

The Mortality of Computation:
A Structural Theory of Displacement

Flyxion

February 13, 2026

Contents

1	The Problem–Solution Transformation	1
1.1	From Ontological Concern to Formal Reduction	1
1.2	Lambda Calculus as Structural Compression	1
1.3	Formalization as Unification	2
1.4	Against Naive Solutionism	2
1.5	Reframing Heidegger	3
2	Conservation of Difficulty	4
2.1	The Displacement Hypothesis	4
2.2	Layered System Model	4
2.3	Abstraction as Transformation	5
2.4	System-Wide Burden Functional	5
2.5	Exposure Events	6
2.6	Stability of Abstraction Boundaries	6
2.7	Coupled Layers and Cascades	7
2.8	Temporal Accumulation and Debt	7
2.9	Interpretive Bridge to Heidegger	8
2.10	Preliminary Conclusion	9
3	Statistical Displacement and Opaque Compression	10
3.1	From Symbolic Explicitness to Parametric Encapsulation	10

3.2	Burden Redistribution in Learning Systems	11
3.3	Opacity as Structural Consequence	11
3.4	Distributional Dependence	12
3.5	Overparameterization as Displacement Reservoir	12
3.6	Thermodynamic Embedding of Computation	13
3.7	Mortal Computation	13
3.8	Smoothing and Concealment	14
3.9	Reinterpretation of “Suffering”	14
3.10	Statistical Systems as Layered Coarse-Graining	15
3.11	Interim Synthesis	15
3.12	Transition	16
4	Complexity Classes and Structural Limits	17
4.1	Computation as Resource Transformation	17
4.2	Complexity Classes as Boundary Surfaces	17
4.3	Intractability as Conservation Ceiling	18
4.4	Oracle Substitution as Abstraction	19
4.5	Communication Complexity	19
4.6	Lower Bounds as Ontological Friction	19
4.7	Kolmogorov Complexity and Irreducibility	20
4.8	Information-Theoretic Boundaries	20
4.9	Synthesis: Structural Non-Eliminability	21
4.10	Relation to the Problem–Solution Worldview	21
4.11	Transition	21
5	Functions, Interfaces, and Mortal Computation	23
5.1	Processes as Problems	23
5.2	Lambda Abstraction as Stored Potential	23

5.3	Interfaces as Type Contracts	24
5.4	Curry–Howard and Logical Obligation	25
5.5	Church–Turing Universality	26
5.6	Embedding Computation in Hamiltonian Form	26
5.7	Entropy and Irreversibility	27
5.8	Mortal Computation	27
5.9	Microstate Maximization	27
5.10	Degradation of Turing Realizations	28
5.11	Composition and Entropic Coupling	28
5.12	Synthesis	29
5.13	Philosophical Implication	29
5.14	Transition	29
6	Enframing Revisited: Ontology After Mortality	30
6.1	From Instrumentality to Interface Totalization	30
6.2	Standing-Reserve as Interface Reduction	30
6.3	Total Composability Assumption	31
6.4	Calculative Thinking vs Structural Formalism	31
6.5	Supreme Danger Reinterpreted	32
6.6	Entropy as Ontological Friction	32
6.7	Revealing After Universality	32
6.8	Composition Under Mortality	33
6.9	Rehabilitation of the Problem–Solution Frame	33
6.10	No Return to Pre-Formal Modes	34
6.11	New Ontological Configuration	34
6.12	Danger After Embedding	34
6.13	Transition	35

CONTENTS	5
----------	---

7 Conservation Architecture and Large-Scale Systems	36
7.1 Global System Model	36
7.2 Layered Abstraction Vector Field	37
7.3 Conservation Architecture Principle	38
7.4 AI Systems as Case Study	38
7.5 Distributed Systems and Coupling Instability	39
7.6 Energy Throughput Constraint	40
7.7 Interface Discipline	40
7.8 Universality Under Constraint	40
7.9 Revealing Reconfigured	41
7.10 Toward a Unified Structural Ontology	41
7.11 Final Statement	42
A Mathematical Appendices	43
A.1 Appendix A: Formal Conservation Dynamics	43
A.1.1 A.1 Layered Burden Dynamics	43
A.1.2 A.2 Conservation Condition	44
A.1.3 A.3 Stability Criterion	44
A.1.4 A.4 Exposure Threshold	45
A.1.5 A.5 Entropy-Embedded Computation	45
A.1.6 A.6 Formal Statement of Mortal Universality	46
A.1.7 A.7 Structural Non-Eliminability Theorem	46
A.2 Appendix B: Spectral Cascade Analysis	47
A.2.1 B.1 Layered Coupling Matrix	47
A.2.2 B.2 Stability Condition	47
A.2.3 B.3 Hidden Burden Amplification	48
A.2.4 B.4 Nonlinear Cascade Regime	48
A.2.5 B.5 Depth-Dependent Fragility	49

A.2.6	B.6 Energy Constraint Coupling	49
A.2.7	B.7 Global Cascade Criterion	50
A.3	Appendix C: Information-Theoretic Coarse-Graining	51
A.3.1	C.1 Microstate and Macrostate Structure	51
A.3.2	C.2 Entropy Under Coarse-Graining	51
A.3.3	C.3 Conditional Hidden Entropy	52
A.3.4	C.4 Refinement Threshold	52
A.3.5	C.5 Compression and Algorithmic Irreversibility	53
A.3.6	C.6 Entropy Drift and Coarse Stability	53
A.3.7	C.7 Information Bottleneck Perspective	54
A.3.8	C.8 Structural Interpretation	54
A.4	Appendix D: Hamiltonian and Lagrangian Embedding of Computation	55
A.4.1	D.1 Computational State as Phase Space	55
A.4.2	D.2 Hamiltonian Dynamics	55
A.4.3	D.3 Logical Irreversibility and Phase Space Compression	55
A.4.4	D.4 Lagrangian Formulation of Computation	56
A.4.5	D.5 Dissipative Extension	56
A.4.6	D.6 Gradient Descent as Thermodynamic Flow	57
A.4.7	D.7 Entropy Production Rate	57
A.4.8	D.8 Metastability and Lifetime	57
A.4.9	D.9 Mortal Universality Revisited	58
A.5	Appendix E: Complexity-Theoretic Limit Proof Sketches	58
A.5.1	E.1 Lower Bounds as Resource Floors	58
A.5.2	E.2 Time–Space Tradeoff Theorem (Sketch)	59
A.5.3	E.3 NP-Completeness as Non-Local Conservation	59
A.5.4	E.4 Kolmogorov Incompressibility	60
A.5.5	E.5 Communication Complexity Lower Bound	60

A.5.6	E.6 Oracle Relativization	61
A.5.7	E.7 Structural Conservation Theorem	61
A.5.8	E.8 Formal Non-Eliminability	61
A.5.9	E.9 Relation to Conservation Thesis	62

Abstract

This work advances a unified structural account of computation, abstraction, and technological modernity. It begins from the observation that both contemporary philosophy and theoretical computer science converge upon a common transformation: the reinterpretation of processes, entities, and problems in functional terms. What twentieth-century philosophy diagnoses as the dominance of calculative thinking and the regime of enframing, computer science recognizes as the formal unification of procedure under lambda calculus, recursion theory, and universal computation.

Against both technological triumphalism and technological fatalism, this book develops a conservation thesis. Difficulty is not eliminated by abstraction; it is displaced. Reductions in explicit burden at one level of description are accompanied by increases in hidden structural obligation at another. Formal simplification is paired with thermodynamic cost; statistical compression is paired with opacity; composability presupposes substrate stability; optimization operates under irreducible lower bounds.

The central claim is that computation, when physically instantiated, is necessarily mortal. Logical universality does not imply material permanence. Every computational system is embedded within entropy-increasing dynamics, sustained by energy throughput, and subject to degradation, drift, and eventual failure. Universality is formal; finitude is physical.

Drawing upon Heidegger's analysis of revealing, thermodynamic principles governing irreversible processes, complexity-theoretic limit results, information-theoretic coarse-graining, and layered systems architecture, this study articulates a comprehensive model of structural non-eliminability. It demonstrates that abstraction reorganizes constraint without abolishing it and that optimization redistributes burden across coordinates rather than annihilating it.

The Mortality of Computation is therefore not a critique of formalization but a clarification of its conditions. It presents a rigorous account of universality under entropy, composability under conservation, and abstraction under constraint. By embedding computation within physical irreversibility and complexity-theoretic boundaries, it offers a structural ontology in which engineered order is understood as metastable rather than absolute.

Chapter 1

The Problem–Solution Transformation

1.1 From Ontological Concern to Formal Reduction

Heidegger's diagnosis of modernity identifies a transformation in the mode of revealing. The world is disclosed not as presence but as standing reserve, ordered for maximum yield at minimum expense. Questions become problems; beings become resources.

However, in the twentieth century, a parallel transformation occurred within mathematics and logic. Church's lambda calculus demonstrated that symbolic reasoning could be represented as function application. Turing formalized mechanical procedure. Gödel established internal limits of formal systems. Circuits were reduced to Boolean algebra; algebra to logic; logic to functional abstraction.

The problem–solution form was not merely an ideological imposition. It was a structural discovery.

1.2 Lambda Calculus as Structural Compression

The untyped lambda calculus is generated by the grammar:

$$M ::= x \mid (M M) \mid \lambda x. M$$

with β -reduction:

$$(\lambda x. M) N \rightarrow M[x := N]$$

This system captures computation via substitution and reduction. The key insight is composable: once a term is reduced to normal form, it may participate in larger constructions without re-exposing its internal derivation.

Reduction executes difficulty. Abstraction encapsulates it.

1.3 Formalization as Unification

Boolean circuits are equivalent to propositional logic. Propositional logic embeds in lambda calculus via Church encodings. Recursive functions embed in Turing machines. Turing machines are simulable by lambda calculus.

Thus, diverse representational domains share invariant computational structure.

Formally:

$$\text{Circuits} \simeq \text{Boolean Algebra} \simeq \text{Lambda Calculus} \simeq \text{Turing Machines}$$

The problem–solution transformation therefore performs structural unification, not mere instrumental flattening.

1.4 Against Naive Solutionism

Yet computation simultaneously revealed unsolvability.

The Halting Problem:

$$\nexists H \text{ such that } H(P, x) = \begin{cases} 1 & \text{if } P(x) \text{ halts} \\ 0 & \text{otherwise} \end{cases}$$

Gödel's incompleteness theorem:

No sufficiently expressive consistent formal system F can prove all true statements in its own language.

FLP impossibility:

Deterministic consensus in asynchronous distributed systems with failures is impossible.

Thus, formalization did not produce total mastery. It produced boundary theorems.

1.5 Reframing Heidegger

If calculative thinking reduces beings to solvable problems, computability theory reveals that not all problems are solvable.

The danger, then, is not formalization itself, but forgetting the invariants and limits that formalization exposes.

We therefore propose:

Difficulty is conserved under abstraction.

The remainder of this book formalizes that claim across logical, architectural, statistical, and thermodynamic domains.

Chapter 2

Conservation of Difficulty

2.1 The Displacement Hypothesis

We now state the central structural thesis of this work.

Displacement Hypothesis. For any engineered abstraction boundary, local reduction of explicit difficulty is accompanied by a compensatory increase in hidden structural obligation at lower or lateral layers of description.

This hypothesis does not assert a strict physical conservation law. Rather, it proposes a structural invariant governing engineered systems: difficulty migrates rather than vanishes.

2.2 Layered System Model

Let a computational or epistemic system be stratified into layers indexed by $i \in \{0, 1, \dots, n\}$, where lower indices correspond to more primitive substrates and higher indices to more abstract interfaces.

At each layer i , define:

E_i explicit difficulty at layer i

H_i hidden difficulty encapsulated beneath layer i

$C_i = E_i + H_i$ total structural burden

Explicit difficulty represents the cost visible to agents operating at that layer: cognitive load, runtime complexity, coordination overhead, interpretability cost.

Hidden difficulty represents resolved, deferred, or internalized obligations whose stability is presupposed by that layer.

2.3 Abstraction as Transformation

An abstraction boundary between layer i and $i + 1$ is modeled as a transformation

$$\Phi_i : (E_i, H_i) \longrightarrow (E_{i+1}, H_{i+1})$$

We formalize abstraction by the inequalities:

$$E_{i+1} \leq E_i$$

$$H_{i+1} \geq H_i + \Delta_i \quad \text{for some } \Delta_i \geq 0$$

The first inequality captures local simplification. The second captures displacement: newly encapsulated structure accumulates.

Abstraction does not annihilate burden. It relocates it beneath a stabilized interface.

2.4 System-Wide Burden Functional

Define a weighted system-wide structural functional:

$$D = \sum_{i=0}^n \alpha_i C_i \quad \text{where } \alpha_i \geq 0$$

Under purely structural transformations (absent genuine algorithmic improvement), D remains approximately invariant.

This invariance is heuristic rather than exact. Genuine technological progress may produce temporary reductions in the global burden functional D , particularly through algorithmic innovation or improved material efficiency. However, such reductions are typically accompanied by compensatory expansions elsewhere in the system. Increased capability often entails expanded system scope, broader domains of application, and a corresponding growth in environmental assumptions that must be satisfied for stability. Integration across domains tends to increase coupling density, thereby amplifying interdependence among layers. Moreover, simplification at the interface frequently coincides with enlargement of hidden state, whether in the form of parameter complexity, infrastructural dependence, or deferred maintenance obligations.

The conservation perspective therefore maintains that simplification along one coordinate of description induces complication along another. Apparent reduction of burden is best understood as its relocation within a higher-dimensional structural space.

2.5 Exposure Events

Hidden burden is not inert. It remains conditionally suppressed.

Define an **exposure event** at layer i as a transition:

$$E'_i = E_i + \varepsilon$$

$$H'_i = H_i - \varepsilon \quad \text{for } \varepsilon > 0$$

Exposure corresponds to moments in which concealed structural obligations are forced back into explicit consideration. Such events may take the form of refactoring efforts that surface accumulated technical debt, architectural overhauls that restructure previously hidden dependencies, security crises that reveal suppressed vulnerabilities, interpretability failures that expose opaque parametric assumptions, or infrastructure collapses that uncover fragilities in energetic or logistical support systems. In each case, the abstraction boundary is partially lifted, and deferred burdens re-enter explicit reasoning. What had been stabilized through concealment becomes an object of direct analysis and corrective intervention.

2.6 Stability of Abstraction Boundaries

Let the system state be represented by a vector:

$$x(t) \in \mathbb{R}^m$$

An abstraction boundary at layer i corresponds to an invariant constraint surface:

$$\Sigma_i = \{x \mid g_i(x) = 0\}$$

Stability requires trajectories remain within a neighborhood:

$$\|g_i(x(t))\| \leq \tau_i$$

Define boundary robustness:

$$\rho_i = \sup\{\delta > 0 \mid \|g_i(x)\| \leq \varepsilon \text{ for } x \in N_\delta(\Sigma_i)\}$$

High ρ_i indicates resilience. Low ρ_i indicates brittleness.

Exposure occurs when:

$$\|g_i(x(t))\| > \tau_i$$

Thus, abstraction boundaries are metastable constraint surfaces.

2.7 Coupled Layers and Cascades

Layers are not independent. Let A be a coupling matrix such that $A_{ij} > 0$ if instability at layer j propagates to layer i .

Linearizing instability propagation:

$$\dot{u}_i = \lambda_i u_i + \sum_j A_{ij} u_j$$

where u_i measures instability magnitude.

A cascade occurs when the spectral radius satisfies:

$$\rho(A) > \min_i |\lambda_i|$$

Local exposure then becomes global crisis.

This dynamical model explains why modern technological systems, though apparently smooth, exhibit sudden catastrophic failure.

2.8 Temporal Accumulation and Debt

Let hidden burden at layer i evolve according to

$$\frac{dH_i}{dt} = \beta_i(t) - \gamma_i(t),$$

where $\beta_i(t)$ denotes the rate at which newly encapsulated structure is introduced beneath the abstraction boundary, and $\gamma_i(t)$ denotes the rate of restructuring, repayment, or delib-

erate exposure through which hidden burden is reduced. The function $\beta_i(t)$ captures the accumulation of deferred obligations generated by ongoing abstraction, feature addition, scaling, or interface simplification. The function $\gamma_i(t)$ represents corrective interventions such as refactoring, architectural revision, optimization passes, or maintenance cycles that surface and redistribute latent complexity.

Hidden burden increases whenever $\beta_i(t) > \gamma_i(t)$ over sustained intervals, producing structural debt. Stability requires that these flows remain balanced over time, such that deferred obligations do not accumulate without periodic structural renegotiation.

Technical debt accumulates when:

$$\beta_i(t) > \gamma_i(t)$$

for sustained intervals.

Exposure corresponds to discontinuous increases in γ_i .

Debt is not moral failure. It is deferred explicit burden.

2.9 Interpretive Bridge to Heidegger

Heidegger characterizes modernity as a distinctive mode of revealing in which the world appears primarily as standing-reserve, while the very structure of this revealing remains concealed. In such a condition, beings are disclosed in terms of availability, optimization, and orderability, yet the historical and ontological conditions that make this disclosure possible recede from awareness. The revealing itself is hidden.

The present formal model renders this concealment structurally intelligible. Enframing corresponds, in system-theoretic terms, to the systematic reduction of explicit burden E_i at the interface level. Processes become streamlined, surfaces become smooth, and operations appear frictionless. Concealment, however, corresponds to the simultaneous growth of hidden burden H_i beneath abstraction boundaries. What is suppressed from explicit reasoning accumulates as deferred structural obligation within deeper layers of the system. The “supreme danger” may therefore be interpreted as the progressive forgetting of H_i : the loss of awareness that explicit simplification presupposes concealed complexity. Crisis, in turn, corresponds to exposure events in which accumulated hidden burden re-enters explicit reasoning, whether through infrastructural failure, interpretability breakdown, security collapse, or systemic instability.

Under this reinterpretation, what appears as ontological flattening is more precisely understood as layered displacement. The world is not reduced to uniform calculability in a metaphysical sense; rather, calculability at one layer is purchased through the migration of

constraint to another. The danger is therefore not abstraction as such, nor formal reduction, nor computational universality. The danger lies in unmanaged migration—when the redistribution of burden across layers proceeds without structural awareness, monitoring, or disciplined exposure.

In this sense, the structural theory offered here does not refute Heidegger’s diagnosis but reframes it. The concealment of revealing becomes the concealment of hidden burden; the danger becomes the forgetting of conservation; and technological crisis becomes the predictable reappearance of displaced constraint.

2.10 Preliminary Conclusion

We therefore refine the central thesis:

Theorem (Heuristic Conservation). In layered engineered systems, sustained reduction of explicit burden without proportional management of hidden burden increases the probability and amplitude of future exposure events.

This theorem does not condemn abstraction. It defines its obligations.

The next chapter extends this conservation framework into statistical compression and parametric opacity.

Chapter 3

Statistical Displacement and Opaque Compression

3.1 From Symbolic Explicitness to Parametric Encapsulation

Classical artificial intelligence pursued explicit rule articulation. Let a task class T require mapping:

$$R : X \rightarrow Y$$

where R is an explicit symbolic rule set.

The explicit difficulty of symbolic systems may be written:

$$E_{\text{sym}} = E_{\text{construction}} + E_{\text{verification}} + E_{\text{maintenance}}$$

Symbolic reasoning is interpretable but brittle. Its structure is visible, and so are its combinatorial limits.

Modern statistical systems instead define a parameterized function:

$$f_{\theta} : X \rightarrow Y \quad \text{with } \theta \in \mathbb{R}^d$$

and compute:

$$\theta^* = \arg \min_{\theta} L(f_{\theta})$$

Inference becomes:

$$y = f_{\theta^*}(x)$$

The reasoning is no longer articulated. It is compressed.

3.2 Burden Redistribution in Learning Systems

Define:

$$E_{\text{train}} = \text{cost of optimization}$$

$$H_{\text{param}} = \text{informational complexity encoded in } \theta^*$$

$$E_{\text{infer}} = \text{cost of forward evaluation}$$

We observe empirically:

$$E_{\text{infer}} \ll E_{\text{train}}$$

The inference step appears effortless. The burden has migrated.

Heuristically:

$$E_{\text{sym}} \approx E_{\text{train}} + H_{\text{param}}$$

Explicit symbolic articulation is replaced by distributed parametric burden.

3.3 Opacity as Structural Consequence

Let $K(R)$ denote the Kolmogorov complexity of an explicit symbolic rule set equivalent to f_{θ^*} .

Often:

$$K(R) \gg K(\theta^*)$$

The parameter vector is a compressed encoding.

However, interpretability requires inversion:

$$E_{\text{interpret}} = \text{cost of recovering symbolic structure from } \theta^*$$

In deep architectures, $E_{\text{interpret}}$ may be computationally intractable.

Opacity is not incidental. It is the structural shadow of compression.

3.4 Distributional Dependence

Let D_{train} and D_{deploy} denote distributions.

Performance requires:

$$D_{\text{deploy}} \approx D_{\text{train}}$$

Hidden burden therefore includes environmental alignment cost:

$$H_{\text{env}} = \text{cost of maintaining distributional stationarity}$$

Distributional shift triggers exposure:

$$\text{Error } \uparrow \Rightarrow H_{\text{env}} \rightarrow E_{\text{explicit}}$$

Thus, statistical smoothing conceals but does not remove fragility.

3.5 Overparameterization as Displacement Reservoir

Let $d \gg n$ (model dimension exceeds training samples).

Overparameterization creates slack:

$$\theta^* = \arg \min_{\theta} (L(f_{\theta}) + R(\theta))$$

Hidden structure accumulates in the geometry of θ^* .

Capacity functions as a reservoir:

$$H_{\text{param}} \uparrow \Rightarrow E_{\text{explicit}} \downarrow$$

But reservoir growth increases potential instability under perturbation.

3.6 Thermodynamic Embedding of Computation

We now integrate thermodynamics.

Landauer's principle states:

$$E_{\min} \geq k_B T \ln 2$$

per bit of irreversible erasure.

Logical irreversibility implies physical entropy production.

Let computation perform work W reducing potential Φ :

$$W = \Phi(x_0) - \Phi(x^*)$$

This work must be dissipated as entropy.

Thus, even pure function evaluation is embedded in irreversible substrate dynamics.

3.7 Mortal Computation

Digital abstraction gives rise to an appearance of immortality. Logical states may be copied without visible decay, data may persist across time through redundant storage, interfaces may present stable and well-defined boundaries, and executions may be reproduced with apparent exactness. At the level of formal description, computation appears timeless, indefinitely replicable, and detached from material limitation.

Physical instantiation, however, reveals a different reality. Bit flips occur due to radiation events and electrical fluctuations; thermal noise perturbs signal integrity; hardware components degrade through mechanical and chemical fatigue; and every logical operation requires energy consumption that generates heat requiring dissipation. Cooling infrastructure and power supply systems become integral to computational stability. What appears logically immutable is materially sustained through continuous energetic expenditure and thermodynamic compensation.

The immortality of digital abstraction is therefore conditional and provisional, resting upon a dissipative physical foundation whose maintenance is finite and contingent.

Define substrate entropy rate:

$$\frac{dS}{dt} = \sigma_{\text{compute}} + \sigma_{\text{cooling}} + \sigma_{\text{noise}}$$

Computational stability requires continuous energy throughput.

Thus, functional abstraction rests upon entropic smoothing.

Computation is not immortal. It is metastable.

3.8 Smoothing and Concealment

Statistical learning performs entropic smoothing in parameter space. Optimization reduces loss gradients:

$$\nabla L(\theta^*) \approx 0$$

The surface appears smooth. But smoothing requires energy expenditure and substrate dissipation.

Thus:

$$\text{Surface Stability} \propto \text{Entropy Export}$$

Smooth systems are maintained by hidden thermodynamic flux.

3.9 Reinterpretation of “Suffering”

It has been claimed that modern technological ordering tends to erase or conceal suffering by translating all phenomena into solvable technical problems. Within the present framework, this diagnosis is neither dismissed nor accepted in its original form but structurally reframed. What decreases is explicit suffering at the interface level, where optimization smooths experience and reduces visible friction. What correspondingly increases is hidden entropic burden, accumulating beneath abstraction boundaries in the form of deferred structural obligations and energetic costs. As hidden burden grows, systemic fragility intensifies, and the likelihood of exposure events—moments in which concealed constraints re-emerge—becomes more pronounced.

Suffering is therefore not annihilated but displaced. It migrates into the substrate that sustains abstraction, into environmental externalities that support energetic throughput, and into the coupling dynamics that bind complex systems together. What appears as relief at one layer may correspond to intensified instability at another.

3.10 Statistical Systems as Layered Coarse-Graining

Let Ω be microstates. Abstraction induces partition:

$$P = \{B_1, \dots, B_k\}$$

Micro-entropy:

$$H_{\text{micro}} = - \sum_{\omega \in \Omega} p(\omega) \log p(\omega)$$

Macro-entropy:

$$H_{\text{macro}} = - \sum_{j=1}^k P(B_j) \log P(B_j)$$

Information loss:

$$\Delta H = H_{\text{micro}} - H_{\text{macro}} \geq 0$$

Coarse-graining hides microstructure.

When perturbation invalidates coarse partition, refinement becomes necessary.

3.11 Interim Synthesis

Statistical compression, thermodynamic embedding, and abstraction layering all instantiate a single invariant:

Local smoothness \Rightarrow Hidden structural accumulation

We therefore extend the conservation principle:

Extended Conservation Principle. In statistical and thermodynamic systems, reductions in visible structural burden are accompanied by increases in hidden parametric, environmental, or entropic obligation.

The disappearance of difficulty is appearance. Its substrate migration is structural.

3.12 Transition

We now turn to complexity theory and formal limits. If displacement governs engineered systems, class-theoretic boundaries define where displacement stops.

Chapter 4

Complexity Classes and Structural Limits

4.1 Computation as Resource Transformation

In previous chapters, abstraction was modeled as displacement of difficulty. We now formalize resource bounds as structural constraints.

Let $T(n)$ denote time complexity and $S(n)$ denote space complexity for input size n .

Define computational burden functional:

$$B(n) = \alpha T(n) + \beta S(n) \quad \text{where } \alpha, \beta > 0$$

Algorithmic design attempts to minimize $B(n)$.

However, reductions in $T(n)$ often increase $S(n)$, and vice versa.

Thus:

$$\Delta T < 0 \Rightarrow \Delta S > 0 \quad (\text{space-time tradeoff})$$

Resource displacement appears again.

4.2 Complexity Classes as Boundary Surfaces

Let:

$$\mathbf{P} = \{L \mid \exists \text{ deterministic TM with } T(n) = O(n^k)\}$$

$$\mathbf{NP} = \{L \mid \exists \text{ nondeterministic TM with } T(n) = O(n^k)\}$$

The open problem:

$$\mathbf{P} \stackrel{?}{=} \mathbf{NP}$$

If $\mathbf{P} = \mathbf{NP}$, verification collapses into construction. If $\mathbf{P} \neq \mathbf{NP}$, certain problems resist polynomial reduction.

Regardless of resolution, the structure reveals constraint: efficient solvability is not universal.

4.3 Intractability as Conservation Ceiling

Consider an NP-complete problem C .

If $C \in \mathbf{P}$, then:

$$\mathbf{NP} \subseteq \mathbf{P}$$

Absent proof, we assume practical intractability:

$$T(n) = O(2^n) \quad \text{for worst-case exact solution}$$

Heuristic algorithms trade correctness for efficiency.

Let:

$$\epsilon = \text{error tolerance}$$

Then:

$$T_{\text{approx}}(n) < T_{\text{exact}}(n) \quad \text{but} \quad E_{\text{error}}(\epsilon) > 0$$

Burden shifts from runtime to correctness risk.

4.4 Oracle Substitution as Abstraction

Let M^O denote a machine with oracle access to language O .

Oracle substitution allows:

$$\mathbf{P}^O$$

Abstraction layer hides internal complexity of O .

However, oracle cost is externalized.

This mirrors abstraction boundaries:

$$E_{\text{caller}} \downarrow \Rightarrow H_{\text{oracle}} \uparrow$$

Oracles are formal analogues of encapsulated systems.

4.5 Communication Complexity

Let two agents compute $f(x, y)$.

Communication cost:

$$C(f) = \text{min bits exchanged}$$

Reducing local computation may increase communication burden.

Distributed consensus shows impossibility:

FLP: deterministic consensus impossible with one failure in asynchronous system

No architectural rearrangement eliminates fundamental limits.

4.6 Lower Bounds as Ontological Friction

Let L require decision tree depth $d(n)$.

Lower bound:

$$d(n) \geq \Omega(n \log n)$$

Sorting requires $\Omega(n \log n)$ comparisons.

No abstraction eliminates this.

Lower bounds function as formalized friction.

They represent class-theoretic entropy.

4.7 Kolmogorov Complexity and Irreducibility

Let $K(x)$ denote shortest program producing x .

If:

$$K(x) \approx |x|$$

then x is algorithmically random.

Compression is impossible.

Not all structure is reducible.

Irreducibility defines intrinsic burden.

4.8 Information-Theoretic Boundaries

Let $I(X; Y)$ denote mutual information.

Prediction requires:

$$I(X; Y) > 0$$

If entropy of X exceeds channel capacity:

$$H(X) > C$$

perfect transmission impossible.

Information bottlenecks formalize constraint.

4.9 Synthesis: Structural Non-Eliminability

Across time–space tradeoffs, NP-completeness results, oracle substitutions, formal lower bounds, algorithmic incompressibility, and communication complexity limits, a common structural pattern emerges. In each case, optimization redistributes constraint but does not erase it. Reductions in one resource dimension are compensated by increases in another, and apparent simplifications conceal invariant structural burdens.

This recurring pattern yields a general structural claim.

Structural Non-Eliminability Principle. For any sufficiently expressive computational system, there exist invariant lower bounds that prevent the total elimination of resource burden.

This principle provides a precise mathematical articulation of what earlier chapters developed heuristically: abstraction, rearrangement, and optimization alter the location and manifestation of constraint, but they do not abolish it. Constraint persists as a structural feature of computation itself.

4.10 Relation to the Problem–Solution Worldview

If modernity is characterized by the reduction of thought to problems demanding solutions, complexity theory introduces a crucial qualification. It demonstrates that some problems admit no solutions within given formal systems, that certain solutions incur exponential or otherwise prohibitive cost, that particular tasks require irreducible communication across distributed agents, and that some structures are algorithmically incompressible. In this way, formalization does not culminate in unbounded mastery but in the articulation of intrinsic limits.

Formal reduction therefore contains within itself the disclosure of boundary conditions. The genuine danger lies not in abstraction or formalization as such, but in the neglect of the lower bounds, impossibility results, and irreducibility theorems that circumscribe their scope. When these boundary theorems are ignored, optimization is mistaken for elimination and universality for omnipotence, thereby reintroducing the illusion that constraint has been overcome rather than merely transformed.

4.11 Transition

We now return to the philosophical question.

If computation obeys conservation and limit theorems, what becomes of Heidegger’s concept

of enframing?

Is enframing equivalent to computational abstraction? Or does it represent a distinct historical phenomenon?

The next chapter reinterprets enframing as a specific configuration of abstraction dynamics.

Chapter 5

Functions, Interfaces, and Mortal Computation

5.1 Processes as Problems

We begin with the structural claim:

Process–Problem Equivalence. Every computational process may be interpreted as the resolution of a constrained problem instance.

Let a computation be modeled as:

$$f : X \rightarrow Y$$

Execution corresponds to resolving the constraint:

$$\text{Find } y \text{ such that } y = f(x)$$

The existence of f defines a demand. Application of f performs the resolution.

Thus, computation encodes deferred obligation.

5.2 Lambda Abstraction as Stored Potential

In lambda calculus:

$$M ::= x \mid (M M) \mid \lambda x. M$$

A lambda abstraction:

$$\lambda x. M$$

is not an executed computation. It is suspended structure.

We interpret abstraction as potential energy.

Define computational potential:

$$\Phi(\lambda x. M) = C(M)$$

where $C(M)$ measures the reduction complexity of M once applied.

Application:

$$(\lambda x. M) N \rightarrow M[x := N]$$

is potential release.

Reduction consumes structural energy embedded in the abstraction.

5.3 Interfaces as Type Contracts

Under typed lambda calculus:

$$f : A \rightarrow B$$

The type signature is a contract.

It guarantees:

$$\forall x \in A, \quad f(x) \in B$$

Composition:

$$g \circ f : A \rightarrow C$$

is valid if:

$$f : A \rightarrow B \quad \text{and} \quad g : B \rightarrow C$$

Thus, computation may be understood as the composition of verified contracts, where each function is treated as a reliable transformation between specified domains and codomains. This compositional structure, however, presupposes that each function in fact satisfies its declared specification, that substitution preserves the invariants required by the surrounding context, and that no hidden state escapes or violates the integrity of the type boundary through which the function is accessed. Abstraction therefore rests upon a structured form of trust in encapsulated behavior, whereby internal complexity is suppressed in favor of stable interface guarantees. When such trust is unwarranted or insufficiently monitored, compositional smoothness conceals latent fragility.

5.4 Curry–Howard and Logical Obligation

Curry–Howard establishes correspondence:

$$\text{Types} \leftrightarrow \text{Propositions}$$

$$\text{Programs} \leftrightarrow \text{Proofs}$$

A function of type:

$$A \rightarrow B$$

corresponds to proof of implication:

$$A \Rightarrow B$$

Program execution discharges logical obligation.

Thus, computation is proof normalization.

Normalization reduces proof structure to canonical form, analogous to solving a problem instance.

5.5 Church–Turing Universality

Church–Turing Thesis asserts:

All effectively computable functions are computable by a Turing machine.

Lambda calculus, Turing machines, and recursive functions are equivalent in expressive power.

Thus, all programs admit representation as:

$$M \in \Lambda$$

or as Turing transition systems.

This universality implies:

All computation reduces to stepwise state transitions.

5.6 Embedding Computation in Hamiltonian Form

Let computational state be $s(t)$.

We model physical realization via Hamiltonian dynamics:

$$\frac{ds}{dt} = \{s, H\}$$

where H is system Hamiltonian.

Logical transitions correspond to trajectories through phase space.

Define computational action:

$$S = \int L(s, \dot{s}) dt$$

where L is Lagrangian.

Computation selects trajectories minimizing action under constraint.

Thus, computation may be modeled as constrained dynamical evolution.

5.7 Entropy and Irreversibility

Let microstates $\omega \in \Omega$ correspond to physical configurations.

Macrostates correspond to computational states.

Entropy:

$$S = k_B \ln |\Omega|$$

Irreversible operations increase entropy.

Landauer:

$$\Delta S \geq k_B \ln 2$$

per bit erased.

Thus:

$$\frac{dS}{dt} \geq 0$$

Computation obeys second law.

5.8 Mortal Computation

We define a **mortal computer** as a computational system whose state evolution is physically embedded within entropy-increasing substrate dynamics. Such a system requires continuous energy throughput to sustain ordered state transitions, generates heat as a consequence of irreversible operations, and undergoes gradual hardware degradation due to material fatigue and thermodynamic stress. Over time, it accumulates noise, necessitating corrective mechanisms that themselves incur additional energetic cost and entropy production. Ultimately, absent indefinite external maintenance, the system fails. Perfect abstraction does not eliminate mortality; it merely defers it by temporarily stabilizing logical structure atop a dissipative physical foundation.

5.9 Microstate Maximization

Let macro-computational state correspond to coarse partition P .

Number of compatible microstates:

$$|\Omega_M|$$

Entropy increase corresponds to growth of accessible microstates.

Over time:

$$|\Omega(t)| \uparrow$$

Thus, computational substrate drifts toward higher degeneracy.

Logical state may remain stable, but physical realization becomes increasingly fragile.

5.10 Degradation of Turing Realizations

The ideal Turing machine presupposes an infinite tape, perfect memory retention, and strictly deterministic state transitions. These assumptions define a mathematical abstraction whose operational integrity is unaffected by time, material decay, or energetic limitation. Physical instantiation, however, introduces a nonzero error rate $\epsilon(t)$ that generally increases over time in the absence of corrective intervention. Thermal fluctuations, radiation events, material fatigue, and component aging progressively undermine idealized state transitions and memory stability.

Error correction mechanisms may counteract this drift, but they do so at the cost of additional energy expenditure and increased entropy production elsewhere in the system. Consequently, the physical realization of a universal machine is not self-sustaining but requires continuous energetic maintenance to preserve its logical integrity. Turing universality therefore guarantees representational completeness at the formal level, yet it does not entail physical immortality. Rather, it implies bounded realizability within thermodynamic constraint.

5.11 Composition and Entropic Coupling

Function composition:

$$(f_n \circ \cdots \circ f_1)(x)$$

assumes each f_i satisfies contract.

Physical realization couples error rates:

$$\epsilon_{\text{total}} \approx \sum_i \epsilon_i$$

Deep composition amplifies substrate fragility.

Abstraction increases structural potential and hidden thermodynamic cost.

5.12 Synthesis

We therefore obtain:

Mortal Universality Theorem (Heuristic). All computable processes, when physically instantiated, are realizable only as entropy-increasing dynamical systems.

Church–Turing universality implies representational completeness. Thermodynamic embedding implies irreversible degradation.

Programs are mortal.

5.13 Philosophical Implication

If all processes may be seen as problems demanding solutions, and if all solutions are realized through entropy-increasing dynamics, then:

$$\text{Problem–Solution Formalism} \Rightarrow \text{Thermodynamic Irreversibility}$$

The world of functions is not frictionless. It is metastable structure sustained by energy flow.

Abstraction smooths surfaces. Entropy accumulates beneath.

5.14 Transition

We now return to the broader philosophical question.

Does interpreting all processes as functions constitute total enframing? Or does embedding them in thermodynamic irreversibility restore finitude within formal universality?

The next chapter integrates abstraction, entropy, and revealing into a unified ontological framework.

Chapter 6

Enframing Revisited: Ontology After Mortality

6.1 From Instrumentality to Interface Totalization

We now reinterpret enframing structurally.

Enframing may be understood as the historical configuration in which all entities are interpreted primarily through their functional interfaces.

Formally, this corresponds to the universal presupposition:

$$\forall X, \exists f : I \rightarrow O$$

Every entity is treated as a mapping from inputs to outputs.

This transformation is not merely technological. It is ontological reframing.

The world appears as a network of composable contracts.

6.2 Standing-Reserve as Interface Reduction

Standing-reserve may be modeled as follows.

Let entity E possess internal state space Σ and interface function:

$$f_E : I_E \rightarrow O_E$$

Enframing reduces E to f_E while suppressing Σ .

Thus:

$$E \mapsto f_E$$

Internal structure becomes irrelevant except insofar as it preserves contract.

Standing-reserve is interface primacy.

6.3 Total Composability Assumption

In a fully enframed world:

$$\forall f_i, f_j, \quad \exists \text{ composition } f_j \circ f_i$$

All entities are thereby interpreted as nodes within a universal functional graph, each defined primarily by its input–output relations and its composability with adjacent nodes. Such a configuration, however, presupposes the fidelity of contracts, the stability of type boundaries, and the effective suppression of thermodynamic drift. The assumption of perfect composability conceals the fragility of the substrate upon which these abstractions depend, since it relies on the continued integrity of hidden structural and energetic conditions.

6.4 Calculative Thinking vs Structural Formalism

We may now distinguish two distinct modes of orientation. Calculative thinking proceeds under the assumption that optimization progressively eliminates constraint, treating efficiency as the ultimate evaluative criterion. It neglects formal lower bounds, overlooks irreducible complexity, and implicitly suppresses the entropic conditions under which computation is realized. By contrast, structural formalism recognizes invariants and boundary conditions as constitutive features of systems. It accepts irreducibility as a structural fact, embeds computation within thermodynamic law, and understands abstraction as the displacement rather than the annihilation of burden.

Calculative thinking seeks elimination, whereas structural formalism models conservation. The distinction between them is therefore not merely methodological but ontological, reflecting fundamentally different interpretations of what abstraction, optimization, and computation ultimately mean.

6.5 Supreme Danger Reinterpreted

Heidegger's supreme danger can now be formalized.

Supreme Danger (Structural Form). The belief that interface reduction exhausts entity being.

This corresponds to assuming:

$$E \equiv f_E$$

with no remainder.

Under mortal computation, this equivalence fails.

Substrate entropy ensures that internal state cannot be ignored indefinitely.

Thus, thermodynamic embedding reintroduces concealed depth.

6.6 Entropy as Ontological Friction

Let system state evolve under Hamiltonian H :

$$\frac{dS}{dt} \geq 0$$

Entropy growth ensures that interface stability requires continuous work, since the maintenance of structured order within a physical substrate demands ongoing energetic expenditure. Interface smoothness is therefore not a passive condition but the result of sustained energy throughput that counteracts entropic drift. Abstraction does not erase finitude; rather, it metabolizes it, converting apparent logical permanence into dynamically maintained stability. Finitude consequently reappears in transformed guise as energy cost, cumulative noise accumulation, increasing error correction overhead, and, ultimately, material degradation. What appears formally timeless at the level of interface is thus revealed to be temporally conditioned at the level of substrate.

6.7 Revealing After Universality

If all processes are computable, and all computation is mortal, then universality does not imply flattening.

Rather:

$$\text{Universality} + \text{Irreversibility} \Rightarrow \text{Metastable Order}$$

Revealing becomes dynamic.

Entities are not static resources, but constrained trajectories in phase space.

6.8 Composition Under Mortality

Let composite system:

$$F = f_n \circ \cdots \circ f_1$$

Total entropy production:

$$\Delta S_F = \sum_{i=1}^n \Delta S_{f_i}$$

Deep compositional chains amplify substrate burden.

Thus, total interface systems accumulate thermodynamic debt.

Composability does not abolish material cost.

6.9 Rehabilitation of the Problem–Solution Frame

We may now state:

The problem–solution worldview is incomplete without entropic embedding.

Problem definition corresponds to constraint surface. Solution corresponds to trajectory minimizing local cost. Entropy growth corresponds to substrate transformation.

Thus:

$$\text{Problem} \Rightarrow \text{Constrained Energy Descent}$$

Computation is thermodynamic negotiation.

6.10 No Return to Pre-Formal Modes

The alternative is not abandonment of formalization. Lambda calculus and Church–Turing universality are structural truths.

However, universality must be paired with:

Entropy Awareness

Without this, interface reduction becomes ontological flattening.

With it, abstraction becomes constrained emergence.

6.11 New Ontological Configuration

We therefore propose:

Mortality-Embedded Abstraction. All entities may be interpreted functionally, but only as metastable entropy-increasing systems.

Under this interpretation, standing-reserve is reconceived as a temporary energetic configuration rather than a permanent ontological reduction, signifying a metastable ordering sustained by continuous energy throughput. Optimization is understood not as the elimination of constraint but as local gradient descent within a constrained landscape, where improvements are directional and bounded rather than absolute. A resource is no longer a static object awaiting extraction but a region of phase space defined by accessible configurations under current energetic and structural conditions. Finitude, in turn, is not an accidental limitation but a thermodynamic inevitability, arising from the irreversible dynamics governing all physical instantiations of order.

The world, therefore, is not flattened into uniform calculability; it is dynamically stabilized through constrained energy flow, continual entropy production, and the temporary maintenance of structured configurations.

6.12 Danger After Embedding

The danger persists in modified form.

Not that everything becomes functional, but that entropy and limits are ignored.

Thus:

Supreme Danger = Interface without Entropy

The forgetting of physical embedding reintroduces illusion of immortality.

6.13 Transition

We now integrate conservation, complexity, universality, and thermodynamics into a single architectural framework.

The final chapters develop a unified structural ontology that integrates functional abstraction, thermodynamic embedding, and complexity-theoretic limits into a coherent theoretical framework. They articulate explicit stability criteria for large-scale engineered systems, deriving conditions under which layered architectures remain metastable rather than cascading toward exposure events. These chapters further examine the implications of conservation principles for artificial intelligence and distributed computation, particularly in the contexts of scaling, coupling density, and entropy management. The work culminates in a formal statement of Conservation Architecture, synthesizing the preceding analyses into a general design principle governing abstraction, composability, and energetic constraint.

Chapter 7

Conservation Architecture and Large-Scale Systems

7.1 Global System Model

We now assemble the structural components developed thus far into a coherent framework. Abstraction has been shown to displace difficulty rather than eliminate it, reducing explicit burden at the cost of increased hidden obligation. Computation embeds potential energy within functional definitions, storing deferred work that is released through reduction and execution. Universality guarantees representational completeness, ensuring that all effectively realizable processes admit formal expression within a computational substrate. Complexity theory, however, imposes boundary limits, demonstrating that not all problems are efficiently solvable and that irreducible lower bounds constrain rearrangement. Finally, thermodynamics guarantees entropy growth, embedding every physical realization of computation within irreversible energetic dynamics. Taken together, these components define a structural landscape in which abstraction, universality, constraint, and entropy interact to produce metastable but finite systems.

We model a large-scale engineered system as a quadruple

$$\mathcal{S} = (\mathcal{L}, \mathcal{F}, \mathcal{E}, \mathcal{T}),$$

where \mathcal{L} denotes the layered abstraction hierarchy through which explicit and hidden burdens are distributed; \mathcal{F} denotes the compositional function graph governing logical transformations and contract interfaces; \mathcal{E} denotes the energetic substrate dynamics within which all computation is physically instantiated; and \mathcal{T} denotes the temporal evolution operator describing state transitions and drift across time.

The component \mathcal{L} captures the vertical structure of abstraction, including the displacement of explicit burden into concealed structural dependencies. The component \mathcal{F} formalizes horizontal composability, encoding how functions are composed under assumptions of contract fidelity and type stability. The energetic substrate \mathcal{E} embeds the system within thermodynamic law, governing entropy production, energy throughput, and material degradation. Finally, the temporal operator \mathcal{T} describes dynamical evolution, including accumulation of hidden burden, error propagation, and exposure events.

System stability requires coherence across all four dimensions. Logical composability must remain aligned with abstraction hierarchy; energetic throughput must sustain metastable order; and temporal evolution must not drive hidden burden beyond exposure thresholds. Instability arises when these dimensions drift out of alignment, such that compositional smoothness conceals energetic strain, or abstraction depth exceeds thermodynamic support.

A large-scale system is therefore not merely a functional graph, nor merely a layered architecture, nor merely a physical machine, nor merely a temporal process. It is the coherent integration of all four structures. Stability is achieved only when abstraction, composition, energy, and time remain mutually constrained.

7.2 Layered Abstraction Vector Field

Let each layer i possess a triplet of state variables given by

$$(E_i, H_i, S_i),$$

where E_i denotes the explicit burden borne at that layer, representing the cognitive, computational, or operational cost directly encountered by agents or processes operating within its interface. The quantity H_i denotes the hidden burden encapsulated beneath that layer, consisting of deferred structural obligations, suppressed dependencies, and accumulated complexity that remains latent so long as abstraction boundaries hold. Finally, S_i represents the entropy rate contribution associated with the physical realization and maintenance of that layer, capturing the thermodynamic cost of sustaining its metastable order over time.

Together, these variables characterize each layer not merely as a logical abstraction but as a dynamical system embedded within energetic and structural constraints.

Define state vector:

$$X = (E_0, H_0, S_0, \dots, E_n, H_n, S_n)$$

Dynamics:

$$\frac{dX}{dt} = F(X)$$

Stability corresponds to bounded trajectories in state space.

7.3 Conservation Architecture Principle

We now state the central architectural theorem.

Conservation Architecture Principle. In any sufficiently expressive engineered system, sustained reduction of explicit burden without proportional management of hidden burden and entropy flow increases long-term instability.

Formally, if:

$$\frac{dE_i}{dt} < 0$$

while:

$$\frac{dH_i}{dt} > \gamma_i > 0 \quad \text{and} \quad \frac{dS_i}{dt} \text{ unmanaged}$$

then the probability of exposure event $P(\mathcal{E})$ increases monotonically.

7.4 AI Systems as Case Study

Consider a deep learning system:

$$f_\theta : X \rightarrow Y$$

Let:

$$E_{\text{infer}} \ll E_{\text{train}}$$

Hidden burden in such systems encompasses a range of structural and material dependencies that remain concealed beneath the apparent simplicity of inference. It includes the geometric structure of the parameter space, whose curvature, degeneracy, and overparameterized slack encode significant informational complexity. It also includes the requirement of

ongoing alignment between training and deployment data distributions, without which performance degrades and latent assumptions are exposed. Beyond the algorithmic level, hidden burden extends to hardware stability, encompassing error rates, memory integrity, and long-term component degradation. The thermal management systems necessary to dissipate computational heat constitute an additional, often invisible layer of energetic obligation. Finally, the reliability of global supply chains that sustain fabrication, maintenance, and energy provision forms part of the system's concealed structural dependency. Thus, the apparent smoothness of model execution rests upon an extensive and multilayered substrate of technical, energetic, and logistical commitments.

Entropy production:

$$\frac{dS}{dt} = \sigma_{\text{training}} + \sigma_{\text{inference}}$$

Scaling increases σ_{training} superlinearly.

Thus:

$$\text{Scaling} \Rightarrow H_{\text{global}} \uparrow \Rightarrow S_{\text{global}} \uparrow$$

Surface smoothness increases while systemic fragility deepens.

7.5 Distributed Systems and Coupling Instability

Let coupling matrix A describe inter-layer dependency.

Spectral condition for cascade:

$$\rho(A) > \lambda_{\min}$$

where λ_{\min} measures intrinsic damping.

Large-scale systems increase coupling density:

$$\|A\| \uparrow$$

Resilience decreases unless damping increases proportionally.

Thus, composability without entropy accounting amplifies risk.

7.6 Energy Throughput Constraint

Let $P(t)$ denote power input.

Stability requires:

$$P(t) \geq P_{\text{maintenance}}(X(t))$$

Under energy shortfall:

$$P(t) < P_{\text{maintenance}} \Rightarrow \text{Entropy accumulation} \Rightarrow \text{Interface failure}$$

All computational architectures are energy-conditioned.

7.7 Interface Discipline

We define entropy-aware abstraction discipline as a systematic practice of structural vigilance within layered computational systems. Such discipline requires continuous attention to the growth of hidden burden across abstraction boundaries, ensuring that reductions in explicit complexity are not mistaken for elimination of structural obligation. It further entails the monitoring of entropy production rates within the physical substrate, recognizing that computational stability depends upon sustained energetic throughput and the management of dissipative processes. Compositional depth must be regulated, since unbounded chaining of abstractions amplifies latent fragility and accumulates concealed dependencies. Finally, healthy systems require periodic exposure and restructuring of hidden layers, allowing deferred obligations to be surfaced, evaluated, and redistributed before they precipitate catastrophic failure.

Entropy-aware abstraction discipline therefore does not oppose abstraction; rather, it governs its use by embedding interface design within thermodynamic and structural constraint.

Architectural health requires cyclical exposure events to prevent catastrophic cascade.

7.8 Universality Under Constraint

Church–Turing universality ensures:

$$\forall f \text{ computable}, \exists M \text{ such that } M \sim f$$

However, physical embedding ensures:

$$\forall M, \exists \tau < \infty$$

such that hardware degradation probability becomes non-negligible.

Universality is formal. Mortality is physical.

7.9 Revealing Reconfigured

We may now reinterpret revealing structurally.

Revealing corresponds to:

Accessible state region in phase space

Enframing corresponds to:

Restriction of attention to interface projection

Conservation architecture restores hidden phase space awareness.

The world remains functionally expressible, but not exhaustively reducible to interface alone.

7.10 Toward a Unified Structural Ontology

We synthesize the central results.

Unified Structural Ontology

We may now articulate a unified structural ontology emerging from the preceding analysis. First, all effective processes admit functional representation; that is, any process capable of being realized through effective procedure can be expressed within a formal computational framework. Second, functional abstraction is not inert but stores potential energy in the form of deferred computational obligation, such that the definition of a function encapsulates the structured work required for its eventual reduction. Third, composition presumes contract stability: the capacity to compose functions coherently depends upon the preservation of type integrity and the reliability of interface boundaries across layers of abstraction. Fourth,

physical realization of computation is irreducibly thermodynamic; every instantiation of a formal process occurs within a substrate that obeys entropy growth and requires continuous energetic throughput. Fifth, complexity theory imposes irreducible limits on computation, demonstrating that certain resource bounds, lower bounds, and intractabilities cannot be eliminated by rearrangement or abstraction. Finally, abstraction displaces but does not annihilate burden: reductions in explicit structural difficulty are accompanied by corresponding increases in hidden obligation, parametric opacity, or energetic cost.

Taken together, these principles define a structural framework in which universality, constraint, and irreversibility coexist. Computation is formally complete yet physically finite; abstraction simplifies locally while preserving global obligation; and engineered order remains metastable within thermodynamic law.

From these follows:

$$\text{Metastable Order} = \text{Universality} + \text{Conservation} + \text{Irreversibility}$$

7.11 Final Statement

We conclude with the central thesis of this book.

Conservation Thesis. Modern computation does not abolish finitude. It reorganizes it through abstraction, universality, and thermodynamic embedding.

The supreme danger is not functional formalism. It is forgetting the energetic and structural invariants that sustain it.

To build durable systems, one must design not only for correctness and efficiency, but for entropy flow, hidden burden management, and periodic structural exposure.

The world may be computable. It is never frictionless.

Appendix A

Mathematical Appendices

A.1 Appendix A: Formal Conservation Dynamics

A.1.1 A.1 Layered Burden Dynamics

Let a system consist of n abstraction layers indexed by $i \in \{0, \dots, n\}$. Each layer possesses state variables:

$$(E_i(t), H_i(t), S_i(t))$$

where E_i denotes explicit burden, H_i hidden burden, and S_i entropy rate contribution.

Define total system burden functional:

$$D(t) = \sum_{i=0}^n \alpha_i (E_i(t) + H_i(t)), \quad \alpha_i > 0$$

Hidden burden evolves as:

$$\frac{dH_i}{dt} = \beta_i(t) - \gamma_i(t)$$

where β_i is encapsulation rate and γ_i restructuring rate.

Explicit burden evolves as:

$$\frac{dE_i}{dt} = -\kappa_i(t) + \delta_i(t)$$

where κ_i is abstraction-driven simplification and δ_i exposure influx.

A.1.2 A.2 Conservation Condition

Assume abstraction primarily redistributes burden across layers. Then there exists coupling matrix B such that:

$$\delta_i(t) = \sum_j B_{ij} \beta_j(t)$$

Under purely redistributive transformation, total burden satisfies:

$$\frac{dD}{dt} \approx 0$$

in the absence of genuine algorithmic improvement.

A.1.3 A.3 Stability Criterion

Let state vector:

$$X(t) = (E_0, H_0, S_0, \dots, E_n, H_n, S_n)$$

Linearize dynamics near equilibrium X^* :

$$\frac{dX}{dt} = J(X - X^*)$$

where J is Jacobian.

Stability requires:

$$\text{Re}(\lambda_k(J)) < 0 \quad \forall k$$

Coupling-induced cascade occurs if:

$$\rho(A) > \min |\lambda_k|$$

where A is inter-layer coupling matrix.

A.1.4 A.4 Exposure Threshold

Define exposure functional:

$$\mathcal{E}(t) = \sum_i \theta_i H_i(t)$$

Exposure event occurs when:

$$\mathcal{E}(t) > \tau$$

for threshold τ determined by environmental tolerance.

Thus, accumulated hidden burden predicts crisis probability.

A.1.5 A.5 Entropy-Embedded Computation

Let computational state be coarse partition P of microstate space Ω .

Entropy:

$$S = k_B \ln |\Omega|$$

Irreversible logical operation requires:

$$\Delta S \geq k_B \ln 2$$

Total entropy production:

$$\frac{dS_{\text{total}}}{dt} = \sum_i S_i(t)$$

Energy balance:

$$P(t) \geq T \frac{dS_{\text{total}}}{dt}$$

Failure condition:

$$P(t) < T \frac{dS_{\text{total}}}{dt} \Rightarrow \text{instability}$$

A.1.6 A.6 Formal Statement of Mortal Universality

Let M be universal Turing machine physically instantiated. Let $\epsilon(t)$ be error rate function.

Assume:

$$\frac{d\epsilon}{dt} \geq \eta > 0$$

in absence of correction.

Correction requires energy:

$$E_{\text{corr}} \geq k_B T \ln 2 \cdot r(t)$$

where $r(t)$ is bit-reset rate.

Thus, for finite energy budget E_{tot} :

$$\exists T^* < \infty \quad \text{s.t. stability cannot be maintained}$$

Therefore, physical universality implies bounded operational lifetime.

A.1.7 A.7 Structural Non-Eliminability Theorem

For any computational model with resource measures (T, S, C) , if lower bound $L(n)$ exists such that:

$$T(n) + S(n) + C(n) \geq L(n)$$

then no abstraction transformation can reduce total resource burden below $L(n)$.

Thus:

$$\inf_{\text{transformations}} B(n) \geq L(n)$$

Constraint persists under rearrangement.

Conclusion of Appendix A.

The mathematical formalism confirms the central thesis: optimization redistributes constraint across coordinates, but thermodynamic embedding, complexity lower bounds, and coupling

dynamics prevent total elimination of burden.

A.2 Appendix B: Spectral Cascade Analysis

A.2.1 B.1 Layered Coupling Matrix

Let a system consist of n abstraction layers with instability magnitudes $u_i(t)$ measuring deviation from nominal stability at layer i .

Define vector:

$$u(t) = (u_1(t), \dots, u_n(t))^\top$$

Linearized instability dynamics are modeled as:

$$\frac{du}{dt} = \Lambda u + Au$$

where:

$$\Lambda = \text{diag}(\lambda_1, \dots, \lambda_n)$$

represents intrinsic damping at each layer, and A is the coupling matrix with entries $A_{ij} \geq 0$ describing propagation of instability from layer j to layer i .

A.2.2 B.2 Stability Condition

The full system matrix is:

$$J = \Lambda + A$$

Stability requires:

$$\text{Re}(\lambda_k(J)) < 0 \quad \forall k$$

Let $\rho(A)$ denote spectral radius of A .

If:

$$\rho(A) < \min_i |\lambda_i|$$

then intrinsic damping dominates coupling and the system remains stable.

If:

$$\rho(A) > \min_i |\lambda_i|$$

then coupling overcomes damping and cascade amplification becomes possible.

A.2.3 B.3 Hidden Burden Amplification

Let hidden burden at layer i contribute to instability via:

$$u_i(t) = \alpha_i H_i(t)$$

with $\alpha_i > 0$.

Substitute:

$$\frac{dH_i}{dt} = \beta_i(t) - \gamma_i(t)$$

Hidden burden accumulation increases instability magnitude.

Coupled system becomes:

$$\frac{du}{dt} = \alpha(\beta - \gamma) + Ju$$

where α is diagonal scaling matrix.

Persistent $\beta_i > \gamma_i$ increases baseline instability, reducing margin before cascade threshold.

A.2.4 B.4 Nonlinear Cascade Regime

Beyond linear regime, introduce nonlinear amplification term:

$$\frac{du_i}{dt} = \lambda_i u_i + \sum_j A_{ij} u_j + \kappa_i u_i^2$$

with $\kappa_i > 0$.

Quadratic term models runaway amplification once threshold crossed.

Fixed points satisfy:

$$\lambda_i u_i + \sum_j A_{ij} u_j + \kappa_i u_i^2 = 0$$

If no stable fixed point exists in neighborhood of origin, system transitions to crisis state.

A.2.5 B.5 Depth-Dependent Fragility

Let compositional depth d increase coupling density.

Assume:

$$\|A(d)\| \sim d^\gamma$$

for some $\gamma > 0$.

Stability condition becomes:

$$d^\gamma < \frac{\min_i |\lambda_i|}{c}$$

for constant c .

Thus, beyond critical depth:

$$d > d^*$$

cascade becomes structurally likely.

Deep abstraction chains inherently increase fragility.

A.2.6 B.6 Energy Constraint Coupling

Let entropy production at layer i be S_i .

Energy throughput required:

$$P_i(t) \geq T S_i(t)$$

If energy shortfall occurs:

$$P_i(t) < TS_i(t)$$

effective damping λ_i decreases.

Thus:

$$\lambda_i = \lambda_i(S_i, P_i)$$

Coupling between energetic stress and spectral instability links thermodynamics with cascade dynamics.

A.2.7 B.7 Global Cascade Criterion

Define global stress functional:

$$\Psi(t) = \rho(A(t)) - \min_i |\lambda_i(t)|$$

Cascade occurs when:

$$\Psi(t) > 0$$

Entropy accumulation increases $\rho(A)$ and decreases effective λ_i via energetic strain.

Thus, unmanaged hidden burden and entropy growth move system toward cascade boundary.

Conclusion of Appendix B.

Cascade instability emerges when inter-layer coupling overwhelms intrinsic damping. Hidden burden accumulation and thermodynamic stress both act to reduce stability margins. Deep compositional systems therefore require active entropy-aware interface discipline to prevent spectral amplification.

A.3 Appendix C: Information-Theoretic Coarse-Graining

A.3.1 C.1 Microstate and Macrostate Structure

Let Ω denote the set of microstates of a physical or computational system. A macrostate corresponds to a partition:

$$P = \{B_1, \dots, B_k\}$$

where:

$$\Omega = \bigsqcup_{j=1}^k B_j$$

Each block B_j aggregates microstates into an equivalence class under an abstraction map:

$$\pi : \Omega \rightarrow \{1, \dots, k\}$$

Thus, macrostate j corresponds to $\pi^{-1}(j)$.

A.3.2 C.2 Entropy Under Coarse-Graining

Let $p(\omega)$ be probability distribution over microstates.

Micro-entropy:

$$H_{\text{micro}} = - \sum_{\omega \in \Omega} p(\omega) \log p(\omega)$$

Macro-entropy induced by partition:

$$H_{\text{macro}} = - \sum_{j=1}^k P(B_j) \log P(B_j)$$

where:

$$P(B_j) = \sum_{\omega \in B_j} p(\omega)$$

Information loss under coarse-graining:

$$\Delta H = H_{\text{micro}} - H_{\text{macro}} \geq 0$$

Thus, abstraction reduces visible entropy while preserving hidden variability within blocks.

A.3.3 C.3 Conditional Hidden Entropy

Define conditional entropy:

$$H(\Omega | P) = \sum_{j=1}^k P(B_j) \left(- \sum_{\omega \in B_j} \frac{p(\omega)}{P(B_j)} \log \frac{p(\omega)}{P(B_j)} \right)$$

Then:

$$H_{\text{micro}} = H_{\text{macro}} + H(\Omega | P)$$

The term $H(\Omega | P)$ represents hidden entropy beneath abstraction boundary.

A.3.4 C.4 Refinement Threshold

Let perturbation $\delta p(\omega)$ alter microstate distribution.

Partition stability requires:

$$\max_j |\delta P(B_j)| < \epsilon$$

If perturbation induces:

$$\exists j \quad |\delta P(B_j)| \geq \epsilon$$

then macrostate classification becomes unstable.

Refinement event corresponds to subdivision of some B_j into finer blocks.

Thus, exposure corresponds to partition refinement.

A.3.5 C.5 Compression and Algorithmic Irreversibility

Let encoding map:

$$C : \Omega \rightarrow \Sigma^*$$

compress microstate description.

Compression ratio:

$$R = \frac{|C(\omega)|}{|\omega|}$$

Irreversible compression implies:

$$K(\omega) > |C(\omega)|$$

where $K(\omega)$ is Kolmogorov complexity.

Decompression cannot recover full microstate distribution without loss.

Thus, abstraction entails algorithmic irreversibility.

A.3.6 C.6 Entropy Drift and Coarse Stability

Let entropy evolve as:

$$\frac{dH_{\text{micro}}}{dt} \geq 0$$

Under fixed partition P , hidden entropy increases:

$$\frac{d}{dt} H(\Omega \mid P) \geq 0$$

If hidden entropy exceeds tolerance threshold:

$$H(\Omega \mid P) > \tau$$

macrostate partition becomes unstable.

Thus, entropy drift predicts eventual exposure.

A.3.7 C.7 Information Bottleneck Perspective

Let X denote microstate variable and Z abstraction variable.

Mutual information:

$$I(X; Z) = H(X) - H(X | Z)$$

Abstraction reduces $I(X; Z)$.

Optimization under information bottleneck:

$$\min_Z (I(X; Z) - \beta I(Z; Y))$$

Low β increases compression, increasing hidden entropy.

Excessive compression increases risk of misclassification under distributional shift.

A.3.8 C.8 Structural Interpretation

Coarse-graining does not eliminate structure. It relocates it into conditional entropy.

Stability depends on:

$$H(\Omega | P) \text{ remaining bounded}$$

Entropy accumulation drives refinement cycles.

Conclusion of Appendix C.

Information-theoretic analysis confirms the conservation thesis: abstraction reduces visible complexity while preserving hidden entropy. Distributional drift and entropy accumulation inevitably pressure coarse partitions toward refinement, generating exposure events.

A.4 Appendix D: Hamiltonian and Lagrangian Embedding of Computation

A.4.1 D.1 Computational State as Phase Space

Let Γ denote the phase space of a physical computing system, with microstate coordinates (q, p) representing generalized positions and conjugate momenta of the substrate degrees of freedom.

A logical computational state corresponds to a coarse region:

$$\mathcal{C} \subset \Gamma$$

Thus, logical state transitions correspond to trajectories through phase space constrained to move between regions.

A.4.2 D.2 Hamiltonian Dynamics

Physical evolution follows Hamilton's equations:

$$\dot{q} = \frac{\partial H}{\partial p}, \quad \dot{p} = -\frac{\partial H}{\partial q}$$

where $H(q, p)$ is system Hamiltonian.

In the absence of dissipation, phase space volume is preserved (Liouville's theorem).

However, computation requires effective logical irreversibility.

A.4.3 D.3 Logical Irreversibility and Phase Space Compression

Logical erasure maps multiple logical states into one:

$$(x_1, x_2) \mapsto x$$

This reduces logical phase space volume.

Physical realization must export entropy to preserve Liouville's theorem globally.

Thus:

$$\Delta S_{\text{env}} \geq k_B \ln 2$$

per bit erased.

Logical compression corresponds to environmental phase space expansion.

A.4.4 D.4 Lagrangian Formulation of Computation

Let system trajectory be $x(t)$ in configuration space.

Define Lagrangian:

$$L(x, \dot{x}) = T(x, \dot{x}) - V(x)$$

where T is kinetic term and V encodes constraint landscape.

Computation may be modeled as constrained action minimization:

$$S[x] = \int_{t_0}^{t_1} L(x, \dot{x}) dt$$

Logical solution corresponds to trajectory minimizing S subject to boundary conditions.

A.4.5 D.5 Dissipative Extension

Pure Hamiltonian systems are reversible. Physical computers are dissipative.

Introduce Rayleigh dissipation function:

$$\mathcal{R}(\dot{x}) = \frac{1}{2} \gamma \dot{x}^2$$

Modified Euler–Lagrange equation:

$$\frac{d}{dt} \frac{\partial L}{\partial \dot{x}} - \frac{\partial L}{\partial x} + \frac{\partial \mathcal{R}}{\partial \dot{x}} = 0$$

Dissipation term ensures:

$$\frac{dH}{dt} < 0$$

Energy is irreversibly transferred to environment.

A.4.6 D.6 Gradient Descent as Thermodynamic Flow

Optimization algorithms approximate gradient descent:

$$\dot{\theta} = -\nabla L(\theta)$$

This resembles overdamped Langevin dynamics:

$$\dot{\theta} = -\nabla V(\theta) + \eta(t)$$

with noise term $\eta(t)$.

Noise reflects thermal fluctuations.

Thus, training dynamics correspond to energy descent in noisy potential landscape.

A.4.7 D.7 Entropy Production Rate

Entropy production rate:

$$\sigma = \frac{1}{T} \left(-\frac{dF}{dt} \right)$$

where F is free energy.

Computation that reduces free energy locally increases entropy globally.

Total entropy change:

$$\frac{dS_{\text{total}}}{dt} = \frac{dS_{\text{system}}}{dt} + \frac{dS_{\text{environment}}}{dt} \geq 0$$

Logical stabilization corresponds to entropy export to environment.

A.4.8 D.8 Metastability and Lifetime

Let system free energy landscape contain local minima x^* .

Escape probability from basin:

$$P_{\text{escape}} \sim e^{-\Delta E/k_B T}$$

where ΔE is barrier height.

Metastable lifetime:

$$\tau \sim e^{\Delta E / k_B T}$$

Computational reliability increases with barrier height, but barrier construction requires energy investment.

Thus, stability is probabilistic and energy-conditioned.

A.4.9 D.9 Mortal Universality Revisited

Universal computation ensures:

$$\forall f \in \text{Comp}, \exists \text{ trajectory } x(t)$$

However, dissipative embedding ensures:

$$\exists \tau_{\max} < \infty$$

such that metastability fails without external maintenance.

Universality is formal completeness. Mortality is thermodynamic constraint.

Conclusion of Appendix D.

Computational processes admit rigorous embedding within Hamiltonian and Lagrangian dynamics augmented by dissipation. Logical irreversibility corresponds to entropy export, and computational stability corresponds to metastable energy wells sustained by continuous work. All physical realizations of universal computation are therefore bounded in lifetime by thermodynamic law.

A.5 Appendix E: Complexity-Theoretic Limit Proof Sketches

A.5.1 E.1 Lower Bounds as Resource Floors

Let L be a language over $\{0,1\}^*$. Suppose any decision procedure for L requires at least $L(n)$ operations.

Formally, for input size n :

$$\inf_{M \in \mathcal{A}} T_M(n) \geq L(n)$$

where \mathcal{A} is class of admissible algorithms.

This establishes a resource floor.

No abstraction transformation Φ can reduce total cost below $L(n)$.

Thus:

$$\forall \Phi, \quad T_{\Phi(M)}(n) \geq L(n)$$

Optimization rearranges cost but cannot breach lower bound.

A.5.2 E.2 Time–Space Tradeoff Theorem (Sketch)

Let problem P admit time–space tradeoff:

$$T(n)S(n) \geq \Omega(n^2)$$

Assume reduction in time:

$$T'(n) < T(n)$$

Then necessarily:

$$S'(n) > \frac{n^2}{T'(n)}$$

Reduction along one axis increases burden along another.

Total resource product remains constrained.

A.5.3 E.3 NP-Completeness as Non-Local Conservation

Let C be NP-complete.

If $C \in \mathbf{P}$, then:

$$\mathbf{NP} \subseteq \mathbf{P}$$

Absent such proof, we assume worst-case exponential time:

$$T_C(n) \geq 2^{\alpha n}$$

Approximation algorithm may satisfy:

$$T_{\text{approx}}(n) = \text{poly}(n)$$

but at cost:

$$\epsilon(n) > 0$$

Burden shifts from runtime to correctness guarantee.

Thus, conservation manifests as tradeoff between time and error.

A.5.4 E.4 Kolmogorov Incompressibility

Let $K(x)$ denote Kolmogorov complexity.

There exist strings x of length n such that:

$$K(x) \geq n$$

Proof sketch: counting argument.

There are 2^n binary strings of length n , but fewer than 2^n programs shorter than n bits.

Thus incompressible strings exist.

No abstraction can compress arbitrary structure.

Incompressibility defines irreducible informational burden.

A.5.5 E.5 Communication Complexity Lower Bound

Let $f(x, y)$ require communication between two parties.

If $C(f) \geq \Omega(n)$, then any protocol must exchange at least $\Omega(n)$ bits.

Local computation cannot eliminate global communication cost.

Constraint persists under distributional rearrangement.

A.5.6 E.6 Oracle Relativization

For oracle O :

$$\mathbf{P}^O \neq \mathbf{NP}^O$$

for some O , while:

$$\mathbf{P}^{O'} = \mathbf{NP}^{O'}$$

for another O' .

Thus, relativizing arguments cannot resolve \mathbf{P} vs \mathbf{NP} .

Abstraction layer (oracle) alters local solvability, but does not eliminate global structural uncertainty.

A.5.7 E.7 Structural Conservation Theorem

Let computational burden vector be:

$$B(n) = (T(n), S(n), C(n), \epsilon(n))$$

Let transformation Φ rearrange representation.

Then there exists invariant functional:

$$\mathcal{I}(B(n)) \geq \kappa(n)$$

for some lower bound $\kappa(n)$.

Optimization reduces one coordinate only by increasing another.

A.5.8 E.8 Formal Non-Eliminability

We state the general theorem.

Non-Eliminability Theorem (Sketch). For any sufficiently expressive computational model with nontrivial lower bounds in time, space, or communication, there exists no transformation that reduces all resource measures simultaneously below their respective lower bounds.

Proof sketch: Assume transformation Φ reduces all measures simultaneously. Then Φ contradicts known lower bound $L(n)$. Therefore such Φ cannot exist.

A.5.9 E.9 Relation to Conservation Thesis

Complexity theory thus encodes mathematically the structural conservation principle:

Constraint cannot be globally eliminated.

Formal systems reveal their own limits. Optimization is bounded by invariants.

Conclusion of Appendix E.

Lower bounds, incompressibility, and impossibility theorems establish that abstraction and rearrangement cannot eliminate structural burden. Constraint persists as invariant floor across representations.

Bibliography

- [1] Bennett, Charles H. “The Thermodynamics of Computation—A Review.” *International Journal of Theoretical Physics* 21, no. 12 (1982): 905–940.
- [2] Church, Alonzo. “An Unsolvable Problem of Elementary Number Theory.” *American Journal of Mathematics* 58, no. 2 (1936): 345–363.
- [3] Cook, Stephen A. “The Complexity of Theorem-Proving Procedures.” In *Proceedings of the Third Annual ACM Symposium on Theory of Computing*, 151–158. 1971.
- [4] Cover, Thomas M., and Joy A. Thomas. *Elements of Information Theory*. 2nd ed. Hoboken, NJ: Wiley, 2006.
- [5] Curry, Haskell B., and Robert Feys. *Combinatory Logic*. Amsterdam: North-Holland, 1958.
- [6] Feynman, Richard P. *Statistical Mechanics: A Set of Lectures*. Reading, MA: Addison-Wesley, 1972.
- [7] Fischer, Michael J., Nancy A. Lynch, and Michael S. Paterson. “Impossibility of Distributed Consensus with One Faulty Process.” *Journal of the ACM* 32, no. 2 (1985): 374–382.
- [8] Garey, Michael R., and David S. Johnson. *Computers and Intractability: A Guide to the Theory of NP-Completeness*. San Francisco: W. H. Freeman, 1979.
- [9] Gödel, Kurt. “Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I.” *Monatshefte für Mathematik und Physik* 38 (1931): 173–198.
- [10] Heidegger, Martin. “Die Frage nach der Technik.” In *Vorträge und Aufsätze*. Pfullingen: Neske, 1954.
- [11] Jaynes, E. T. *Probability Theory: The Logic of Science*. Cambridge: Cambridge University Press, 2003.
- [12] Kolmogorov, Andrey N. “Three Approaches to the Quantitative Definition of Information.” *Problems of Information Transmission* 1, no. 1 (1965): 1–7.

- [13] Landauer, Rolf. “Irreversibility and Heat Generation in the Computing Process.” *IBM Journal of Research and Development* 5, no. 3 (1961): 183–191.
- [14] Li, Ming, and Paul Vitányi. *An Introduction to Kolmogorov Complexity and Its Applications*. 3rd ed. New York: Springer, 2008.
- [15] Liouville, Joseph. “Note sur la théorie de la variation des constantes arbitraires.” *Journal de Mathématiques Pures et Appliquées* 3 (1838): 342–349.
- [16] Papadimitriou, Christos H. *Computational Complexity*. Reading, MA: Addison-Wesley, 1994.
- [17] Shannon, Claude E. “A Mathematical Theory of Communication.” *Bell System Technical Journal* 27 (1948): 379–423, 623–656.
- [18] Sipser, Michael. *Introduction to the Theory of Computation*. 3rd ed. Boston: Cengage Learning, 2012.
- [19] Turing, Alan M. “On Computable Numbers, with an Application to the Entscheidungsproblem.” *Proceedings of the London Mathematical Society* 42, no. 2 (1936): 230–265.
- [20] von Neumann, John. *Theory of Self-Reproducing Automata*. Edited by Arthur W. Burks. Urbana: University of Illinois Press, 1966.