fields)

and Rx respects autoblink constraints by pinning or softly constraining selected user positions.

11 Database Schema and API Sketch

11.1 Relational/Core Schema (Sketch)

Tables (conceptual):

• atoms(id, media type, payload ref, version, poly group id, created at, author id)

• spans(id, atom id, start, end)

• links(id, from span id, to span id, link type, creator id, created at)

• poly groups(id, root atom id)

• personas(id, user id, name, avatar atom id)

11

• embeddings(entity id, entity type, vector)

• galaxy views(user id, center embedding, params, last updated)

• rsvp fields(patch id, phi params, v params, s params)

• reset events(id, trigger user id, at time)

Embeddings can be stored in a vector-capable store or separate service.

11.2 API Sketch

Representative endpoints (REST or gRPC-ish):

• GET /atoms/{id} – fetch Atom metadata and (optionally) payload.

• POST /atoms – create Atom.

• POST /links – create Typed Link.

• POST /polycompile – request Polycompiler to generate variants.

• GET /galaxy/{userId} – fetch GalaxyView for user.

• POST /galaxy/{userId}/project – project to another user’s galaxy.

• POST /events/gpress – notify backend of g press; backend decides whether to broadcast or
reset.

• GET /embeddings/{entityId} – fetch embedding(s).

• POST /rsvp/step – advance RSVP fields and embeddings by one timestep.

12 Simulation Appendix: RSVP Dynamics on the Graph

We sketch a discrete-time simulation to evolve RSVP fields and embeddings.

12.1 Discrete State

Let G = (V,E) be the content graph (nodes V = entities, edges E = links). At each node i ∈ V
we maintain:

Φt
i, vti, Sti , zti.

12

12.2 Update Equations (Example)

For time step ∆t:

Φt+∆t
i = Φt

i + ∆t

DΦ

∑
j∼i

(Φt
j − Φt

i)− λΦΦt
i + fΦ(ρi, κi)

 ,

St+∆t
i = Sti + ∆t

DS

∑
j∼i

(Stj − Sti) + fS(ρi, κi)

 ,

vt+∆t
i = vti + ∆t

Dv

∑
j∼i

(vtj − vti)−∇Φt
i − ηvti

 ,

zt+∆t
i = zti + ∆t

(
−α∇Φt

i + βvti − γ∇Sti
)
,

where j ∼ i denotes neighbors in the graph, and ρi, κi are local density/curvature estimates.

12.3 Pseudocode

for t in range(T):
compute local graph Laplacians , densities , curvatures

for i in V:
lap_Phi[i] = sum(Phi[j] - Phi[i] for j in neighbors[i])
lap_S[i] = sum(S[j] - S[i] for j in neighbors[i])
lap_v[i] = sum(v[j] - v[i] for j in neighbors[i])
rho[i] = density_estimate(i)
kappa[i] = curvature_estimate(i)

update fields

for i in V:
Phi[i] += dt * (D_Phi * lap_Phi[i] - lambda_Phi * Phi[i] + f_Phi(rho[i],kappa[i]))
S[i] += dt * (D_S * lap_S[i] + f_S(rho[i],kappa[i]))
v[i] += dt * (D_v * lap_v[i] - grad_Phi[i] - eta * v[i])

update embeddings

for i in V:
z[i] += dt * (-alpha * grad_Phi[i] + beta * v[i] - gamma * grad_S[i])

The projection xi = π(zi) and N-body relaxation are performed periodically (e.g. everyK timesteps
or after a reset).

13 Additional UML Sketches

13.1 Sequence: Polycompile and Reset

The following is a textual UML-style sequence sketch (you can convert to tikz-uml as desired):

13

14 Verification-Oriented Invariants and Proof Sketches

We outline properties suitable for formal verification (e.g. Coq/Lean).

14.1 Invariant: Link Bidirectionality

Property. For every stored TypedLink L with (from = X, to = Y), the adjacency indices satisfy:

Y ∈ succ(X) ⇐⇒ X ∈ pred(Y).

Sketch. By construction: insertion of links is atomic and updates both succ and pred indices.
Deletion is symmetric. Inductive reasoning over link operations proves preservation.

14.2 Invariant: Sheaf Compatibility of Galaxy Views

Property. For any two users u, v with Uu ∩ Uv 6= ∅:

ρUu∩Uv(Gu) = ρUu∩Uv(Gv),

where Gu ∈ G (Uu), Gv ∈ G (Uv) are galaxy views derived from the same global embedding/-
field configuration.

14.3 Safety Property: Reset Preserves Connectivity

Property. A g-reset does not change the content graph:

C′ = C,

i.e. Atoms, Spans, and Links are unchanged.

Sketch. By definition of Reset, only Z,X, F are recomputed. No content insertion/deletion occurs.
Thus connectivity is preserved.

14.4 Coq/Lean-Style Theorem Template

In a Coq-like pseudo-syntax:

Record State := {
C : ContentGraph;
Z : Embeddings;
X : Layout;
F : Fields;
U : UserMeta;

}.

14

Inductive step : State -> State -> Prop :=
| StepGShort : forall s s’,

g_press_short s s’ ->
step s s’

| StepGLong : forall s s’,
g_press_long s s’ ->
step s s’.

Theorem reset_preserves_graph :
forall s s’,

step s s’ ->
C s’ = C s.

A similar structure can encode invariants about autoblink pinning:

Definition autoblink_invariant (s s’ : State) : Prop :=
forall u, autoblink u = true ->

dist (ship_pos s u) (ship_pos s’ u) <= eps.

15 Conclusion

We have specified a unified architecture for Polyxan–RSVP Starspace: a Xanadu-inspired
hypermedia graph coupled to RSVP fields, projected into a semantic starspace with user-local

galaxies, ships, holographic projections, and a global g-reset operator. We provided a Lagrangian
for the RSVP fields, a category-theoretic framing, sheaf-theoretic consistency conditions for

galaxy views, an operational semantics for reset events, a database and API sketch, simulation
pseudocode, UML sketches, and verification-oriented invariants. This document is intended as a

scaffold for both theoretical refinement and practical implementation.

15

	System Overview
	Core Data Types
	Content Atoms
	Spans
	Typed Links

	Polycompiler and Media Quines
	Semantic Latent Space and Star Map
	Galaxy-Shard Architecture
	User Ships, Projection, and Anonymity
	The g-Key Reset Operator and Autoblink
	Global Reset Transformation
	Autoblink Constraint

	RSVP–Polyxan Lagrangian
	Fields and Densities
	Action Functional
	Coupling to Graph Nodes

	Category-Theoretic Architecture
	Content Category
	Polycompiler as Endofunctor
	RSVP Functor
	Galaxy Sheaf

	Operational Semantics of g-Reset
	State
	Events

	Database Schema and API Sketch
	Relational/Core Schema (Sketch)
	API Sketch

	Simulation Appendix: RSVP Dynamics on the Graph
	Discrete State
	Update Equations (Example)
	Pseudocode

	Additional UML Sketches
	Sequence: Polycompile and Reset

	Verification-Oriented Invariants and Proof Sketches
	Invariant: Link Bidirectionality
	Invariant: Sheaf Compatibility of Galaxy Views
	Safety Property: Reset Preserves Connectivity
	Coq/Lean-Style Theorem Template

	Conclusion

