RSVP-Polyxan: A Unified Field Theory of Semantic Hyperstructures

Flyxion

2025

Abstract

This paper develops a unified theoretical framework coupling the Relativistic Scalar–Vector Plenum (RSVP) field system, defined on a semantic manifold of embeddings, with the Polyxan hypermedia substrate, a typed, bidirectionally linked graph of content atoms and media quines in the Xanadu tradition. We construct an action functional for RSVP fields over semantic space, derive Euler–Lagrange equations, introduce a geometric interpretation of polysemantic clusters, and establish a sheaf-theoretic treatment of galaxy-local worldviews. We then develop a categorical architecture for Polyxan transformations, including a Polycompiler endofunctor and an RSVP-to-field category mapping. Throughout, we present proofs, lemmas, and structural invariants that guarantee coherence between continuous semantic fields and discrete hypergraphs.

Contents

1	Introduction	1
2	Semantic Manifold and RSVP Fields	2
3	RSVP Lagrangian Formulation	2
4	Coupling RSVP to the Polyxan Hypergraph	3
	4.1 Topological Curvature from Links	3
5	Sheaf-Theoretic Interpretation	3
6	Category-Theoretic Architecture	4

7 Stability and Energy Minimization

_

8 Global Reset as Field Reconfiguration

5

4

9 Conclusion

5

1 Introduction

The RSVP–Polyxan framework fuses three mathematical layers:

- A semantic manifold X where conceptual embeddings live.
- A field theory consisting of a scalar potential Φ , vector flow \mathbf{v} , and entropy field S.
- A **typed hypergraph** of content atoms and links, whose structure both sources and responds to RSVP fields.

The goal is to provide a unified variational, geometric, and categorical description of semantic information flow.

2 Semantic Manifold and RSVP Fields

Let (X, g) be a smooth Riemannian manifold representing semantic space.

Define three RSVP fields:

$$\Phi: X \to \mathbb{R}, \quad \mathbf{v}: X \to TX, \quad S: X \to \mathbb{R}.$$

These fields describe:

- Φ : semantic potential or coherence density.
- v: directed agency or semantic drift.
- S: entropy, uncertainty, or morphic degeneracy.

Field derivatives are defined using the Levi-Civita connection.

3 RSVP Lagrangian Formulation

We propose an action functional:

$$\mathcal{A}[\Phi, \mathbf{v}, S] = \int_X \mathcal{L} \, d\mu_g$$

where the Lagrangian density incorporates kinetic, elastic, and potential terms:

$$\mathcal{L} = \frac{1}{2} (\partial_t \Phi)^2 - \frac{c_{\Phi}^2}{2} \|\nabla \Phi\|^2$$
$$+ \frac{1}{2} \|\partial_t \mathbf{v}\|^2 - \frac{c_v^2}{2} \|\nabla \mathbf{v}\|^2$$
$$+ \frac{1}{2} (\partial_t S)^2 - \frac{c_S^2}{2} \|\nabla S\|^2$$
$$- V(\Phi, \mathbf{v}, S; \rho, \kappa).$$

Here:

- $\rho(x)$ = node density induced by Polyxan graph.
- $\kappa(x) = \text{local curvature induced by typed links.}$

Variation yields Euler–Lagrange equations:

$$\frac{\delta \mathcal{A}}{\delta \Phi} = \partial_t^2 \Phi - c_\Phi^2 \Delta \Phi - \frac{\partial V}{\partial \Phi} = 0,$$

and similarly for \mathbf{v}, S .

4 Coupling RSVP to the Polyxan Hypergraph

Let G = (V, E) be the Polyxan graph. Each node $i \in V$ is assigned an embedding $\mathbf{z}_i \in X$. Define discrete samples:

$$\Phi_i = \Phi(\mathbf{z}_i), \quad \mathbf{v}_i = \mathbf{v}(\mathbf{z}_i), \quad S_i = S(\mathbf{z}_i).$$

Define a discrete evolution law:

$$\frac{d\mathbf{z}_i}{dt} = -\alpha \nabla \Phi(\mathbf{z}_i) + \beta \mathbf{v}(\mathbf{z}_i) - \gamma \nabla S(\mathbf{z}_i).$$

Thus embeddings evolve in RSVP gradient flows.

4.1 Topological Curvature from Links

Define a link-curvature invariant:

$$\kappa_i = \sum_{j,k \sim i} f_{\text{tri}}(i,j,k)$$

counting typed 3-cycles weighted by link types.

This curvature term shapes the potential V.

5 Sheaf-Theoretic Interpretation

Define for each user u an open neighborhood $U_u \subset X$.

Define a presheaf \mathscr{G} of galaxy renderings:

$$\mathscr{G}(U) = \{ \text{layout functions over } U \}.$$

Restriction maps obey:

$$\rho_{UV}(G_U) = G_V \quad \text{for } V \subset U.$$

 \mathcal{G} is a sheaf if:

- the layout map is determined by (Φ, \mathbf{v}, S) ,
- embeddings are globally indexed,
- projections are deterministic.

Sketch. Local layouts glued along intersections produce a unique global layout due to determinism and continuity. \Box

6 Category-Theoretic Architecture

Define category \mathbf{C} :

- Objects = Content Atoms, Spans.
- Morphisms = Typed Links.

Define the Polycompiler as an endofunctor:

Poly :
$$\mathbf{C} \to \mathbf{C}$$
.

Define RSVP as a functor RSVP : $\mathbf{C} \to \mathbf{F}$ where \mathbf{F} is the category of field configurations.

The composition $\mathsf{RSVP} \circ \mathsf{Poly}$ yields a natural transformation describing generative semantic deformation.

7 Stability and Energy Minimization

Define energy:

$$E = \int_{X} V(\Phi, \mathbf{v}, S; \rho, \kappa) \, d\mu_{g}.$$

We show:

Fixed points of RSVP flow minimize E subject to embedding constraints.

Sketch. Gradient descent of embeddings follows $-\nabla E$ by design.

8 Global Reset as Field Reconfiguration

Define reset operator:

$$\mathcal{R}: (\Phi, \mathbf{v}, S, \mathbf{z}) \mapsto (\Phi', \mathbf{v}', S', \mathbf{z}')$$

where \mathcal{R} recomputes fields and embeddings by:

• re-estimating ρ, κ ,

- relaxing the field equations,
- reprojecting embeddings into X.

Reset corresponds to a global reconfiguration of semantic geometry.

9 Conclusion

This paper establishes RSVP–Polyxan as a unified field theory of semantic hyperstructures: a continuous-discrete coupling between fields and hypergraphs, governed by a variational principle and coherently assembled through sheaf and category theory.