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Abstract

The contemporary internet exhibits a structural drift from participatory
infrastructure toward extractive platform regimes characterized by surveillance,
lock-in, and asymmetrical optimization. Economic accounts such as Tim Wu’s
theory of extraction and Cory Doctorow’s model of enshittification describe
the lifecycle through which digital platforms transition from value creation to
rent capture. While analytically powerful, these frameworks remain primarily
within political economy.

This essay develops a structural interpretation grounded in constraint-first
ontology and thermodynamic governance. Platforms are modeled as gradient-
harvesting systems that convert informational asymmetries into economic work.
Surveillance reduces uncertainty, optimization exploits resulting gradients, and
weakened institutional constraints permit convergence toward extractive equi-
libria. Informational trust collapse, wage discrimination, dynamic pricing,
and attention capture are treated as manifestations of unconstrained gradient
descent in socio-technical systems.

Drawing on scalar–vector field analysis and entropy-bounded semantic con-
straint, the essay advances a constructive program centered on interoperability,
reversibility, auditability, and bounded surveillance. The decay of the internet
is thus understood not as technological inevitability but as constraint erosion.
Restoring invariant structural limits can stabilize informational ecosystems
and realign digital infrastructures with autonomy, epistemic integrity, and
democratic resilience.
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1 Introduction: From Extensible Commons to Ex-
tractive Regimes

The early public internet was not merely a technological substrate but an extensible
environment of agency. Its architecture permitted modification, interoperability, and
recoverability. Users experienced tools as predictable instruments rather than as
adversarial mediators. Protocols were open, clients were interchangeable, and failure
was typically local rather than systemic. The web browser could be modified; email
clients could be replaced; servers could be self-hosted. Ranking systems and search
outputs functioned, at least aspirationally, as epistemic aids rather than monetized
influence surfaces.

This environment was neither utopian nor free of hierarchy, yet it possessed a structural
property that has since eroded: reversibility. When a service degraded, alternative
clients or competing platforms could arise. When an interface behaved in ways adverse
to user interests, it could be modified, filtered, or bypassed. The architecture preserved
degrees of freedom. Agency was not absolute, but it was structurally encoded.

Contemporary platforms differ in kind rather than merely in scale. The dominant digi-
tal infrastructures of the present moment operate as vertically integrated optimization
systems. Interfaces simulate neutrality while embedding layered ranking logic tuned to
advertiser yield, behavioral prediction, and engagement maximization. Search results
are blended with sponsored placement; recommendation systems interleave organic
and paid signals; marketplace listings incorporate fee-weighted visibility. The surface
remains smooth while the objective function shifts.

This transformation is institutional as much as technical. Digital infrastructure has
migrated from protocol-based commons toward proprietary, enclosure-based ecosys-
tems. Anti-circumvention law constrains modification. Intellectual property regimes
prohibit reverse engineering. Acquisitions suppress emergent competitors before they
mature into structural alternatives. Disclosure-based privacy frameworks shift cogni-
tive burden to individuals while leaving surveillance architecture intact. The result is
not merely corporate concentration but objective misalignment: systems that once
mediated communication now optimize extraction.

The phenomenological dimension of this shift is widely recognized. Users report
diminished trust in search results and recommendation feeds. Sellers report declining
margins despite rising transaction volumes. Workers encounter intensified surveillance
and algorithmic management. What appears as frictionless convenience masks layered
optimization targeting attention, vulnerability, and dependency.
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Recent public discourse has articulated this drift through economic and lifecycle
models. These frameworks identify monopoly power, bottleneck control, and lock-in
dynamics as central drivers. Yet even where these diagnoses are accurate, they remain
incomplete without a deeper account of why such dynamics converge so reliably under
contemporary institutional conditions.

To understand the decay of the contemporary internet requires moving beneath market
structure toward structural ontology. Optimization is not inherently pathological; it
becomes corrosive when unbounded by invariant constraints. Surveillance does not
inevitably produce exploitation; it does so when informational gradients are permitted
to accumulate without reciprocal balancing. Extraction is not an anomaly but the
predictable attractor of unconstrained gradient descent within socio-technical systems.

The sections that follow reconstruct the prevailing economic explanations before
situating them within a broader thermodynamic and constraint-first framework. The
aim is not to displace existing critiques but to embed them within a structural theory
capable of generating constructive remedies.

2 Economic Diagnoses: Extraction and Lifecycle
Degradation

Two influential frameworks have emerged to describe the present condition of digital
platforms. The first, articulated by Tim Wu, centers on the concept of extraction.
The second, advanced by Cory Doctorow, describes a staged lifecycle of platform
degradation termed enshittification. Though developed independently, these models
converge upon a shared structural insight: dominant platforms have shifted from value
creation toward rent capture under conditions of weakened competitive discipline.

Wu’s theory of extraction draws from classical monopoly economics. Extraction
occurs when a firm possessing durable market power is able to take wealth in excess
of the competitive value of its service by exploiting bottlenecks, dependency, and
asymmetrical information. The focus is not merely on high prices but on the systematic
conversion of structural leverage into economic surplus. Under competitive conditions,
firms are disciplined by exit options; under monopoly or oligopoly, this discipline erodes.
The resulting environment encourages a shift from product improvement toward
identification of “pain points” where consumers or suppliers lack viable alternatives.

Digital platforms provide a particularly potent substrate for extraction because they
function as intermediated marketplaces. They bring together buyers and sellers,
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speakers and audiences, workers and employers. When such platforms achieve sufficient
scale, they acquire the capacity to modulate visibility, ranking, and access. Sponsored
placement, dynamic pricing, and fee layering become mechanisms through which the
platform monetizes its gatekeeping role. The system remains functional in appearance,
yet the informational order within it becomes a revenue surface.

Doctorow’s model complements this analysis by describing the temporal dynamics of
platform degradation. According to his schema, platforms pass through three phases.
In the first phase, they subsidize users to build scale and network effects. In the
second, once user lock-in is established, they degrade user experience in order to
attract and privilege business customers, such as advertisers or sellers. In the third
phase, once both users and business customers are dependent, the platform extracts
from both sides, reducing overall value to the minimum required to prevent mass exit
while redirecting surplus toward shareholders.

The strength of the enshittification model lies in its attention to sequencing. It identifies
not merely the presence of extraction but the structural transition from subsidization
to dependency to rent capture. Crucially, Doctorow emphasizes that this transition
is not simply the result of managerial greed; rather, it is enabled by the erosion of
countervailing forces. Competition is neutralized through acquisition. Regulatory
oversight is weakened or captured. Labor solidarity dissipates. Interoperability is
constrained by intellectual property law. Once these disciplining mechanisms are
removed, platforms face diminished consequences for degradation.

Both frameworks illuminate the contemporary collapse of informational trust. Search
engines and marketplaces once operated under an implicit epistemic contract: ranking
signaled relevance or quality. As sponsored placement and algorithmic steering become
central revenue streams, that contract erodes. Users encounter blended feeds in which
the distinction between organic signal and paid influence becomes opaque. Sellers
must purchase visibility to maintain reach. Attention is allocated not by epistemic
merit but by monetized priority.

The economic models thus successfully describe the surface dynamics of platform
decay. They identify monopoly leverage, lifecycle degradation, and regulatory retreat
as central causal factors. Yet these accounts remain primarily situated within political
economy. They explain how extraction occurs, and why it has intensified, but they
do not fully articulate why unconstrained optimization reliably converges toward
exploitative equilibria across domains.

To move beyond description toward reconstruction requires a more general structural
account of optimization, asymmetry, and constraint. The next section develops

4



such an account by interpreting surveillance and platform optimization through a
thermodynamic lens.

3 Surveillance, Gradients, and Thermodynamic Ex-
ploitation

Surveillance is not merely a privacy concern; it is a structural transformation of
uncertainty into leverage. When behavioral data is collected at sufficient resolution,
uncertainty about preferences, vulnerabilities, and constraints is reduced. This re-
duction of uncertainty generates informational gradients. Optimization engines then
exploit these gradients to direct attention, modulate pricing, or adjust compensation.

In thermodynamic terms, a gradient is a structured difference that can be harvested
to perform work. Temperature gradients power engines; pressure gradients drive
flows. Informational gradients similarly enable economic work. A platform that knows
which user is most vulnerable to a given stimulus can target that user with greater
precision. A marketplace that knows which seller is most dependent can increase fees
incrementally without triggering exit. An employer that knows which worker carries
the highest debt burden can adjust wages downward while maintaining labor supply.

Surveillance lowers entropy within the platform’s internal model of the world while
increasing entropy for participants. The platform gains predictive clarity; users and
workers encounter opacity. Asymmetry in knowledge becomes asymmetry in bargaining
power. Dynamic pricing, algorithmic wage discrimination, attention capture, and
behavioral nudging are distinct instantiations of the same structural phenomenon:
gradient exploitation under weak constraint.

Algorithmic wage discrimination provides a particularly stark example. When staffing
platforms purchase credit histories or behavioral data, they are not simply optimizing
scheduling efficiency; they are mapping desperation gradients. Workers with higher
debt burdens or fewer outside options can be offered lower wages because their
acceptance threshold is known. Historically, such fine-grained discrimination would
have required prohibitive monitoring costs. Automation renders it scalable. The
system thus converges toward individualized extraction calibrated to vulnerability.

Attention markets operate through analogous mechanisms. Recommendation systems
collect behavioral signals to model susceptibility to engagement loops. The more
precisely susceptibility can be predicted, the more effectively content can be sequenced
to sustain attention. Engagement optimization becomes a form of cognitive gradient
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harvesting. Each scroll, pause, or click reduces uncertainty, enabling further refinement
of the extraction vector.

These processes are not accidental side effects but structurally predictable outcomes
of unconstrained optimization. When the objective function is profit maximization
and the system has access to high-resolution data, optimization converges toward
the steepest available gradient. Without boundary conditions limiting exploitation of
asymmetry, the attractor state is extractive equilibrium.

This dynamic aligns with a broader structural insight: optimization is directional. It
does not merely increase efficiency; it moves systems along specific vectors defined
by their objective functions. In physical systems, unconstrained gradient descent
leads toward entropy maximization or energy minimization depending on context. In
socio-technical systems governed by profit objectives, unconstrained gradient descent
leads toward concentration of leverage and externalization of cost.

The informational trust collapse observed in contemporary platforms can thus be
interpreted as a thermodynamic inevitability under current objective functions. When
ranking position becomes monetizable, epistemic order transforms into a revenue
surface. When attention is priced, cognition becomes a yield curve. When labor
metrics are continuously monitored, human dignity becomes a variable in a performance
function.

The problem is not optimization per se but optimization without invariant constraints.
In the absence of boundary conditions preserving autonomy, reversibility, and reci-
procity, systems exploit gradients until social cohesion erodes. The next section
situates this convergence within a constraint-first ontology, drawing on RSVP and
entropy-bounded governance to articulate a deeper structural diagnosis.

4 Constraint Erosion and the Pathology of Un-
bounded Optimization

The preceding analysis suggests that extraction and lifecycle degradation are not
isolated failures of corporate virtue but manifestations of a deeper structural drift. To
understand that drift requires a shift in ontological framing. Rather than treating
markets as neutral arenas occasionally distorted by monopoly, a constraint-first
perspective asks what boundary conditions define the permissible trajectories of
optimization within a system.
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Constraint-first ontology begins from the premise that structure precedes content.
Systems remain healthy not because their participants are benevolent but because
invariant constraints prevent destabilizing gradients from dominating. In physical
systems, conservation laws and boundary conditions stabilize dynamics. In socio-
technical systems, interoperability norms, regulatory oversight, labor bargaining power,
and informational transparency serve analogous functions.

The contemporary internet exhibits what may be termed constraint erosion. Over
several decades, legal and institutional reforms have weakened or removed many of the
mechanisms that once bounded platform behavior. Anti-circumvention law restricts
modification and alternative clients. Intellectual property expansion inhibits reverse
engineering and protocol-level experimentation. Antitrust enforcement has retreated
from structural remedies toward narrow consumer price analysis. Privacy regulation
has often defaulted to disclosure regimes that preserve surveillance while redistributing
cognitive burden to individuals.

These changes do not simply permit larger firms; they alter the feasible space of
optimization. When interoperability is suppressed, exit costs rise. When surveillance
remains unbounded, informational gradients intensify. When acquisitions preempt
emergent competitors, adaptive alternatives fail to mature. Optimization therefore
proceeds along steeper extractive vectors with diminished countervailing resistance.

Within the RSVP framework, this can be interpreted as a loss of entropy-balancing
scalar fields relative to directional vector flows. Vector flows correspond to directed
optimization pressures, such as profit maximization. Scalar smoothing corresponds
to distributed constraints that equalize gradients and prevent runaway concentra-
tion. When scalar balancing mechanisms weaken, vector flows dominate, producing
concentrated vortices of control.

In social terms, such vortices manifest as platform centralization, epistemic distortion,
and labor precarity. The system does not collapse immediately; rather, it enters a
metastable regime characterized by high extraction and low resilience. Trust erodes
gradually. Margins narrow for participants other than shareholders. Informational
order becomes increasingly opaque. The system remains operational but brittle.

Doctorow’s emphasis on the removal of “discipline” can be reframed within this
ontology as the elimination of balancing constraints. Competition, labor solidar-
ity, regulatory oversight, and interoperability previously acted as gradient limiters.
Their erosion does not guarantee exploitation, but it increases the probability that
optimization converges toward extractive equilibria.

This perspective also clarifies why disclosure-based governance proves insufficient.
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Requiring users to consent to surveillance does not alter the gradient structure; it
merely legitimizes it procedurally. Consent cannot meaningfully constrain optimization
when exit costs are high and alternatives are absent. Constraint must operate at the
architectural level rather than at the level of individual choice.

The pathology of the contemporary internet is therefore best understood as unbounded
optimization within weakened constraint fields. Extraction is the economic expression
of this structural drift. Informational trust collapse is its epistemic expression. Al-
gorithmic management and dynamic pricing are its labor and consumer expressions.
The underlying cause is not technological inevitability but objective misalignment
combined with constraint erosion.

Having situated the diagnosis within a thermodynamic and constraint-first ontology,
the essay now turns to reconstruction. If extraction is the predictable attractor
of unconstrained optimization, then structural remedies must reintroduce invariant
boundary conditions that preserve degrees of freedom and stabilize gradients.

5 Invariant Constraints and Interoperable Archi-
tecture

If the pathology of contemporary platforms arises from unbounded optimization under
weakened constraint, then remediation must proceed at the level of structural boundary
conditions. The central design question becomes not how to fine-tune engagement
metrics or rebalance advertising markets, but which invariants must be preserved to
prevent extractive convergence.

A constraint-first reconstruction begins with interoperability. Protocol-level interoper-
ability lowers switching costs and restores competitive discipline without requiring
complete market fragmentation. When alternative clients, feeds, ranking systems, and
filtering layers are legally and technically permitted, users regain degrees of freedom.
Interoperability transforms a monolithic optimization engine into a contested ecology
of operators. It reintroduces friction against unilateral objective functions by allowing
participants to route around them.

Interoperability does not eliminate optimization; it pluralizes it. Competing ranking
algorithms, privacy-preserving clients, and alternative interface designs generate
distributed objective functions within a shared substrate. The resulting system
resembles an ecosystem rather than a vertically integrated extraction pipeline. In
thermodynamic terms, interoperability diffuses steep gradients by enabling lateral
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flows rather than enforcing singular channels.

Reversibility constitutes a second invariant constraint. Systems should permit exit
without catastrophic loss of social or economic capital. Data portability, standardized
identity protocols, and open communication layers reduce the cost of departure.
When exit is feasible, degradation imposes measurable cost on the degrading party.
Reversibility thus reinstates a form of structural discipline without presupposing
constant regulatory intervention.

Auditability provides a third constraint. Algorithmic systems that mediate information,
labor, or pricing must be subject to meaningful inspection. Black-box optimization
accelerates extractive drift by obscuring gradient structure. Auditability introduces
transparency into the objective function, allowing misalignment to be detected before it
becomes systemic. This need not entail full public disclosure of proprietary algorithms;
rather, it requires enforceable mechanisms for verifying compliance with defined
boundary conditions.

A fourth invariant concerns bounded surveillance. Surveillance fuels gradient harvesting
by reducing uncertainty asymmetrically. Privacy reform should therefore be reframed
as optimization constraint rather than consumer preference management. Limiting
data accumulation increases entropy within the platform’s predictive model, reducing
the precision with which vulnerability can be exploited. In thermodynamic language,
privacy introduces controlled noise that prevents predatory gradient amplification.

These architectural constraints are mutually reinforcing. Interoperability lowers
exit costs. Reversibility ensures degradation has consequences. Auditability reveals
objective misalignment. Privacy limits gradient accumulation. Together they establish
a structural field within which optimization may occur without converging toward
exploitation.

Such constraints need not eliminate profit motives or competition. Rather, they bound
the feasible region of objective space. Firms may compete on service quality, efficiency,
or innovation, but not on unrestrained surveillance or coercive lock-in. The aim is not
to suppress optimization but to ensure that its trajectories remain compatible with
autonomy, dignity, and epistemic trust.

The next section extends this reconstruction by applying entropy-bounded gover-
nance and operator-ecological principles to labor, attention markets, and democratic
oversight.
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6 Entropy-Bounded Governance and Operator Ecol-
ogy

Architectural constraints address the structural conditions of platform optimization.
Yet stable reform also requires governance principles capable of bounding extraction
across domains such as labor, attention, and marketplace exchange. Entropy-bounded
governance provides a conceptual framework for articulating these limits.

Within an entropy-bounded model, informational and behavioral data are treated
as civic resources embedded in a shared ecosystem. Surveillance accumulation in-
creases informational asymmetry, which in turn enables gradient exploitation. When
asymmetry surpasses socially sustainable thresholds, the resulting extraction degrades
trust and agency. Governance must therefore establish upper bounds on asymmetry
accumulation rather than merely regulating downstream harms.

In labor markets, this entails limiting vulnerability-based wage discrimination and
biometric surveillance. Data collection should be restricted to operationally necessary
metrics. Predictive modeling based on personal debt, health status, or other extrinsic
vulnerabilities introduces steep gradients that convert private hardship into employer
leverage. Entropy-bounded labor governance constrains such gradients by narrowing
permissible data inputs and prohibiting compensation models calibrated to desperation.

In attention markets, entropy bounds require limiting manipulative personalization.
Recommendation systems may sort and filter content, but they should not be permitted
to exploit high-resolution psychological modeling to induce compulsive engagement.
Dark patterns, exploitative notification design, and asymmetrical reinforcement loops
represent gradient intensifiers that degrade cognitive autonomy. Bounded governance
would constrain these intensifiers through design standards and enforceable limits on
behavioral targeting.

Marketplace ranking systems similarly require entropy bounds. When visibility can
be purchased without clear demarcation, epistemic order collapses into monetized
influence. Sponsored placement may remain permissible, but it must be distinctly
partitioned from organic ranking signals. Informational clarity restores epistemic
integrity by preventing covert blending of revenue-driven ordering with quality-based
ordering.

These domain-specific applications reflect a broader operator-ecological perspective.
Platforms are not isolated firms but ecological operators within a socio-technical field.
Healthy ecosystems exhibit diversity, redundancy, and modularity. Monocultures
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are efficient but brittle; they amplify localized perturbations into systemic failures.
Operator ecology therefore prioritizes decentralization of control surfaces, encouraging
distributed innovation rather than centralized gatekeeping.

Ecological resilience arises when multiple pathways exist for communication, exchange,
and labor coordination. Interoperability fosters such diversity. Modular protocols
prevent single points of failure. Public digital infrastructure can serve as a baseline
substrate upon which private innovation occurs without monopolistic enclosure. In
this model, the platform ceases to be the sovereign arbiter of exchange and becomes
one operator among many within a shared environment.

Democratic governance functions as gradient stewardship within this ecology. The
central political question is not whether optimization should occur but who defines
its objective function and what constraints delimit it. Public institutions must
articulate boundary conditions that preserve autonomy and informational integrity.
This involves legislative clarity, regulatory enforcement, and institutional capacity to
adapt as technological gradients evolve.

Critically, entropy-bounded governance avoids the false dichotomy between innovation
and regulation. Innovation proceeds within defined constraint fields, much as engi-
neering operates within material and thermodynamic limits. By establishing invariant
constraints, governance channels innovation toward constructive trajectories rather
than extractive attractors.

The final section returns to the philosophical horizon of the discussion, addressing
whether maximal optimization constitutes a desirable social endpoint and clarifying
the normative commitments underlying constraint-bounded reconstruction.

7 Conclusion: Against Maximal Optimization

The crisis of the contemporary internet is frequently framed as a story of corporate
excess, technological hubris, or regulatory inertia. Each of these elements is present.
Yet beneath them lies a more fundamental structural issue: the normalization of
maximal optimization without invariant constraint.

Optimization is often treated as synonymous with progress. Markets optimize al-
location; algorithms optimize engagement; logistics systems optimize throughput.
Efficiency appears self-justifying. However, efficiency is always relative to an objective
function. When the objective function is profit under weak constraint, optimization
converges toward extraction. When surveillance remains unbounded, informational
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gradients intensify. When interoperability is suppressed, exit costs rise. Under such
conditions, the attractor state of the system is not mutual flourishing but asymmetric
leverage.

The question raised implicitly throughout the public debate is not merely economic but
philosophical. Should every second of human attention be monetizable? Should every
asymmetry in vulnerability be harvestable? Should ranking systems that mediate
epistemic access be governed primarily by advertising yield? A society committed to
maximal optimization along these vectors will produce measurable output, but it will
also erode trust, autonomy, and democratic capacity.

Constraint-bounded reconstruction offers an alternative trajectory. By restoring
interoperability, ensuring reversibility, limiting surveillance, mandating auditability,
and bounding asymmetry in labor and marketplace governance, it becomes possible
to stabilize gradients and preserve degrees of freedom. Optimization need not be
abolished; it must be situated within structural fields that protect agency and epistemic
integrity.

The decay of the internet is therefore neither technological destiny nor irreversible
decline. It is the consequence of objective misalignment compounded by constraint
erosion. Platforms did not inevitably transform into extractive regimes; they did so
because boundary conditions weakened while optimization intensified. Reintroducing
those constraints is not an act of nostalgia but an act of architectural correction.

Digital infrastructures shape perception, exchange, and labor at civilizational scale.
Their governance cannot be reduced to consumer preference or shareholder return. If
informational ecosystems are treated as thermodynamic systems requiring balanced
gradients, then stewardship replaces exploitation as the organizing principle.

The task before contemporary governance is not to suppress innovation but to define
the invariant constraints within which innovation unfolds. Without such constraints,
extraction remains the dominant attractor. With them, it becomes possible to cultivate
digital systems oriented toward autonomy, resilience, and collective intelligence rather
than toward maximal yield.

In this sense, the future of the internet depends less on technological breakthroughs
than on institutional design. The choice is not between efficiency and stagnation
but between unbounded optimization and constraint-aligned development. Only the
latter preserves the structural conditions under which freedom, trust, and democratic
deliberation can endure.
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Appendices

A Optimization Under Asymmetric Information
Gradients

This appendix formalizes the structural claim that unconstrained optimization under
informational asymmetry converges toward extractive equilibria.

A.1 A.1 System Setup

Let there be a platform P interacting with a population of agents i ∈ {1, . . . , n}.

Each agent possesses:
xi ∈ X

representing behavioral state (preferences, vulnerabilities, time constraints, etc.).

The platform possesses a predictive model:

x̂i = f(Di)

where Di is accumulated surveillance data on agent i.

Define the informational asymmetry for agent i as:

∆i = H(xi)−H(xi | Di),

where H denotes Shannon entropy.

Thus ∆i measures entropy reduction achieved through surveillance.

A.2 A.2 Profit Optimization

Suppose the platform selects an action ai (price, wage, ranking weight, content
sequencing) to maximize profit:

Π =
n∑

i=1

π(ai, xi),
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subject to behavioral response constraints.

If P has perfect knowledge of xi, it can choose:

a∗i = argmax
a

π(a, xi).

Under uncertainty, expected profit becomes:

E[π(ai, xi)].

As ∆i → max, predictive uncertainty shrinks:

Var(xi | Di) → 0,

and the platform approaches first-degree price or wage discrimination.

A.3 A.3 Extractive Attractor

Define the agent surplus for i as:

Si = Ui(xi)− Ci(ai),

and platform surplus as:
Πi = Ri(ai)−Ki.

Under competitive conditions:

maxΠi is constrained by exit.

Under lock-in and high ∆i, the feasible action set expands:

ai ∈ Alocked ⊃ Acompetitive.

The equilibrium shifts toward:

a∗i → argmax
a

Πi subject only to minimal retention constraint.
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Thus extractive equilibrium arises when:

∆i ↑, exit cost ↑, constraint field ↓ .

A.4 A.4 Constraint-Bounded Optimization

Introduce a constraint functional:

C(ai, Di) ≤ κ,

where κ bounds permissible asymmetry exploitation.

Then the optimization becomes:

max
ai

∑
i

π(ai, xi) subject to C(ai, Di) ≤ κ.

If C penalizes gradient exploitation proportional to ∆i, then:

∂Π

∂∆i

is bounded.

Hence bounded surveillance limits convergence to extractive equilibria.

A.5 A.5 Structural Interpretation

Extraction is therefore not anomalous but the natural attractor of:

maxΠ with ∆ → max and weak constraints.

Reform must operate by:

Bounding ∆, Lowering exit costs, Increasing constraint strength.

This formalization demonstrates that gradient harvesting under informational asym-
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metry predicts extractive convergence absent invariant constraints.

B Thermodynamic Interpretation of Surveillance
and Entropy Flow

This appendix formalizes the claim that surveillance-driven platforms operate as
gradient-harvesting systems that convert informational asymmetries into economic
work. The analysis draws analogies from statistical thermodynamics while remaining
within an information-theoretic framework.

B.1 B.1 Informational Entropy and Uncertainty

Let X denote the state of an agent (preferences, constraints, behavioral tendencies).
The platform maintains a probabilistic model P (X).

The Shannon entropy of the agent state is:

H(X) = −
∑
x

P (x) logP (x).

After surveillance data D is acquired, the conditional entropy becomes:

H(X | D).

Define entropy reduction:

∆H = H(X)−H(X | D).

This reduction represents the informational gradient accumulated by the platform.

B.2 B.2 Economic Work from Informational Gradients

In thermodynamics, usable work is extracted from gradients (e.g., temperature differ-
ences). Analogously, economic work is extracted from informational gradients.
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Define platform profit contribution from agent i as:

Wi = g(∆Hi),

where g is monotonically increasing.

Under zero informational asymmetry:

∆Hi = 0 ⇒ Wi = Wbaseline.

As ∆Hi increases, predictive accuracy correspondingly improves, thereby expanding
the feasible precision with which the platform can calibrate interventions directed at
agent i. Formally, this relationship may be expressed as

∂Wi

∂∆Hi
> 0,

indicating that the marginal extractable work or revenue associated with agent i is
strictly increasing in the reduction of informational entropy. Greater informational
resolution permits the platform to approximate individualized thresholds with increas-
ing fidelity. In pricing contexts, this manifests as dynamic adjustment toward an
agent’s willingness-to-pay boundary. In labor markets, it appears as wage calibration
sensitive to measured vulnerability or reservation wage proxies. Within attention
markets, enhanced predictive granularity enables sequencing strategies that maximize
engagement by targeting susceptibility gradients. In each case, informational entropy
reduction is converted into economic work through increasingly fine-grained alignment
between predicted behavioral response and optimization objective.

B.3 B.3 Entropy Export and Externalization

Let total system entropy be:

Stotal = Splatform + Sagents.

Surveillance reduces internal entropy of the platform model:

Splatform ↓ .

However, this reduction of entropy within the platform’s internal predictive model
frequently corresponds to an increase in effective behavioral entropy at the level of
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agents. Formally, one may express this asymmetry as

Sagents ↑,

where Sagents denotes the dispersion, instability, or unpredictability imposed upon
agents’ lived conditions. This increase may take multiple structurally analogous forms.
In cognitive domains, continuous engagement optimization can induce attentional
fragmentation and overload, generating unstable decision environments. In labor
markets, vulnerability-sensitive wage calibration can produce income volatility and
economic precarity. In informational ecosystems, monetized ranking can degrade
epistemic coherence by displacing relevance-based ordering with revenue-weighted
visibility.

The result is a transfer rather than an elimination of entropy. Informational order
becomes concentrated within the platform’s predictive apparatus, while experiential
disorder is distributed outward across the agent population. Predictive certainty is
centralized; uncertainty is externalized.

B.4 B.4 Gradient Instability and Extractive Vortices

Let G denote an asymmetry gradient (knowledge, bargaining power, attention lever-
age).

Define system stability condition:

|∇G| ≤ γcrit.

If:
|∇G| > γcrit,

feedback amplification occurs, producing a concentration vortex in which:

dG

dt
> 0 and variance in surplus distribution increases.

Empirically, this dynamic manifests in observable structural shifts across economic and
informational domains. Profit margins derived from intermediation tend to increase
as platforms refine their capacity to appropriate surplus from dependent participants.
Informational trust correspondingly declines as ranking systems and recommendation
engines become visibly subordinated to monetized placement rather than epistemic

18



relevance. Simultaneously, control over visibility, distribution, and access becomes
increasingly concentrated within a small number of centralized operators, amplifying
their capacity to modulate flows of attention, labor, and exchange. These outcomes
are not isolated symptoms but coordinated expressions of gradient amplification under
weakened constraint.

B.5 B.5 Entropy-Bounded Governance

Introduce an entropy bound:

∆Hi ≤ η,

where η defines the maximum permissible asymmetry.

Alternatively, impose gradient damping:

dG

dt
= −λG,

with λ > 0 representing regulatory or architectural constraint strength.

Under sufficient damping:

G → Gstable,

preventing runaway extraction.

B.6 B.6 Structural Implication

Surveillance accumulation is thermodynamically analogous to increasing free energy
gradients. Without damping mechanisms (privacy, interoperability, auditability), these
gradients drive work extraction until system brittleness increases.

Healthy informational ecosystems require bounded asymmetry and distributed entropy
flow rather than concentrated gradient harvesting.

This thermodynamic framing clarifies why privacy reform and interoperability are not
merely ethical preferences but structural stabilizers that prevent extractive gradient
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amplification.

C RSVP Scalar–Vector Interpretation of Platform
Optimization

This appendix situates platform extraction within the Relativistic Scalar–Vector
Plenum (RSVP) framework, interpreting socio-technical optimization as a coupled
scalar–vector field dynamic.

C.1 C.1 Field Representation

Within RSVP, system dynamics are modeled as interactions between:

Φ(x, t) (scalar field)

representing distributed structural density (norms, trust, reciprocity, epistemic in-
tegrity),

and

~v(x, t) (vector field)

representing directed flows (optimization pressures, profit gradients, attention steering).

Let entropy density be:
S(x, t).

Healthy systems maintain coupling between scalar smoothing and vector flow.

C.2 C.2 Unbounded Vector Dominance

Platform profit optimization can be modeled as a strong vector field:

~v = −∇Π,

where Π is the profit potential landscape.
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In absence of balancing scalar constraints:

∂Φ

∂t
� |~v| ,

vector flows dominate system evolution.

The consequences of such vector dominance appear in the reconfiguration of informa-
tional structure at scale. Attention flows become increasingly concentrated, channeled
through a narrow set of highly amplified nodes rather than distributed across diverse
pathways. Distributed epistemic density correspondingly collapses, as heterogeneous
sources of relevance are displaced by centrally optimized ranking regimes. Infor-
mational topology acquires increasing curvature, with gradients steepening around
monetized attractors and flattening elsewhere. What emerges is not merely inequality
of visibility but a structural reshaping of the communicative field, in which flow,
relevance, and discovery are progressively subordinated to concentrated optimization
pressures.

C.3 C.3 Scalar Smoothing as Constraint Field

Introduce scalar constraint potential:

U(Φ) = α

∫
(∇Φ)2 dx,

where α encodes constraint strength.

Coupled dynamics become:

∂Φ

∂t
= D∇2Φ− β∇ · ~v,

∂~v

∂t
= −γ∇Φ− δ~v.

In this formulation, D denotes the diffusion coefficient associated with the scalar field,
capturing the rate at which normative structure, trust, and distributed constraints
smooth local irregularities across the system. The parameter γ represents the coupling
strength between scalar density and vector flow, determining the extent to which
directed optimization pressures remain responsive to distributed structural conditions.
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The parameter δ encodes vector damping, limiting the persistence and amplification
of directed extraction flows.

When γ and δ are small, vector dynamics become weakly coupled to scalar structure
and insufficiently damped. Under such conditions, optimization pressures propagate
with minimal resistance, and localized gradients intensify into extractive vortices
characterized by concentrated control and surplus appropriation. Conversely, when
coupling and damping parameters are sufficiently large, scalar balancing forces coun-
teract directional amplification. Diffusion and feedback restrain curvature in the
informational field, preventing runaway concentration and stabilizing the system
within bounded equilibria.

C.4 C.4 Extractive Vortex Condition

Define curvature threshold:

κ = |∇ · ~v| .

If:
κ > κcrit,

localized collapse of scalar density occurs:

Φ → Φmin.

In socio-technical terms, this structural instability manifests as a collapse of trust
within the mediated environment, as participants increasingly perceive ranking, pric-
ing, and allocation mechanisms to be opaque or adversarial. Economic margins for
dependent participants compress as platforms appropriate surplus through intensified
intermediation and fee extraction. Simultaneously, epistemic quality degrades, as
relevance-based ordering is displaced by monetized prioritization and engagement-
optimized sequencing. These outcomes are not discrete failures but coordinated
expressions of concentrated gradient amplification operating within weakened con-
straint fields.
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C.5 C.5 Interoperability as Boundary Condition

Interoperability can be modeled as a boundary constraint:

Φ(x, t) ≥ Φmin,

enforced through:

Open protocol interfaces ⇒ Distributed vector fields.

This prevents singular concentration of ~v.

C.6 C.6 Structural Interpretation

Within RSVP terms, platform decay represents vector-field overdominance relative to
scalar balancing. Extraction corresponds to curvature amplification in profit gradients
absent diffusion.

Reconstruction therefore requires:

γ ↑, δ ↑, D ↑ .

That is, stability requires an increase in scalar coupling, understood as the strength-
ening of normative and legal constraints that bind directed optimization pressures to
distributed structural conditions. It further requires greater vector damping, achieved
through mechanisms such as privacy limits and enforceable auditability, which at-
tenuate the amplification of extractive flows. Finally, enhanced diffusion must be
introduced through interoperability and modularity, permitting gradients to disperse
across multiple pathways rather than concentrating within singular nodes. Together,
these adjustments restore balance between directed optimization and distributed struc-
tural integrity, preventing runaway concentration and preserving systemic resilience.

This scalar–vector formulation embeds platform extraction within a general field-
theoretic model of structural imbalance, clarifying why unconstrained optimization
converges toward concentrated control and how boundary conditions restore systemic
stability.
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D EBSSC Formal Model of Attention and Semantic
Extraction

This appendix develops a formal model of attention markets and semantic ordering
under the Entropy-Bounded Sparse Semantic Calculus (EBSSC) framework. EBSSC
imposes admissibility constraints on semantic ordering operators, bounding extrac-
tion by restricting distortion and concentration in exposure distributions. The aim
is to formalize how ranking systems become extractive when semantic ordering is
subordinated to monetized optimization.

D.1 D.1 Semantic Space and Attention Priors

Let (S, µ) denote a semantic space equipped with a base measure µ (counting or
continuous as appropriate). Elements s ∈ S represent content items such as posts,
products, or media objects.

Each agent i possesses a baseline attentional prior:

Ai : S → [0,∞),

normalized with respect to µ:

∫
S
Ai(s) dµ(s) = 1.

The platform applies a ranking weight function:

R : S → [0,∞), R(s) ≥ 0.

Exposure probability for agent i becomes:

Ei(s) =
R(s)Ai(s)∫

S R(s′)Ai(s′) dµ(s′)
.

Thus Ai encodes attentional predisposition, while R reweights exposure through
platform ordering.
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D.2 D.2 Neutral and Monetized Ranking Operators

Define neutral ranking operator:

Rneutral(s) = F (q(s), r(s)),

where q(s) denotes epistemic quality and r(s) relevance.

Define monetized ranking operator:

Rmonetized(s) = G(b(s), y(s), σi(s)),

where b(s) is bid price, y(s) engagement yield, and σi(s) susceptibility for agent i.

For distortion comparison, normalize ranking weights:

∫
S
Rneutral(s) dµ(s) =

∫
S
Rmonetized(s) dµ(s) = 1.

D.3 D.3 Semantic Distortion Metric

Define semantic distortion functional:

D =

∫
S
|Rneutral(s)−Rmonetized(s)| dµ(s).

This is an L1 distance on normalized ranking weights.

Define epistemic trust as a decreasing function of distortion:

Tepistemic = Φ(D), Φ′(D) < 0.

Thus increasing distortion reduces epistemic trust.

D.4 D.4 Aggregate Revenue Functional

Define aggregate platform revenue:
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Π =
∑
i

∫
S
ρ(s)Ei(s) dµ(s),

where ρ(s) denotes revenue per exposure.

Platform objective:

max
R(s)

Π.

Subject to retention constraint:

Pexit = Ψ(D, Hexposure, latency, friction), Pexit ≤ ε.

D.5 D.5 Revenue-Weighted Convergence

In the absence of distortion and diversity constraints, and assuming monotonic
correlation between monetization and engagement yield,

R(s) ∝ ρ(s),

leading to revenue-weighted ordering dominance.

D.6 D.6 Exposure Entropy and Concentration

Define exposure entropy (diversity measure):

Hexposure = −
∫
S
Ei(s) logEi(s) dµ(s).

High entropy indicates distributed exposure; low entropy indicates concentration.

Define concentration metric:

C =

∫
S
Ei(s)

2 dµ(s).
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As entropy decreases, concentration increases.

To distinguish diversity from noise, define relevance-weighted entropy:

HR = −
∫
S
Ei(s) logEi(s)wq(s) dµ(s),

where wq(s) weights epistemic quality.

D.7 D.7 EBSSC Admissibility Constraints

Define admissible ranking operator class:

R(s) ∈ Radmissible ⇐⇒ D ≤ θ and Hexposure ≥ Hmin.

Thus EBSSC constrains ranking operators by bounding distortion and preventing
excessive concentration.

Optimization becomes:

max
R∈Radmissible

Π.

D.8 D.8 Attention Capacity and Extractive Intensity

Define collective attention capacity:

Atotal =
∑
i

Ti,

where Ti denotes cognitive time.

Define marginal extractive intensity:

λ =
dΠ

dAtotal
,

interpreted as marginal revenue per unit collective attention.

Impose civic bound:
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λ ≤ λcivic,

where λcivic denotes the maximum extractive intensity compatible with preservation
of public informational goods.

D.9 D.9 Structural Limit Behavior

In the limit of vanishing constraints:

lim
θ→∞, Hmin→0

Hexposure = Hmin,

and concentration increases toward dominance.

EBSSC does not prohibit monetization but bounds semantic degradation by enforcing
operator admissibility.

This refined formalization situates attention extraction within an entropy-bounded
semantic calculus, clarifying how ranking systems become extractive and how admissi-
bility constraints stabilize informational ecosystems.

E Gradient-Bounded Labor Surveillance Model

This appendix formalizes labor extraction under surveillance asymmetry and develops a
gradient-bounded governance framework consistent with entropy-bounded optimization
principles. The objective is to model how informational asymmetry enables wage
discrimination and how constraint fields stabilize labor equilibria.

E.1 E.1 Labor State Space and Informational Asymmetry

Let each worker i possess a latent state vector:

xi = (pi, vi, ci),

where pi denotes productivity, vi vulnerability (e.g., debt burden, outside options),
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and ci constraint profile (time flexibility, mobility, etc.).

Let employer surveillance generate data stream Di and predictive model:

x̂i = f(Di).

Define informational asymmetry for worker i:

∆i = H(xi)−H(xi | Di),

where H denotes Shannon entropy.

Higher ∆i corresponds to greater employer predictive precision.

E.2 E.2 Wage Function Under Surveillance

Let wage offer be:

wi = W (x̂i).

In absence of vulnerability exploitation:

wi = w(pi),

i.e., wages depend only on productivity.

Under surveillance-enabled discrimination:

wi = w(pi, vi),

with:

∂wi

∂vi
< 0.

Thus higher vulnerability reduces wage offer.
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E.3 E.3 Employer Profit Functional

Employer profit from worker i:

Πi = R(pi)− wi,

where R(pi) denotes revenue from productivity.

Aggregate employer objective:

max
wi

∑
i

Πi.

Under high ∆i, employer approximates:

w∗
i = min{w : acceptance probability ≥ α}.

Acceptance probability depends on vulnerability:

Paccept = Γ(wi, vi).

As ∆i → max, employer can approximate worker reservation wage:

w∗
i → wreservation

i .

E.4 E.4 Vulnerability Gradient and Extraction

Define vulnerability gradient:

Gv =
∂wi

∂vi
.

Extraction intensifies as:

|Gv| ↑ .
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Define surplus distribution:

Sworker
i = wi − ci,

Semployer
i = R(pi)− wi.

As vulnerability discrimination increases:

Sworker
i ↓, Semployer

i ↑ .

E.5 E.5 Gradient-Bounded Constraint

Introduce asymmetry constraint:

∣∣∣∣∂wi

∂vi

∣∣∣∣ ≤ γ,

where γ bounds permissible vulnerability sensitivity.

Equivalently, restrict wage function domain:

wi = w(pi),

excluding vi dependence.

Alternatively, impose information constraint:

∆i ≤ η,

limiting surveillance accumulation.

E.6 E.6 Stability Condition

Define labor stability functional:
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L =
∑
i

Sworker
i .

Excessive extraction increases variance:

Var(Sworker
i ) ↑ .

Instability threshold:

Var(Sworker
i ) > σcrit ⇒ systemic fragility.

Gradient bounding ensures:

Var(Sworker
i ) ≤ σcrit.

E.7 E.7 Interpretation

Surveillance-enabled wage discrimination represents gradient harvesting along vul-
nerability axes. Absent constraint, optimization converges toward individualized
reservation wages, compressing worker surplus.

Gradient-bounded labor governance stabilizes the system by constraining the channels
through which informational asymmetry can be converted into wage discrimination.
This may occur through restricting the set of permissible informational inputs available
to employers, thereby limiting the accumulation of predictive leverage. It may also
involve bounding the sensitivity of wage determination to vulnerability parameters,
ensuring that compensation remains tied to productivity rather than to measured
precarity. Finally, stabilization can be achieved by strengthening workers’ outside
options—through collective bargaining, portability, or social safety mechanisms—
thereby flattening effective vulnerability gradients vi and reducing the exploitable
differential between reservation wage and offered compensation. In each case, the aim
is not to eliminate optimization but to prevent its convergence toward individualized
surplus extraction along asymmetry axes.

Thus labor extraction can be modeled as asymmetry amplification under unbounded
optimization, and stabilization requires explicit gradient constraints.
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This formalization demonstrates that labor surveillance becomes extractive precisely
when informational asymmetry enables vulnerability-dependent wage adjustment.
Bounding gradients restores structural equilibrium.

F Constraint-Field Stability Theorem

This appendix formalizes the general structural claim underlying the essay: socio-
technical systems governed by profit-maximizing optimization converge toward extrac-
tive equilibria in the absence of invariant constraint fields. Stability requires bounded
gradients and non-vanishing scalar balancing mechanisms.

F.1 F.1 System Dynamics

Let a socio-technical system be represented by state variable:

X(t) ∈ Rn,

encoding distributions of surplus, exposure, informational asymmetry, and control
concentration.

Let platform optimization be governed by objective function:

Π(X),

with gradient flow:

dX

dt
= ∇Π(X)−∇C(X),

where C(X) is a constraint potential.

In the unconstrained case:

C(X) ≡ 0,
dX

dt
= ∇Π(X).
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F.2 F.2 Extractive Equilibrium

Define extractive equilibrium X∗ as a fixed point satisfying:

∇Π(X∗) = 0,

subject to minimal retention constraint:

R(X∗) ≥ Rmin,

where R measures user or worker retention.

Assume Π is convex along leverage axes (e.g., surveillance accumulation, ranking mon-
etization, vulnerability discrimination). Then gradient ascent increases concentration
measures C(X) such that:

dC

dt
> 0 until constrained by retention.

Thus unconstrained optimization converges to:

X∗
extractive = arg max

X∈Rretention
Π(X).

F.3 F.3 Constraint-Field Introduction

Let the constraint potential C : Rn → R≥0 encode invariant structural bounds on
extractive amplification by assigning energetic cost to states exhibiting semantic
distortion, steep asymmetry gradients, or surplus concentration. Define

C(X) = α1D(X) + α2G(X) + α3V (X), αk > 0,

where αk are constraint intensities. Assume D, G, and V are nonnegative functionals
on state space, continuously differentiable on the interior of the feasible region, and
coercive along the corresponding instability directions, so that C(X) → ∞ whenever
any of D(X), G(X), or V (X) diverges.

The distortion term D(X) may be taken as a normed distance between epistemic and
monetized ordering operators, for example an L1 or L2 distance between normalized
ranking weights, thereby yielding a scale-invariant penalty for order deformation.
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The gradient term G(X) is an aggregate magnitude of exploitative differentials, such
as a norm of vulnerability sensitivity, information asymmetry, or other leverage
gradients, for instance G(X) = |∇Λ(X)| for a leverage potential Λ. The concentration
term V (X) penalizes surplus localization and may be instantiated as a variance
functional, a quadratic concentration

∫
p2, or a Gini-type index, depending on the

chosen representation of distributional state in X.

Under these assumptions, ∇C(X) = α1∇D(X) + α2∇G(X) + α3∇V (X) defines a
counter-gradient field that introduces curvature opposing extractive ascent directions.
Equivalently, C deforms the effective landscape of the system by raising the energetic
cost of trajectories that increase distortion, asymmetry, or concentration, thereby
restricting the admissible optimization flow to a bounded region determined by the
relative magnitudes of the coefficients αk.

System dynamics become:

dX

dt
= ∇Π(X)−

∑
k

αk∇Φk(X).

F.4 F.4 Stability Condition

A stable equilibrium X† satisfies:

∇Π(X†) = ∇C(X†).

Linearize dynamics near equilibrium:

d

dt
δX = HΠδX −HCδX,

where HΠ and HC are Hessians.

Stability requires eigenvalues of:

HΠ −HC

to have non-positive real parts.

Thus sufficient stability condition:
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HC � HΠ along extractive directions.

F.5 F.5 Extractive Attractor Theorem

Theorem (Extractive Convergence Under Weak Constraint).

Let Π(X) be strictly increasing along leverage axes and let C(X) be negligible or
absent. Then for almost all initial states X(0) in the feasible retention region,

X(t) → X∗
extractive.

Proof Sketch. Since ∇Π is non-zero along leverage axes and no opposing gradient
exists, trajectories follow steepest ascent until bounded by minimal retention constraint.
Convexity ensures convergence to boundary maximizer.

F.6 F.6 Constraint-Bounded Stability Corollary

Corollary. If constraint Hessian dominates profit Hessian along leverage axes, i.e.,

λmin(HC) ≥ λmax(HΠ),

then extractive escalation is prevented and system converges to bounded equilibrium
X† preserving diversity and surplus distribution constraints.

F.7 F.7 Interpretation

The theorem formalizes a general structural principle:

Unbounded profit-gradient dynamics converge toward extractive equilibria constrained
only by minimal retention. Stability requires explicit counter-gradients proportional
to distortion, asymmetry, and concentration.

In institutional terms, the abstract constraint field C(X) corresponds to concrete
regulatory and architectural mechanisms that introduce curvature opposing extractive
ascent directions. Interoperability mandates reduce topological concentration by
expanding the feasible adjacency structure of the network, thereby lowering gradient
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amplification along centralized nodes. Privacy limits bound informational asymmetry
by constraining the admissible domain of surveillance inputs, effectively placing
an upper bound on ∆ and its induced leverage gradients. Antitrust enforcement
alters feasible concentration states by restricting merger-induced increases in Csys

and preserving competitive diffusion. Labor protections constrain the admissible
dependence of compensation on vulnerability parameters, flattening wage gradients
with respect to asymmetry axes. Auditability requirements introduce observability
into the objective function itself, increasing the effective cost of distortion and covert
ranking manipulation.

Absent these institutional counter-gradients, the effective constraint potential ap-
proaches zero curvature along extractive directions. In such a regime, the system’s
trajectory is governed predominantly by the profit-gradient term, and convergence to-
ward extractive boundary equilibria becomes a structural consequence of the dynamical
equations rather than a contingent moral deviation. Extraction under weak constraint
is therefore not an ethical anomaly but the predictable outcome of unopposed gradient
ascent in a high-leverage state space.

This result unifies extraction, surveillance asymmetry, and semantic distortion within a
single gradient-flow framework, demonstrating that the pathology of the contemporary
internet arises from insufficient constraint curvature relative to optimization pressure.

G Operator Ecology as a Network Dynamical Sys-
tem

This appendix models platforms as operators within a socio-technical network and
formalizes ecological resilience in terms of modularity, redundancy, and gradient
dispersion. The objective is to show that centralized platform dominance corresponds
to topological concentration, while interoperability produces distributed stability.

G.1 G.1 Network Representation

Let the socio-technical ecosystem be represented by a directed graph:

G = (V,E),
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where nodes v ∈ V represent operators (platforms, clients, public infrastructure,
labor pools), and edges e ∈ E represent interaction flows (information, capital, labor,
attention).

Define adjacency matrix:

A ∈ R|V |×|V |.

Let flow intensity along edge (i, j) be:

Fij(t).

G.2 G.2 Centralization and Control Concentration

Define node centrality measure:

Ci =
∑
j

Fij +
∑
j

Fji.

High Ci indicates concentration of flows.

Define systemic concentration index:

Csys = max
i

Ci.

When:

Csys → Cmax,

system approaches monocentric topology.

G.3 G.3 Gradient Amplification in Monocentric Networks

Let profit gradient vector at node i be:
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∇Πi.

If a single node dominates flow topology:

|∇Πi| � |∇Πj| ∀j 6= i.

Thus optimization pressure concentrates at central node.

Define gradient amplification factor:

Γ =
maxi |∇Πi|
meanj|∇Πj|

.

As Γ ↑, extractive capacity increases.

G.4 G.4 Interoperability as Edge Augmentation

Introduce interoperability edges:

E ′ = E ∪ Einterop,

adding alternative pathways between nodes.

Define modified adjacency:

A′ = A+ Ainterop.

Effect on centralization:

C ′
sys < Csys.

Thus interoperability reduces flow concentration and gradient amplification.
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G.5 G.5 Resilience and Redundancy

Define resilience functional:

R =
1

λmax(L)
,

where L is graph Laplacian.

High λmax(L) indicates tight centralization and vulnerability.

Adding distributed edges lowers λmax(L), increasing resilience.

G.6 G.6 Ecological Stability Condition

System stable if:

Γ ≤ Γcrit and Csys ≤ Ccrit.

Unstable extractive regime if:

Γ > Γcrit and Csys → max .

G.7 G.7 Interpretation

Centralized platform architectures amplify optimization gradients by concentrating
flows through a small subset of nodes. Interoperability functions as edge augmentation,
redistributing flows and dampening gradient amplification.

Operator ecology thus furnishes a topological interpretation of constraint-bounded
governance. When system architecture is modular, flows are partitioned across
semi-autonomous substructures, reducing the maximal centrality of any single node
and thereby limiting systemic concentration. When redundancy is present, multiple
parallel pathways exist for communication and exchange, increasing robustness under
perturbation and lowering the amplification factor of localized gradients. When
protocols are open and interoperable, directed optimization pressures are distributed
across competing operators rather than channeled through a single chokepoint, diffusing
gradient intensity across the network.
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Extraction, on this view, is not merely an economic phenomenon but a topological
one. It arises when network structure concentrates flows through nodes whose local
gradient ascent is insufficiently opposed by alternative routes. Where countervailing
pathways are absent or suppressed, optimization pressures accumulate geometrically,
producing curvature in the flow topology that reinforces central dominance. Constraint-
bounded governance therefore operates by reshaping the network itself, redistributing
connectivity so that gradient amplification cannot escalate without encountering
structural resistance.

This network formulation complements scalar–vector and entropy-bounded models
by demonstrating that institutional architecture determines whether optimization
pressures concentrate or diffuse across the ecosystem.

H Unified Gradient-Convergence Theorem for Ex-
tractive Systems

This appendix synthesizes the preceding models into a single convergence statement
linking informational asymmetry, thermodynamic gradient harvesting, scalar–vector
imbalance, and network concentration. The result formalizes extraction as the generic
attractor of unconstrained optimization across informational, economic, and topological
dimensions.

H.1 H.1 Unified State Representation

Let the socio-technical system be described by the state vector

X = (∆, G,Φ, Csys),

where each coordinate represents a macroscopic structural variable. The quantity ∆

denotes aggregate informational asymmetry, understood as the system-level entropy re-
duction available to dominant operators through surveillance and predictive modeling.
The variable G denotes the effective exploitation gradient magnitude, capturing the
steepness of leverage differentials through which informational advantage is converted
into extractive control over pricing, wages, ranking, or attention allocation. The scalar
Φ denotes balancing density, representing the strength of distributed stabilizing struc-
ture, including trust, reciprocity, normative constraint, and enforceable institutional
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counter-gradients. Finally, Csys denotes network concentration, measuring the degree
to which socio-technical flows are centralized through a limited subset of operators,
thereby amplifying optimization pressures via topological chokepoints.

Let platform objective function be:

Π = Π(∆, G, Csys).

Assume:

∂Π

∂∆
> 0,

∂Π

∂G
> 0,

∂Π

∂Csys
> 0.

Thus profit increases with asymmetry, gradient strength, and concentration.

H.2 H.2 Coupled Dynamics

Let system dynamics be governed by:

d∆

dt
= f1(Π)− α1Φ,

dG

dt
= f2(∆)− α2Φ,

dCsys

dt
= f3(G)− α3Φ,

dΦ

dt
= D∇2Φ− βG.

In this system, the functions fk are assumed to be monotone increasing, ensuring that
amplification along asymmetry or concentration axes reinforces further growth in those
directions. The parameters αk > 0 represent constraint coupling strengths, determining
the magnitude of countervailing curvature introduced by the constraint field. The
coefficient D denotes scalar diffusion, governing the rate at which balancing density Φ

spreads across the state space and counteracts localized gradient intensification. The
parameter β > 0 represents the rate at which scalar density degrades under sustained
gradient stress, capturing the erosion of trust, reciprocity, or institutional constraint
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in the presence of persistent extractive amplification.

H.3 H.3 Extractive Convergence Theorem

Theorem (Unified Extractive Attractor).

If αk → 0 and D → 0 (weak constraint and low scalar diffusion), then for almost all
initial states:

∆(t) → ∆max, G(t) → Gmax, Csys(t) → Cmax, Φ(t) → Φmin.

Proof Sketch. With αk negligible, constraint damping vanishes. Since fk are monotone
increasing, positive feedback loops form:

∆ ↑⇒ G ↑⇒ Csys ↑⇒ Π ↑⇒ ∆ ↑ .

Scalar density Φ decreases under sustained gradient stress (−βG term). Absent diffu-
sion (D → 0), Φ cannot recover. Thus trajectories converge to boundary maximizers
defined by retention constraints.

H.4 H.4 Stability Under Constraint

If:

αk > 0 and D > Dcrit,

then equilibrium satisfies:

d∆

dt
=

dG

dt
=

dCsys

dt
=

dΦ

dt
= 0,

with bounded values:

∆ ≤ ∆∗, G ≤ G∗, Csys ≤ C∗, Φ ≥ Φ∗ > 0.

Thus constraint coupling and scalar diffusion prevent runaway extractive escalation.

43



H.5 H.5 Corollary: Institutional Interpretation

The constraint parameters admit direct institutional interpretation. The coefficient α1

corresponds to privacy and surveillance limits, which bound informational asymmetry
and restrict entropy reduction available for exploitation. The parameter α2 repre-
sents labor and asymmetry protections, constraining the admissible dependence of
compensation and allocation on vulnerability gradients. The coefficient α3 encodes an-
titrust enforcement and interoperability mandates, which limit network concentration
and reduce topological gradient amplification. The diffusion parameter D represents
normative propagation through democratic governance, institutional learning, and
regulatory feedback, enabling scalar balancing density Φ to replenish under stress.

When these parameters approach zero, constraint curvature vanishes along extractive
directions, and the coupled dynamical system converges toward boundary maximizers
characterized by high asymmetry, steep gradients, and concentrated control. Con-
versely, when constraint coupling and diffusion parameters exceed critical thresholds
relative to amplification rates, bounded equilibria emerge in which asymmetry, gradient
magnitude, and concentration remain finite, preserving structural balance within the
socio-technical system.

H.6 H.6 Structural Implication

Extraction is not an anomaly but a stable attractor of coupled gradient amplification
across informational, economic, and network domains. Stability requires:

Constraint coupling strength ≥ Gradient amplification rate.

The health of digital ecosystems is therefore determined not by innovation velocity
but by the relative curvature of constraint fields.

This unified theorem demonstrates that the decay of the contemporary internet
can be modeled as a dynamical system in which asymmetry accumulation, gradient
amplification, and network concentration mutually reinforce under weak constraint.
Restoration requires reintroducing invariant structural couplings sufficient to dampen
extractive feedback loops.
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