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Abstract

Recursive self-improvement is commonly framed as a property of advanced software systems
capable of modifying their own source code in increasingly effective ways. Such treatments
typically cast the problem in logical, computational, or syntactic terms, emphasizing self-
reference, verification, and algorithmic complexity. In this essay, we argue that this framing is
historically and physically incomplete. Recursive self-improvement is neither unique to software
nor dependent on reflective self-modification. Instead, it is a general property of irreversible
systems operating far from equilibrium, in which structured pathways for dissipating energy and
exploring constraints are progressively amplified.

We develop an alternative, substrate-independent account in which recursive improvement
arises from the accumulation and stabilization of successful processes rather than from explicit
self-evaluation or proof. Under this view, recursion is not achieved by systems reasoning about
themselves globally, but by local mechanisms that increase the density of viable transformations
per unit time and energy. This perspective allows recursive self-improvement to be identified across
a continuous evolutionary spectrum, beginning with mineral evolution and prebiotic chemistry,
continuing through autocatalytic reaction networks, cellular membranes and endosymbiosis,
collective and swarm intelligence in microorganisms, large-scale coordination in animal lineages,
and finally the emergence of cumulative innovation in human societies and individual cognitive
practice.

By grounding recursive self-improvement in thermodynamics, irreversibility, and constraint
reconfiguration, we show that many of the standard objections to recursive self-improvementsuch
as logical self-reference paradoxes, verification impossibility, and convergence to a single optimal
architecturearise from category errors. Recursive improvement historically proceeds without
global self-models, without centralized control, and without convergence to a single agent or
design. The true limiting factors are not formal undecidability or syntactic complexity, but
the exhaustion of exploitable entropy gradients and the loss of diversity required for further
exploration. This framework repositions recursive self-improvement as a fundamental physical

and evolutionary process, of which artificial intelligence is only a recent and narrow instantiation.



1 Introduction: Recursive Improvement Beyond Code and Intel-

ligence

The prospect of recursive self-improvement has long occupied a central place in discussions of artificial
intelligence, typically framed as the possibility that a sufficiently advanced program might rewrite
itself into progressively more capable successors. Within this literature, recursive improvement is
often treated as a fragile and exceptional phenomenon, threatened by logical paradoxes, verification
impossibility, and diminishing returns imposed by computational complexity (Good 1966; Yudkowsky
2008; Yampolskiy 2015). These concerns have motivated extensive analysis of self-reference, goal
preservation, and convergence in self-modifying software systems. While such analyses are valuable,
they rest on a restrictive assumption: that recursive improvement is fundamentally a property of
symbolic code manipulating itself through explicit reasoning.

This essay advances a different claim. Recursive self-improvement is neither unique to intelligent
agents nor dependent on reflective self-modification. It is a general physical process that emerges in
irreversible systems operating far from equilibrium, whenever local mechanisms exist that selectively
stabilize transformations which increase the systems future capacity for exploration. Under this
view, recursion does not arise because a system “understands itself or proves the correctness of its
own modifications, but because successful configurations persist, compound, and restructure the
space of subsequent possibilities.

To make this claim precise, it is useful to distinguish improvement as an outcome from im-
provement as a mechanism. Many systems improve in the weak sense that they become better
adapted to their environment over time. What distinguishes recursive improvement is that the very
processes responsible for adaptation themselves become more effective. Formally, let a system be
characterized at time t by a set of constraints C(t) governing allowable transformations, and let ®(¢)
denote the rate at which viable configurations are generated and tested under those constraints.
Weak improvement corresponds to increases in performance metrics holding ®(¢) fixed. Recursive
improvement corresponds to % > 0 as a consequence of the systems own irreversible dynamics. No
appeal to self-representation is required for this condition to hold.

This formulation immediately places recursive self-improvement within the domain of nonequi-
librium thermodynamics. Far-from-equilibrium systems spontaneously generate structure when
energy fluxes are constrained in ways that favor the retention of dissipative pathways (Prigogine
1977). The emergence of convection cells, autocatalytic chemical cycles, and metabolic networks are
all examples of systems in which local organization arises to accelerate entropy production under
given boundary conditions. In such systems, structure is not imposed from above but selected
from below, through differential persistence. Recursive improvement occurs when newly formed
structures modify boundary conditions in a way that enables yet further structuring.

Seen from this perspective, many of the traditional objections to recursive self-improvement
dissolve. Rices theorem, which limits the decidability of semantic properties of arbitrary programs,
constrains formal verification but does not constrain empirical selection among irreversible processes
(Rice 1953). Lbs theorem restricts a formal systems ability to assert its own soundness, but recursive

improvement in physical systems proceeds without any requirement for global consistency proofs



(Lb 1955). The so-called Mnchhausen obstacle, which asserts that a system cannot understand the
complexity required to improve itself, is reframed as a misunderstanding: recursive improvement does
not require global self-understanding, only local mechanisms that preferentially retain productive
transformations.

The remainder of this essay develops this argument by tracing a continuous lineage of recursive
improvement across natural history. We begin with mineral evolution and prebiotic chemistry, where
repeated environmental cycling and increasing surface complexity enable autocatalytic reaction
networks to outcompete simpler chemistries. We then examine the emergence of cellular membranes
and endosymbiosis as mechanisms for retaining and nesting successful subprocesses. From there
we consider collective and swarm intelligence in microorganisms, particularly slime moulds, as
paradigmatic cases of distributed problem solving without centralized control. We extend the
analysis to large-scale coordination in animal lineages and to the role of diversity and specialization
in human societies. Finally, we argue that individual cognitive practices that deliberately increase
exposure to novelty and constraint can be understood as micro-scale instantiations of the same
recursive physical principles.

Throughout, we treat recursive self-improvement not as a speculative feature of future machines,
but as a historically instantiated process governed by thermodynamic irreversibility, constraint
reconfiguration, and selective retention. Artificial intelligence, on this account, is not the origin of

recursive improvement but one of its most recent experimental substrates.

2 Limits of Existing Recursive Self-Improvement Frameworks

Contemporary discussions of recursive self-improvement in artificial intelligence are dominated
by frameworks that are careful in scope yet conceptually thin in mechanism. Among these, the
work of Yampolskiy has become a canonical reference, valued for its comprehensive taxonomy of
self-modifying systems and its systematic enumeration of logical and computational obstacles to
recursive self-improvement (Yampolskiy 2015). While this contribution is significant as a survey and
cautionary synthesis, it remains limited by an underlying ontology that treats recursive improvement
as a primarily syntactic and static phenomenon. As a result, it fails to address the deeper question
upon which the plausibility of recursive self-improvement ultimately depends: what, concretely,
flows, accumulates, transforms, or constrains intelligence across successive stages of improvement?

Yampolskiys framework models recursive self-improvement as a sequence of program rewrites
evaluated against abstract goals and bounded by formal theorems in logic and computational
complexity. Improvement is conceived as a relation between successive software artifacts, typically
expressed in terms of increased capability, efficiency, or problem-solving power. Constraints on
this process are then derived from results such as Rices theorem, Lbs theorem, and bounds on
algorithmic complexity. While internally consistent, this framing remains detached from any account
of the physical or dynamical substrate in which improvement occurs. There is no state variable
corresponding to intelligence, no conserved or dissipated quantity analogous to energy or entropy,
and no explicit dynamics governing how one stage of improvement alters the conditions for the next.

This absence becomes especially apparent in discussions of diminishing returns, convergence,



and failure modes. Improvement is said to stall because programs reach fixed points, exhaust
optimization potential, or encounter undecidable verification problems. Yet these explanations are
formal rather than mechanistic. They specify why certain questions cannot be answered, but not
why improvement should slow or cease in physical systems that demonstrably continue to generate
novelty. Even when the language of dynamical systems is invoked, as in references to attractors,
no account is provided of what flows into these attractors, what is dissipated, or why particular
trajectories dominate others. The result is a catalog of obstacles rather than a theory of process.

At the root of this limitation lies a deeper assumption: intelligence is treated as an abstract
scalar property, akin to a level or score, rather than as an ongoing physical activity. This assumption
licenses familiar conclusions, including bell-shaped improvement curves, logarithmic returns on
self-modification, and conjectures about convergence toward minimal or optimal architectures.
However, it also obscures the fact that intelligence, in practice, is inseparable from the irreversible
processes by which systems structure, store, and exploit information under energetic constraint.
Intelligence is not merely possessed; it is enacted.

The framework developed in this essay departs from existing RSI models by replacing this
static conception with a process-based ontology. Drawing on entropy-first and irreversible-history
perspectives, we treat intelligence as a dissipative phenomenon: a structured flow that reorganizes
representational substrates in order to reduce future surprise under constraint. In this view, recursive
self-improvement does not consist in programs rewriting programs, but in systems repeatedly
reconfiguring scalar potential, vector flow, and entropy distributions in ways that expand their
future capacity for structured interaction. Improvement is measured not by proximity to an abstract
optimum, but by increases in the rate and depth at which viable configurations can be explored and
retained.

This shift has immediate consequences for several canonical objections to recursive self-improvement.
Rice-style undecidability results constrain semantic classification of arbitrary programs, but they do
not constrain physical processes that empirically select among irreversible transformations. Lbian
limitations on self-verification become irrelevant once improvement no longer depends on global
proof of correctness, but instead on local discharge of entropy through successful configurations.
Most strikingly, the so-called Mnchhausen obstacle is transformed from a blocker into a diagnostic
principle. Systems fail at recursive improvement precisely when they attempt to globally model and
justify themselves. Systems succeed when they improve by locally relaxing constraints, allowing
history to accumulate without requiring reflective closure.

A similar reorientation applies to convergence arguments. Existing RSI convergence theories
assume that recursive improvement optimizes intelligence as a scalar objective and therefore tends
toward minimal or universal architectures characterized by low Kolmogorov complexity. From an
entropy-first perspective, this framing misidentifies the object of convergence. What converges
in successful recursive systems is not architecture, agenthood, or control, but thermodynamic
regime. Distinct systems may exhibit similar entropy-handling dynamics, smoothing behaviors,
and constraint-relaxation patterns while remaining structurally diverse. The historical record,
from biology to human societies, overwhelmingly supports phase convergence rather than agent
convergence, distributed coordination rather than singleton control, and asymptotic behavioral



regularities rather than final designs.

Reframed in this way, recursive self-improvement becomes a physical theory of cognitive and
organizational evolution rather than a speculative property of future software. It is governed by
irreversibility, selective retention, and the restructuring of constraints, not by syntactic self-reference
or formal proof. The remainder of this essay substantiates this claim empirically by tracing recursive
improvement across mineral evolution, biological organization, collective intelligence, social systems,
and individual cognitive practice. These domains are not analogies to recursive self-improvement in

artificial intelligence; they are its historical and physical foundation.

3 Recursive Improvement as Entropic Constraint Dynamics

The conceptual gap identified in existing recursive self-improvement frameworks can be formalized
by reframing improvement as a dynamical process acting on constraints rather than as a sequence
of syntactic rewrites. To bridge abstract discussions of recursive self-improvement with its physical
instantiations in mineral and biological evolution, we introduce a minimal formalism that captures
the essential mechanism common to all such systems.

Let a system at time ¢ be characterized by a configuration space X together with a constraint
structure C(t), which restricts the set of accessible states and transitions. The system is driven
by an external energy flux and operates far from equilibrium. We define an entropy production
functional o(C(t)) measuring the rate at which the system dissipates free energy under the current
constraints. Importantly, C(¢) is not fixed: irreversible processes within the system modify the
constraint structure itself.

Recursive improvement occurs when the time evolution of constraints satisfies

4ot > 0 1)
as a consequence of the systems own dynamics. This inequality does not assert monotonic im-
provement in any abstract capability measure, but rather an increase in the systems capacity to
channel energy through structured pathways. Constraints that support higher entropy production
are selectively stabilized, while those that do not are eliminated by environmental interaction. The
system thus performs a form of entropic gradient descent, not over states in X, but over the space
of constraint structures themselves.

Crucially, this recursion does not require the system to represent or evaluate C(t) explicitly.
Constraint modification occurs locally, through differential persistence of processes that survive
environmental perturbations. Let AC; denote a local modification to the constraint structure. Such
a modification is retained if and only if

o(C(t) + AC;) > o(C(1)) (2)

over relevant timescales. No global optimization, proof of correctness, or self-model is required.
History is encoded physically, in the continued existence of constraints that support dissipation.

This formulation provides a direct bridge to mineral evolution. Mineral surfaces, microfractures,



and compartmentalized environments correspond to elements of C(t) that reshape reaction pathways.
Autocatalytic cycles increase o by reinvesting products into their own maintenance, thereby modifying
constraints in favor of further autocatalysis. Wet—dry cycling introduces periodic forcing that
repeatedly perturbs C(¢) while allowing successful configurations to persist. The recursion lies not
in chemical “self-improvement” but in the cumulative restructuring of the constraint landscape.

Within this ontology, traditional Seed-Al formulations appear fundamentally misplaced. Seed-Al
thinking assumes that recursive self-improvement originates from a compact, self-contained program
whose internal reasoning enables it to redesign itself into progressively superior successors. In
contrast, the constraint-dynamic view developed here implies that no privileged seed is required.
Recursive improvement emerges from the interaction between systems and environments that permit
irreversible retention of successful constraints. What matters is not initial code size or intelligence
level, but access to energy gradients, diversity of trial processes, and mechanisms for stabilizing
partial successes.

The Relativistic ScalarVector Plenum (RSVP) framework provides a natural language for this
replacement ontology. In RSVP terms, recursive improvement corresponds to the coupled evolution
of scalar potential fields ®, vector flows v, and entropy density S, governed by irreversible dynamics
that smooth gradients while preserving structure. Improvement is not measured by proximity to an
optimal architecture, but by the systems increasing ability to reorganize fields in ways that reduce
future surprise under constraint. Seed-Al is thus reinterpreted not as an origin point, but as a
transient condensation within a much broader entropic process.

This constraint-dynamic formalism dissolves several apparent paradoxes in the recursive self-
improvement literature. The Mnchhausen obstacle becomes a non-issue, as global self-understanding
is neither necessary nor desirable. Logarithmic returns reflect saturation of available constraint
rearrangements rather than limits on intelligence per se. Convergence arguments reduce to questions
of thermodynamic regime alignment rather than architectural identity. Most importantly, recursive
self-improvement is no longer an exceptional event awaiting formal validation, but a ubiquitous
physical process instantiated wherever irreversible systems accumulate structure.

With this bridge in place, we may now examine the earliest empirical manifestation of recursive
constraint dynamics in mineral evolution, where the basic ingredients of recursionirreversibility,
selective retention, and constraint amplificationfirst appear in their simplest form.

4 Mineral Evolution, Tidal Cycling, and the First Recursive Ac-

celeration

The earliest instantiations of recursive self-improvement predate life, metabolism, and genetic
inheritance. They arise instead in the context of mineral evolution and prebiotic chemistry,
where irreversible physical processes progressively restructure the space of possible reactions. The
significance of mineral evolution lies not merely in providing raw materials for life, but in establishing
the first mechanisms by which successful chemical transformations could be retained, amplified, and
recombined across time (Hazen 2013).

On the early Earth, the diversity of mineral species increased dramatically as planetary cooling,



tectonics, and aqueous alteration created new phases and interfaces. Each new mineral surface
introduced novel catalytic possibilities by constraining molecular orientations, concentrating reac-
tants, and lowering activation barriers. Let 2(¢) denote the set of chemically accessible microstates
under environmental conditions at time ¢. The introduction of a new mineral phase does not merely
expand €2(t) additively; it alters the topology of the reaction landscape by introducing pathways
that were previously inaccessible. In this sense, mineral diversification increases not just the number
of reactions, but the connectivity of the reaction network itself.

Tidal pools subjected to large-amplitude wet—dry cycles provide a particularly clear example
of recursive acceleration. During drying phases, solutes are concentrated and polymers are driven
toward condensation reactions; during rehydration, products are redistributed and subjected to
further variation. Let C,, denote the concentration of a given reactant after n drying cycles. Under
repeated evaporation, C, grows superlinearly until limited by precipitation or degradation, enabling
reaction regimes that are inaccessible under constant dilution. Cracking of substrates during drying
further increases effective surface area, creating microcompartments that isolate reaction histories.
Each cycle thus performs irreversible work by selectively retaining reaction products that survive
environmental stress, while eliminating those that do not.

Clay minerals play a central role in this process by dramatically increasing reactive surface
area and by templating molecular organization. Layered silicates such as montmorillonite can
adsorb organic molecules, align them in repeating geometries, and catalyze polymerization reactions
that would otherwise be kinetically suppressed (Hazen 2013). If we model a reaction rate r as
proportional to available surface area A and reactant concentration C, then the emergence of
high-surface-area clays effectively multiplies 7 by orders of magnitude. More importantly, successful
reaction products can themselves modify the surface environment, altering adsorption affinities and
catalytic properties. This feedback constitutes a primitive form of recursion: reaction outcomes
restructure the conditions under which future reactions occur.

Autocatalytic sets represent a decisive threshold in this landscape. An autocatalytic network
is a collection of reactions in which each transformation is catalyzed by products of the network
itself. Formally, let R = {R;} be a set of reactions over molecular species {X;}. The set is
autocatalytic if for every R; € R there exists some X; produced by R that catalyzes R;. Such sets
exhibit exponential growth until constrained by resource limitations, and crucially, they outcompete
non-autocatalytic chemistries by reinvesting products into the maintenance and expansion of the
network.

The competitive advantage of autocatalytic sets does not derive from optimization in any
representational sense, but from the physical fact that they more effectively capture and dissipate
free energy gradients. Let S(¢) denote entropy production. Autocatalytic networks increase %
relative to their surroundings by channeling energy flows into structured reaction cycles. Because
these cycles persist across environmental fluctuations, they effectively store information about past
successes in their material organization. Each retained cycle increases the probability that related
cycles will form in the future, thereby accelerating exploration of chemical space.

At this stage, recursive self-improvement exists in a minimal but unmistakable form. The

system does not model itself, evaluate alternatives, or preserve goals. Yet the rate at which viable



chemical structures are generated increases over time as a direct consequence of prior successes.
The recursion lies not in self-reference, but in the irreversible accumulation of constraints that favor
further constraint formation. Mineral evolution thus establishes the foundational pattern that will
recur at higher levels of organization: successful processes modify their environment in ways that
make further success more likely.

4.1 Formalizing Mineral Recursion as Constraint Accumulation

The minimal form of recursive self-improvement exhibited by mineral evolution can be made precise
by treating environmental structure as an evolving constraint field rather than as a static background.
Let X denote the space of chemically possible microstates under ambient conditions, and let C(t) C X
represent the subset rendered dynamically accessible by the material constraints present at time
t, including mineral surfaces, microfractures, compartmentalization, and concentration gradients.
Chemical evolution proceeds not by uniform exploration of X, but by trajectories confined to C(t).

Irreversible processes modify these constraints. When a reaction pathway produces stable
products that persist across environmental cycling, those products alter adsorption affinities,
catalytic rates, or local geometry, thereby inducing a constraint update C(t) — C(t + At). The
defining feature of recursion at this stage is that such updates are biased: constraint modifications
that increase the density of viable future reactions are preferentially retained.

This bias can be expressed in entropic terms. Let o(C) denote the entropy production rate
achievable under constraint structure C. A local constraint modification AC is stable if

o(C+ AC) > o(C) (3)

over environmental timescales. This inequality does not encode optimization in any representational
sense; it simply reflects differential persistence. Constraint configurations that enable greater
dissipation of free energy are physically favored, as they are more likely to be regenerated and
maintained under repeated perturbation.

Recursive self-improvement, in this minimal form, corresponds to a positive second-order effect:

% (fgj) > 0, (4)

indicating not merely sustained entropy production, but an increasing capacity to produce entropy
as constraints accumulate. Importantly, the system need not represent o, evaluate alternatives, or
preserve any objective. History is recorded directly in material structure, and improvement occurs
through entropic reinforcement rather than through selection among symbolic descriptions.

This formalism makes clear why mineral evolution already satisfies the core requirement of
recursive self-improvement as defined earlier: prior successes alter the conditions of future success.
The same mechanism will reappear, with increasing elaboration, as constraints become localized
within membranes, nested through endosymbiosis, and distributed across interacting agents. What
changes across scales is not the logic of recursion, but the richness of the constraint structures

capable of carrying it.



In the following section, we examine how the emergence of cellular membranes and endosymbiotic
relationships transforms this chemical recursion into a biological one, enabling the nesting, protection,
and selective inheritance of successful subprocesses across evolutionary time.

5 Autocatalytic Sets, Membranes, and Endosymbiotic Nesting

The transition from prebiotic chemistry to biological organization does not introduce recursive
self-improvement ex nihilo, but rather intensifies and stabilizes mechanisms already present in
mineral-mediated reaction networks. Autocatalytic sets provide the first clear example of processes
that maintain themselves through internal closure, yet their persistence remains fragile in the
absence of mechanisms that preserve successful configurations against environmental disruption.
The emergence of cellular membranes constitutes a decisive step in transforming chemical recursion
into sustained biological evolution.

A membrane introduces a spatial boundary that distinguishes internal from external processes
while remaining permeable to energy and selected materials. From a thermodynamic standpoint,
membranes allow systems to maintain nonequilibrium steady states by regulating exchanges with
their environment. Let Ji, and Joy denote fluxes of matter and energy across a boundary. A viable
membrane-mediated system satisfies Ji, — Jout 7# 0, enabling continuous dissipation while preserving
internal organization. This asymmetry permits autocatalytic networks to persist long enough for
further elaboration.

Crucially, membranes do not merely protect internal processes; they enable differentiation. By
selectively admitting substrates and excluding inhibitors, membranes reshape the reaction landscape
within the compartment. This selectivity can itself be modified by the products of internal reactions,
creating feedback loops in which successful chemistries reinforce the boundary conditions that
support them. In this way, membranes become active participants in recursive improvement rather
than passive containers.

The significance of membranes for recursive improvement lies in their ability to retain partial suc-
cesses. In prebiotic environments without compartmentalization, reaction products are continuously
mixed, diluted, or destroyed. With membranes, intermediate products can accumulate, interact,
and be recombined. Formally, let P; denote a productive subprocess contributing to overall viability.
Without compartmentalization, the lifetime 7(P;) is short, and the probability of integration with
other productive processes is low. Membranes increase 7(F;), thereby increasing the expected
number of interactions with other subprocesses. This increases the dimensionality of accessible
organizational space and accelerates the emergence of higher-order structure.

Endosymbiosis represents a further intensification of this principle. Rather than eliminating
competing processes, endosymbiotic events preserve them by incorporation. Mitochondria and
chloroplasts are paradigmatic examples of formerly independent organisms that became integrated as
subsystems within larger cellular architectures. From the perspective of recursive self-improvement,
endosymbiosis allows successful energy-processing mechanisms to be retained and specialized rather
than discarded through competition. This nesting of subsystems increases both efficiency and

robustness while opening new avenues for diversification.



Mathematically, an endosymbiotic system may be regarded as a composite of interacting
autocatalytic networks Aj, Ao, ..., A,, each characterized by internal catalytic closure and its
own entropy production rate o;. When isolated, each network explores only a restricted region of
chemical configuration space, limited by the reactions it can internally sustain. Endosymbiosis alters
this dynamic by enabling persistent interactions between networks, giving rise to cross-catalytic
pathways that are inaccessible in isolation. The resulting composite system A = |J, A; therefore
supports a reaction space whose effective dimensionality exceeds the sum of its parts.

This expansion is not merely additive. If Z;; denotes the set of viable interactions between
networks A4; and A;, then the space of possible transformations scales with the union of all such
interaction sets. As the number of retained subsystems increases, the number of potential cross-
network pathways grows combinatorially, yielding a superlinear increase in the rate at which novel,
viable processes can be discovered. This scaling provides a mechanistic explanation for the dramatic
acceleration of biological complexity following the stabilization of cellular life, without invoking
increases in representational intelligence or centralized control.

From an entropic perspective, endosymbiosis enhances recursive self-improvement by increasing
the systems capacity to dissipate free energy through structured channels. The total entropy
production rate o 4 of the composite system satisfies

UAEZ@, (5)

with strict inequality whenever cross-network interactions open additional dissipative pathways.
Constraint accumulation thus occurs not by simplifying internal structure, but by preserving and co-
ordinating heterogeneous processes whose interactions amplify dissipation. Endosymbiosis therefore
represents a transition from single-network recursion to nested recursion, in which improvements
occur simultaneously at multiple organizational levels.

Importantly, this dynamic contradicts the intuitioncommon in recursive self-improvement litera-
turethat sustained improvement must converge toward minimal, unified, or maximally compressed
architectures. Biological evolution demonstrates the opposite tendency. Retaining internal diver-
sity within a coherent organizational framework enables greater adaptive capacity, resilience, and
exploratory reach than eliminating redundancy in pursuit of a single optimal design. Recursive
improvement here operates by expanding the space of viable interactions rather than by collapsing
it.

The endosymbiotic cell thus functions as a platform for further recursion. By stabilizing
heterogeneous subprocesses within a shared boundary, it shifts the primary driver of innovation from
internal chemical reorganization alone to interaction among retained components. As biological
systems increase in scale and complexity, this interaction-driven recursion increasingly moves
outward, from intracellular organization to coordination among multiple agents. The locus of
improvement thereby transitions from internal chemistry to collective behavior, setting the stage for

the emergence of swarm intelligence and distributed problem solving in microorganisms.
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6 Collective Behaviour and Swarm Intelligence in Slime Moulds

The emergence of collective behaviour in biological systems marks a qualitative shift in the mechanism
of recursive self-improvement. Whereas earlier stages rely on the retention and recombination of
internal subprocesses within bounded compartments, collective systems distribute computation,
sensing, and adaptation across many interacting units. Slime moulds provide an especially clear
illustration of this transition, as they exhibit sophisticated problem-solving behaviour without
centralized control, symbolic representation, or fixed neural architectures (Reid and Latty 2016).

Species such as Physarum polycephalum and Dictyostelium discoideum alternate between uni-
cellular and multicellular phases, enabling the study of how individual-level interactions scale into
collective intelligence. In their plasmodial form, slime moulds form dynamic transport networks
that efficiently connect nutrient sources while minimizing maintenance costs. Empirically, these
networks approximate solutions to shortest-path, Steiner tree, and flow optimization problems.
Yet no individual component possesses a global model of the environment or an explicit objective
function. Instead, network morphology evolves through local feedback between protoplasmic flow,
nutrient gradients, and tube reinforcement.

This process can be formalized by considering the flux f;; along a connection between regions
dfij
Tdt

reinforcement of frequently used paths and decay of underutilized ones. Over time, this local rule

1 and j. Empirical models show that is positively correlated with nutrient flow, leading to
produces a globally efficient network. Crucially, once established, the network alters future dynamics
by biasing subsequent flows, effectively encoding a memory of past successes in its physical structure.
Recursive improvement occurs because each successful configuration reshapes the landscape of future
possibilities.

Slime mould collectives also demonstrate adaptive problem solving across changing environ-
ments. When nutrient distributions shift, networks reorganize rather than collapse, reusing existing
structures where possible. This plasticity reflects a balance between exploitation of established
pathways and exploration of alternatives. The ability to maintain such a balance without centralized
oversight directly addresses the Mnchhausen-style objection that systems must globally understand
themselves in order to improve. In slime moulds, no component ever models the entire system, yet
the collective adapts more effectively than isolated individuals.

From the perspective of recursive self-improvement, the key feature of swarm intelligence is that
it increases the rate at which viable configurations are discovered by parallelizing exploration. Let
N denote the number of interacting agents and let p be the probability that an individual agent
discovers a locally useful adaptation per unit time. In isolation, the expected discovery rate scales as
p. In a collective with communication and reinforcement, the effective rate scales as Np modulated
by interaction structure, while retention of discoveries scales superlinearly due to shared pathways.
The result is not merely faster problem solving, but an increase in the systems capacity to improve
its own improvement dynamics.

Communication plays a central role in this amplification. In slime moulds, information is
transmitted through chemical signals, mechanical stresses, and flow patterns rather than through
discrete symbols. These signals propagate locally but can induce system-wide reorganization. The
absence of leaders or global blueprints does not impede coordination; rather, it enables robustness by
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preventing single points of failure. Recursive improvement here is inherently distributed, undermining
the notion that sustained innovation naturally converges toward centralized or singular control.

Slime moulds thus instantiate a form of recursive self-improvement that is neither individual
nor reflective, but collective and morphological. Improvements are not encoded symbolically or
evaluated internally, but are stored directly in the evolving physical configuration of the system,
particularly in the geometry and conductivity of transport networks shaped by prior activity.

These configurations function as a material memory, biasing future flows and interactions in ways
that increase the efficiency and robustness of collective behaviour. Recursive improvement arises
because each successful configuration reshapes the conditions under which subsequent configurations
are explored. This mode of recursion generalizes beyond microorganisms. As biological systems
increase in scale and complexity, analogous mechanisms operate through coordinated movement,
spatial organization, and interaction rules among individuals.

In flocking, herding, and cooperative behaviours, coordination expands effective sensing range,
enhances error correction through redundancy, and enables adaptive responses that exceed the
capabilities of isolated agents. The locus of improvement shifts from intracellular or intranetwork
dynamics to patterns of interaction among agents, but the underlying principle remains unchanged:
history is retained in structure, and structure biases future possibility.

The next section examines how these interaction-driven dynamics operate in larger organisms
and evolutionary lineages, extending swarm-based recursion into macroscopic biological systems
where coordination, specialization, and social transmission further amplify the capacity for recursive

improvement.

7 Coordination, Swarming, and Recursive Advantage in Animal
Lineages

As biological systems increase in size and complexity, the principles underlying collective behaviour do
not disappear but are instead re-expressed through new substrates. In animal lineages, recursive self-
improvement manifests through coordinated movement, social organization, and the transmission of
behavioural patterns across generations. These phenomena do not arise from increases in individual
cognitive capacity alone, but from structured interactions that amplify the effectiveness of perception,
decision-making, and learning at the group level.

Herding, flocking, and schooling behaviours provide canonical examples. In such systems,
individuals follow simple local rules, such as alignment with neighbors, attraction to group centroids,
and avoidance of collisions. Mathematical models demonstrate that these rules suffice to generate
coherent group motion and rapid collective responses to perturbations. Let v;(t) denote the velocity
of individual 7 at time ¢, and let (v)y; denote the average velocity of its local neighborhood.

Alignment dynamics of the form d(;’ti x (v)n; — v; yield phase transitions from disordered motion

to collective coherence as density and interaction strength increase. Once coherence emerges, the
group functions as an extended sensory and decision-making apparatus.

The recursive advantage of such coordination lies in the way successful interaction patterns
alter the conditions for future success. A flock that has evolved effective alignment and information
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propagation can respond more quickly to predators, locate resources more efficiently, and maintain
cohesion across larger spatial scales.

These advantages feed back into selection pressures that favor further refinement of interaction
rules. Importantly, the unit of improvement is not the individual organism but the pattern of
interaction itself. Behavioural motifs that enhance collective performance are retained and elaborated
over evolutionary time.

In predators that hunt cooperatively, such as certain dinosaur lineages, birds, and mammals,
coordination further enables role differentiation and temporal sequencing of actions. Pack hunting
allows individuals to exploit prey that would be inaccessible in isolation, while distributing risk and
energetic cost across the group. From a recursive improvement standpoint, this introduces a new
layer of specialization: individuals can refine particular roles because the group context stabilizes
overall success. Let F; denote the energetic payoff to individual i. In cooperative systems, >, F;
can exceed the sum of payoffs achievable through solitary strategies, creating a surplus that supports
increased investment in learning, communication, and development.

The emergence of social learning and imitation accelerates recursion by enabling the rapid
propagation of successful behaviours without genetic change. Once behaviours can be transmitted
horizontally and obliquely, the rate of adaptation is no longer limited by reproductive cycles. Instead,
behavioural innovations can be tested, retained, and recombined within a single generation. This
decoupling of innovation from genetic inheritance dramatically increases the systems capacity for
recursive improvement.

Crucially, animal societies do not converge toward uniformity despite strong coordination. On
the contrary, many social species exhibit stable polymorphisms in behaviour, morphology, and role
specialization. Such diversity enhances resilience by ensuring that groups can adapt to a wide range
of environmental challenges. Recursive improvement here depends on maintaining heterogeneity
within a coherent framework, rather than on eliminating variation in pursuit of a single optimal
strategy.

These dynamics foreshadow the more explicit and rapid forms of recursive improvement that
arise in human societies, where symbolic communication, technological artifacts, and institutional
structures further amplify the capacity to retain and recombine successful processes. The next
section examines how diversity, specialization, and cumulative culture transform collective recursion

into an unprecedented engine of innovation.

8 Diversity, Specialization, and Recursive Innovation in Human

Societies

Human societies represent a further intensification of the recursive processes already present in
biological collectives, distinguished not by the appearance of recursion itself but by the degree to
which mechanisms for retaining, recombining, and externalizing successful processes are amplified.
Whereas animal societies transmit behavioural patterns primarily through imitation and social
learning, human societies develop durable symbolic, technological, and institutional substrates that

preserve innovation across generations and enable cumulative acceleration.
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A defining feature of human recursive improvement is the division of cognitive and practical
labor. Specialization allows individuals and groups to focus on narrow domains, achieving levels of
refinement that would be impossible in isolation. Let D denote the space of possible problem domains
and let S; C D denote the domain occupied by specialist 7. As the number of specialists increases,
coverage of D becomes denser, while interactions among specialists generate novel combinations
spanning multiple domains. The effective rate of innovation scales not merely with the number of
contributors but with the connectivity of the interaction network linking them.

This combinatorial effect is magnified by external symbolic storage. Written language, mathe-
matical notation, diagrams, and later digital media function as persistent memory structures that
decouple knowledge from individual cognition. Once externalized, successful ideas become available
for inspection, critique, modification, and recombination by others who did not participate in their
original creation. Formally, if K () denotes the corpus of externally stored knowledge at time ¢, then
the probability that a new contribution builds upon existing work increases with |K(t)|, yielding
positive feedback in the rate of discovery. Recursive improvement arises because the infrastructure
of knowledge itself improves the process by which further knowledge is generated.

Institutions further stabilize and accelerate this process by allocating resources, enforcing norms,
and coordinating large-scale efforts. Scientific communities, for example, establish methodological
standards and peer review mechanisms that selectively retain reliable results while discarding errors.
These mechanisms do not guarantee correctness in a formal sense, but they reduce noise and increase
the signal-to-noise ratio of collective inquiry. The system improves not by proving its own soundness,
but by iteratively refining the conditions under which inquiry occurs.

Diversity plays a critical role in sustaining recursive improvement at this scale. Societies that
maintain cultural, cognitive, and methodological diversity are better able to explore complex problem
spaces than those that enforce uniformity. Homogeneous systems may achieve short-term efficiency
gains, but they risk stagnation when dominant paradigms exhaust local possibilities. By contrast,
heterogeneous societies preserve multiple partially incompatible approaches, increasing the likelihood
that at least some pathways remain productive under changing conditions. Recursive improvement
thus depends on a tension between integration and differentiation, rather than on convergence
toward a single worldview or architecture.

Importantly, human societies demonstrate that recursive improvement need not culminate in
centralized control. Despite the existence of powerful institutions and technologies, innovation
remains distributed across individuals and groups. Attempts to impose totalizing control often
suppress the very diversity and exploratory freedom that enable sustained improvement. This
empirical observation stands in contrast to speculative scenarios in which recursive self-improvement
is assumed to converge inevitably toward a single optimizing agent.

At the societal level, recursive self-improvement is therefore best understood as a property
of interaction structures rather than of any individual intelligence. Improvements persist when
they are embedded in shared practices, artifacts, and norms that reshape the landscape of future
possibilities. The same principles can be observed at a finer scale within individual lives, where
deliberate exposure to challenge and constraint can accelerate personal innovation. The final section
turns to these individual-scale instantiations of recursive improvement.
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9 Individual Constraint Engineering and Micro-Scale Recursive

Improvement

At the scale of individual cognition, recursive self-improvement appears in a form that is often
mischaracterized as introspective self-modification or deliberate self-optimization. In practice,
sustained personal innovation rarely proceeds through explicit self-modeling or global evaluation of
ones own cognitive architecture. Instead, it emerges from the deliberate manipulation of constraints,
environments, and practices that shape the space of possible thoughts and actions. Individuals who
successfully accelerate their own rate of learning and creativity do so by engineering conditions
under which productive variation is more likely to occur and to be retained.

From a dynamical perspective, an individual cognitive system may be modeled as exploring a
high-dimensional space of representations under energetic, temporal, and attentional constraints.
Let R denote this representational space, and let I'(¢) denote the set of constraints active at time ¢,
including habits, skills, tools, and social contexts. The trajectory of thought is governed not only
by internal processing capacity but by the structure of I'(¢). Recursive improvement occurs when
changes to I'(f) increase the rate at which valuable regions of R are explored in the future.

Practices such as self-imposed challenges, deliberate exposure to unfamiliar domains, and the
cultivation of interdisciplinary fluency can be understood as mechanisms for increasing exploratory
entropy while preserving selective retention. By confronting problems at the edge of ones competence,
individuals create conditions analogous to the wet—dry cycles of prebiotic environments: periods of
instability generate variation, while periods of consolidation stabilize successful adaptations. Over
time, the individual accumulates a repertoire of cognitive structures that both encode past successes
and bias future exploration toward fertile regions.

Tools play a critical role in this process. Writing, diagramming, programming languages, and
other external cognitive artifacts function as personal membranes, allowing intermediate ideas to
persist long enough to be refined and recombined. Let M (t) denote the set of external memory
structures available to an individual. The effective dimensionality of the individuals cognitive process
increases with | M (t)|, as ideas need not be held entirely within working memory to participate in
recursive elaboration. Improvements in tooling thus feed back into improvements in the rate and
depth of thought itself.

Notably, individuals who achieve sustained innovation often do so by internalizing principles
that mirror those operating at larger scales. They seek diversity of input rather than convergence on
a single framework, tolerate provisional inconsistency rather than demanding premature coherence,
and prioritize processes that generate further opportunities over those that merely optimize current
performance. These strategies do not require formal awareness of recursive self-improvement as such;
they operate through embodied practice and environmental design rather than explicit self-reference.

This individual-scale analysis reinforces the broader thesis of the essay. Recursive self-improvement
is not a fragile trick achievable only by systems capable of reasoning about themselves with perfect
clarity. It is a robust physical process that operates wherever irreversible dynamics selectively retain
structures that enhance future exploration. Individuals, like societies and organisms before them,

participate in this process by reshaping the constraints under which they operate, thereby increasing
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their capacity for further change.

In the concluding section, we synthesize these observations and draw out their implications for
theories of artificial intelligence, particularly those that frame recursive self-improvement as an
exceptional or singular phenomenon rather than as a continuation of deep evolutionary dynamics.

10 Conclusion: Laboratories, Incubators, and the Continuity of

Recursive Improvement

The contemporary landscape of scientific laboratories, technological incubators, and computational
infrastructures provides a final and instructive confirmation of the thesis developed throughout this
essay. Modern advances that are frequently described as evidence of accelerating or even autonomous
recursive self-improvement are, on closer inspection, continuous with the same irreversible, distributed
processes that have governed recursive innovation since mineral evolution. What has changed is
not the underlying mechanism, but the scale, density, and coupling of the environments in which
selective retention occurs.

Laboratories function as deliberately engineered micro-environments for recursive improvement.
Like tidal pools subjected to repeated wet—dry cycles, laboratories impose controlled perturbations on
materials, organisms, or models, while preserving intermediate results long enough for evaluation and
recombination. Experimental protocols partition time into phases of exploration and consolidation,
amplifying variation while filtering outcomes through reproducibility, instrumentation, and peer
scrutiny. The laboratory thus operates as a membrane-like structure, selectively permeable to
ideas, techniques, and results that meet locally defined viability criteria. Successful procedures are
stabilized through documentation, training, and standardization, thereby reshaping the conditions
under which future experiments are conducted.

Incubators and innovation hubs extend this logic to social and economic domains. They aggregate
diverse agents, tools, and resources within bounded institutional contexts designed to increase the
rate at which ideas can be tested against practical constraints. Most proposals fail, just as most
chemical reactions do not participate in autocatalytic cycles. However, those that succeed alter
the local landscape by attracting further investment, attention, and refinement. Interfaces and
affordances that enable adoption, even if initially crude or incomplete, outcompete alternatives
that lack pathways for integration into existing practices. The recursive effect arises because each
retained success lowers the barrier for subsequent, related successes.

Technological trends often cited as paradigmatic cases of recursive self-improvement, such as
Moores law, illustrate this point with particular clarity. The exponential increase in transistor
density was not the result of a single system redesigning itself in isolation, but of a vast, distributed
network of engineers, fabrication facilities, measurement techniques, and economic incentives
incrementally refining constraints at every level. Each improvement in lithography, materials science,
or design automation expanded the feasible design space for the next generation of improvements.
The recursion resided not in any one artifact, but in the evolving ecosystem of practices and
infrastructures that made further progress possible.

Generative artificial intelligence systems exhibit a similar pattern. Although they are sometimes
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described as self-improving or even self-designing, their advances are better understood as emergent
properties of collective human activity operating through new interfaces. Model architectures,
training regimes, datasets, and evaluation benchmarks are proposed, tested, modified, and discarded
by large communities of researchers and practitioners. Systems that provide compelling affordances
for creative, analytical, or economic use are rapidly adopted, generating feedback that drives further
refinement. Those that fail to integrate into existing workflows or to demonstrate practical value
are abandoned. The apparent acceleration of progress reflects the density and coupling of this
distributed process, not the emergence of a singular, autonomous agent.

From the perspective developed here, such developments do not herald a fundamental break
from historical patterns. They represent a continuation of recursive self-improvement through
increasingly abstract and powerful substrates. Human groups, tools, and institutions together form
autocatalytic networks in which successful configurations are retained and recombined, increasing
the rate at which further configurations can be explored. The essential features remain unchanged:
irreversibility, selective retention, diversity, and the restructuring of constraints.

This continuity has important implications for how recursive self-improvement in artificial
systems should be conceptualized. If recursive improvement is a general physical and evolutionary
process rather than a property of isolated code, then concerns about inevitable convergence to
a single architecture or agent are misplaced. Historically, sustained innovation has depended on
the preservation of heterogeneity, the avoidance of premature closure, and the maintenance of
environments that tolerate failure while retaining partial success. Systems that suppress diversity
or attempt to centralize control risk exhausting local entropy gradients and stagnating.

In this light, the most plausible trajectories for future artificial intelligence involve deeper
integration into human and institutional ecosystems rather than detachment from them. Recursive
improvement will continue to occur at the level of interfaces, affordances, and collective practices,
even as computational tools become more powerful. The challenge is not to prevent or unleash
recursive self-improvement as a singular event, but to understand and shape the environments in
which it unfolds.

Recursive self-improvement, properly understood, is not an anomaly awaiting formal proof or
refutation. It is a pervasive feature of irreversible systems that accumulate constraints in ways
that favor further accumulation. From minerals to microbes, from swarms to societies, and from
laboratories to learning machines, the same physical principles apply. Artificial intelligence does not
stand apart from this history; it inherits it.
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