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Abstract

This monograph develops a unified account of abstraction, reduction, computation, and phys-
ical law by demonstrating that these notions are mathematically identical across logic, semantics,
category theory, neural architectures, and field dynamics. We begin with the elementary obser-
vation that abstraction eliminates degrees of freedom, and show that this is formally equivalent
to B-reduction in the lambda calculus, state-transition in Turing machines, function composition
in neural networks, and the merge—collapse dynamics of the Spherepop Calculus. Spherepop is
introduced as a geometric process language whose primitives naturally encode Boolean logic,
compositional pipelines, lambda substitution, categorical liftings, and semantic flow; we prove
it computationally universal and identify it with the internal structure of monoidal and fibred
categories.

We then lift Spherepop into a semantic manifold whose points represent macroscopic states
of meaning, treating Spherepop regions as fibers in a cartesian fibration. Reduction at the
computational level becomes a geometric motion on this manifold; semantic abstraction is re-
alized as a fiberwise collapse; and predictive coding appears as the natural geodesic flow of
belief. Extending this construction, we embed Spherepop computations into a five-dimensional
RSVP-Ising Hamiltonian, in which the scalar, vector, and entropy fields of the RSVP plenum
couple to spin configurations across spatial, semantic, and temporal dimensions. We show that
reduction—whether syntactic, computational, neural, or semantic— corresponds precisely to a
decrease in the Hamiltonian, and that the innermost evaluation rule of elementary arithmetic
(BEDMAS/PEMDAS) is structurally identical to Spherepop’s collapse rule for evaluating nested
regions.

The resulting picture is a single computational-physical principle: to abstract is to reduce;
to reduce is to compute; to compute is to follow an energy-minimizing trajectory in the plenum
of meaning. Computation becomes a special case of geometric relaxation; neural processing,
lambda reduction, semantic updating, and field dynamics become different coordinatizations of
the same underlying descent. This work therefore proposes a unifying interpretation of logic,
physics, and cognition: abstraction is not merely a mental act or a formal mechanism, but a
fundamental physical process by which the universe calculates its own coherent structure.
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1 Preface

Abstraction is routinely described as the operation that conceals mechanism, suppresses detail, and
erects the modular boundaries required for coherent construction. Yet this familiar picture, though
pedagogically useful, obscures the deeper phenomenon: abstraction is itself a form of reduction, an
operation that performs the very work of evaluation by which structure becomes tractable.

This monograph develops a comprehensive account of abstraction as a computational, logi-
cal, mereological, and categorical process. Lambda calculus reduction, functional type-signature
discipline, asynchronous dual-rail circuits, set-theoretic and mereotopological ascent, categorical
morphisms, and the Curry—Howard correspondence all exhibit the same invariant pattern: the in-
ner structure is resolved, stabilized, or normalized so that the outer structure may compose without
energetic or epistemic conflict.

Abstraction is not the negation of detail; it is the successful execution of detail. It is the
terminus of computation that permits the emergence of higher-order descriptions. To abstract is
to evaluate. To evaluate is to normalize. To normalize is to prove. The unity of these operations
reveals a deep structural truth about computation, inference, and the organization of knowledge.

2 Introduction: The Nature of Abstraction

Abstraction is so deeply woven into the practice of mathematics, programming, proof theory, and
engineering that its presence often goes unnoticed; it becomes the silent grammar of construction,
the unspoken medium in which complex systems are assembled. We are taught to regard abstraction
as a protective gesture: to hide the machinery, to elevate the description, to reduce cognitive load
by wrapping a concrete mechanism inside a conceptual shell. But this conventional pedagogical
story fails to capture the operational essence of the phenomenon.

The thesis of this monograph is that abstraction is best understood as a reductional act. It
is not merely the creation of an interface; it is the stabilization of an underlying computational
process. When a function is placed behind a type signature, when a morphism is introduced between
categorical objects, when a dual-rail signal settles into a determinate value, when a lambda term
reaches normal form, or when a proof eliminates a detour, we observe the same invariant pattern:
inner complexity is locally resolved so that outer complexity may grow without interference.

This reframing is not metaphorical; it is structural. To abstract is to perform an act of evalu-
ation. A structure becomes abstractable precisely when its internal dependencies have been suffi-
ciently satisfied that they need not be revisited. The surface becomes available because the depth
has been executed.

The chapters that follow develop this thesis across several domains:

e the operational semantics of the lambda calculus,
o the type-theoretic view of interfaces and parametric abstraction,

o the theory of asynchronous circuit evaluation in null convention logic,
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e the mereological and set-theoretic ascent from parts to wholes,
e the categorical understanding of structure through morphisms,

e and the logical perspective offered by the Curry—Howard correspondence.

Each of these fields provides a distinct surface vocabulary for the same deep structural phe-
nomenon. Together they produce a unified account of abstraction as the act that permits construc-

tion.
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3 Chapter 1: Abstraction as Reduction in Lambda Calculus

The lambda calculus offers one of the purest articulations of computation. Its terms consist solely
of variables, lambda abstractions, and applications; it possesses no primitive data types, no control
structures, no loops, no memory. Yet within its austere syntax lies the universal structure of
computation itself. It is here that the identity between abstraction and reduction becomes the

most transparent.

3.1 1.1 Syntax and the Binding of Scopes

We begin with the grammar:
tuo=x| (Az.t) | (t1).

The lambda abstraction Ax.t creates a new scope. A computation step becomes possible only

when an application places a lambda in the left position:
(Ax.t) u.

This is the core redex—the reducible expression. The act of reduction substitutes u for x within

t, delivering;:

Crucially, reduction is not performed globally but at a specific locus: the innermost redex, if
one adopts normal-order evaluation, or the leftmost outer redex under call-by-value. The essential
idea is that a computation reduces the deepest obligations before it reasons about the structure that
depends upon them.

This is already abstraction in embryonic form: the lambda term is a box whose interior is
a governed scope, and a reduction step is the formal permission to collapse the box’s internal

complexity into a stable surface value.

3.2 1.2 Evaluation Order as Abstraction Discipline

Call-by-name, call-by-value, and call-by-need are not mere performance strategies; they are distinct
philosophies of when abstraction becomes valid.

Under normal-order evaluation, the calculus privileges outer structure: the evaluation focuses
first on the redex that determines the program’s outermost interpretation. Inner computations are
deferred until their results matter.

Under call-by-value, the opposite discipline holds: the program demands that inner compu-
tations finish before they can be abstracted into values, such that outer layers never receive an
unevaluated term.

Both paradigms treat abstraction as the stabilization of inner computations, but they disagree
on when stabilization must occur. Abstraction is thus inseparable from the evaluation strategy: it
is a procedural act embedded in the semantics of computation.
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3.3 1.3 Church Encodings and the Collapse of Mechanism

Church encodings provide a perfect example of abstraction as reduction. The Boolean value true
may be encoded as:
Az Y. x,

and false as:
ATy y.

These definitions contain no primitive truth-values. They are procedural: they specify the
behavior of truth-values entirely through reduction. Once reduced to normal form, these encodings
behave exactly as abstract Boolean values. The abstraction is achieved by the collapse of the
underlying lambda terms into a determinate behavioral unit.

To say “we abstract over Booleans” is simply to say “we rely on the fact that these lambda

terms have normalized into stable forms whose internal workings we no longer inspect.”

3.4 1.4 Normal Forms as Abstracta

A term reaches normal form when no redexes remain. This moment is not merely a technical
boundary; it is the conceptual point at which abstraction becomes legitimate.

Normal forms are complete abstractions: they contain no pending obligations. Their stability
licenses their use as building-blocks for larger structures. They are computational atoms, not
because they lack internal complexity, but because their internal complexity has been fully executed.

Thus the lambda calculus provides the purest articulation of the thesis: abstraction is re-

duction completed.
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4 Chapter 2: Interfaces, Types, and the Logic of API Abstraction

Programming languages such as Haskell and Racket offer a more concrete realization of abstraction.
Here, abstraction is expressed through modules, interfaces, type signatures, and documentation.
But beneath this surface lies the same structural machinery observed in the lambda calculus.

4.1 2.1 Type Signatures as Behavioral Certificates

A type signature such as
map : (A — B) — [A] — [B]

states nothing about how the function is implemented. It expresses only the permissible modes of
interaction. A programmer reading the signature need not know how map traverses lists or applies
functions; the type alone guarantees that map behaves as a stable unit in a larger program.

This is the computational meaning of abstraction: the function has been reduced, conceptually

if not literally, into a behaviorally fixed module. The type acts as a summary of the reduction.

4.2 2.2 Parametricity and the Abstraction Theorem

Reynolds’s parametricity tells us that polymorphic functions behave uniformly across all instanti-

ations of their type variables. A function of type:
VA.[A] — [4]

cannot inspect, transform, or interpret the elements of the list. It can only rearrange them or
return one of them.

This restriction is not an arbitrary design choice: it is the logical shadow of abstraction. Because
the function must behave identically for all types A, its internal mechanism has been abstracted
away so thoroughly that nothing type-specific can remain inside its body. Abstraction forces

uniformity; reduction produces invariance.

4.3 2.3 Contracts as Programmable Abstractions

Racket’s contract system offers a dynamic analogue. A contract such as:
(=> number? number?)

wraps a function in a boundary that checks correctness at runtime. This wrapper is an operational
abstraction: it reduces the space of possible interactions by ruling out invalid ones. The contract
acts as the local enforcement of a global abstraction boundary.

4.4 2.4 Substructural Types and the Economy of Abstraction

Linear types, affine types, and relevance types introduce resource-sensitive distinctions that control
how many times a value may be used. These type systems enact abstraction by constraining
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evaluation: a term that may be used once carries a different abstraction semantics than a term
that may be duplicated indefinitely.
Abstraction here becomes a kind of energy discipline: linear types prevent the unlicensed repli-

cation of computational cost. The boundary is not conceptual but operational.

4.5 2.5 Free Theorems as Logical Consequences of Abstraction

Wadler’s free theorems arise from parametricity: the abstraction enforced by a polymorphic type
automatically yields equations that must hold for all implementations of that type. These theorems
are not properties of specific programs but of the abstract structure that computation assumes when
its internal details have been suitably reduced.

Thus API abstraction is not a surface convenience; it is the logical shadow cast by the underlying

reductional machinery of computation.
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5 Chapter 3: Category Theory and the Architecture of Abstrac-

tion

Category theory offers a structural language in which abstraction becomes not merely an opera-
tional convenience but an ontological commitment: only the relationships that survive functorial
translation or diagrammatic commutation are considered meaningful, while internal mechanisms
are relegated to the domain of implementation. The category-theoretic worldview, by its very syn-
tax, requires that abstraction be treated as a first-class phenomenon, for objects are not defined by
their substance but by the morphisms that connect them.

5.1 3.1 Objects as Abstracta

In a category C, an object does not come with a description of its internal constitution. It is
not a set with privileged elements, nor a space with distinguished points, nor a type containing
constructors. It is simply a node within a graph-like structure that supports arrows. The identity
of an object is exhausted by the web of morphisms in which it participates.

This is abstraction elevated to a foundational principle: an object is precisely what remains once
the details of its inner implementation are suppressed. Category theory thus begins where lambda
calculus ends: after the reduction has stabilized the term into a value, category theory treats the
resulting value as an irreducible object whose meaning is entirely encoded in its morphisms.

5.2 3.2 Morphisms as Structural Obligations

A morphism f: A — B does not describe how to transform A into B; it describes only that such a
transformation exists and obeys the compositional laws of the category. Two morphisms are equal
not when their internal functions coincide but when they satisfy identical structural roles in all
permissible compositions.

This is abstraction as structural equivalence: if two processes behave identically in every con-
text, then they are identical. The reduction-based perspective appears here in its purest form:
abstraction is the collapse of all distinctions not preserved by composition.

5.3 3.3 Functors as Abstraction-Preserving Maps

A functor F': C — D transfers the structure of one category into another while preserving identities
and composition. It is an abstraction map that respects abstraction boundaries: whatever was
considered irrelevant to the structure of C remains irrelevant after translation into D.

Functors thus play the role of theoretical APIs: they define what counts as a permissible
interaction across categories. The internal details of objects in C must remain hidden to D, yet the
functor guarantees that the structural essence survives.

5.4 3.4 Adjunctions and the Logic of Abstraction Boundaries

Adjunctions offer one of the most powerful categorical interpretations of abstraction. An adjunction
between functors F' : C = D : G expresses a universal relationship between two modes of description.
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The left adjoint F' typically constructs or generates structure, while the right adjoint G forgets or
abstracts structure.

The unit and counit of the adjunction provide compositional witnesses that these operations are
logically coherent. The process of forgetting is not arbitrary; it is governed by universal properties
that ensure the resulting abstraction is the minimal one compatible with the structure of the
categories involved.

Thus adjunctions formalize the idea that abstraction is a controlled reduction: one forgets
exactly enough information to satisfy a universal mapping property, and no more.

5.5 3.5 Monads as Programmable Abstractions

Monads encapsulate computational effects by shielding the outside world from internal complexity.
The monadic type M A behaves as an abstract container whose internal effectful dynamics are
hidden from external contexts, except through the disciplined operations return and bind.

This is abstraction as structured opacity: the monad enforces that one cannot access the inner
workings of an effect except through the monadic interface. By enforcing this boundary, the monad
becomes a categorical analogue of reduction: one treats effectful operations as though they were

values of a higher kind.

5.6 3.6 Coalgebras and Hidden State

Dually, coalgebras describe systems whose observable behavior unfolds through transitions rather
than internal constructions. A coalgebra for a functor F' consists of an object X and a map
X — F(X). Here the state of the system is abstracted into its observable transitions; the internal
mechanism is deliberately withheld.

Coalgebraic abstraction is thus temporal reduction: the details that do not affect future ob-

servable behavior are abstracted away by design.

5.7 3.7 Cartesian Closed Categories and Curry—Howard

A Cartesian closed category provides the categorical semantics of simply typed lambda calculus. In
such a category, function spaces exist as exponential objects, and lambda abstraction corresponds to
currying. Abstraction in the lambda calculus becomes abstraction in the category: the exponential
object B is the categorical embodiment of hiding the details of functions from their usage.

Thus the categorical and operational views converge: abstraction is the construction of an object
whose internal behavior has been formally suppressed and replaced by a structural role.
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6 Chapter 4: Mereology, Levels of Description, and Ontological
Ascent

Mereology—the theory of parthood—offers a vocabulary for thinking about abstraction in terms of
how wholes arise from parts and how descriptions ascend from granular detail to more encompassing
units. While set theory begins with membership and mereology begins with parthood, both share a
central insight: abstraction is the act of forming a new whole by suppressing the internal distinctions

among its constituents.

6.1 4.1 Parthood as Computation

Consider a system composed of many interacting components. To abstract over the system is to
treat these components as parts whose internal interactions no longer matter individually but whose
collective behavior has stabilized into a whole. This is a reduction: the internal microstructure is
executed, resolved, or equilibrated until it becomes inert with respect to the outer description.

Thus mereology encodes the same relation between parts and wholes that lambda calculus
encodes between redexes and normal forms: the part becomes invisible once its internal computation
has settled.

6.2 4.2 Fusion and Anti-Fusion

In classical mereology, the fusion of a set of parts is the minimal whole that contains them. Fusion is
a constructive abstraction: it replaces a multiplicity with a unity. Conversely, anti-fusion describes
the decomposition of a whole into its smallest relevant parts.

Both operations are forms of computational abstraction: fusion is like reduction to normal form,
while anti-fusion is like expanding a term to reveal hidden sub-computations. In both directions,
abstraction controls the granularity of description.

6.3 4.3 Mereotopology and Boundaries

Mereotopology augments mereology with notions of boundary and connection. A boundary is the
locus at which one abstracts away from interior detail to exterior relations. Boundaries are not
merely geometric; they are conceptual barriers that define the level at which processes are treated
as wholes rather than parts.

Abstraction is thus a boundary discipline: one decides where computation begins and ends,
where evaluation must occur, and where complexity must be collapsed into a surface.

6.4 4.4 Set-Theoretic Ascent and Hierarchy

Set theory encodes abstraction through its cumulative hierarchy. Sets at higher ranks contain
elements whose internal membership structures have been fully evaluated in terms of lower sets.
A set abstracts over its elements by suppressing their internal structure and retaining only their
extensional identity.
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This is reduction as ontological ascent: each level of the hierarchy arises only after the compu-
tations at lower levels have stabilized.

6.5 4.5 Granular Epistemology

To know at a given level of description is to accept the abstractions required by that level. A chemist
abstracts away from quarks; a biologist abstracts away from molecular vibrations; a cognitive
scientist abstracts away from neuronal ion channels.

These abstractions are not inaccuracies but operational necessities: they are reductions that
make higher-order structure visible. Without them, the system remains computationally opaque.
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7 Chapter 5: Null Convention Logic and the Semantics of Dual-
Rail Abstraction

Null Convention Logic (NCL) and related asynchronous circuit architectures reveal that abstraction
is not merely a linguistic or mathematical convenience but a physical necessity for computation in
environments where timing cannot be externally enforced. NCL circuits compute by allowing signals
to propagate until they stabilize, and abstraction emerges precisely at the moment of stabilization.

7.1 5.1 The Dual-Rail Encoding

In NCL, a Boolean value is encoded not as a single wire carrying 0 or 1 but as a pair of wires: rail
0 and rail 1. A logical 0 asserts rail 0; a logical 1 asserts rail 1. Crucially, a third state exists:
when neither rail is asserted, the signal is incomplete. This incomplete state represents ongoing
computation, not error.

Here abstraction is explicitly temporal: a signal may not yet have acquired a value, and any
circuit that depends on it must wait.

7.2 5.2 Stabilization as Abstraction

Once both rails are in a stable configuration (exactly one asserted), the value becomes determinate.
At this moment, the outer circuit is permitted to treat the signal as a classical Boolean value.

This stabilization is the hardware analogue of lambda-calculus reduction to normal form: the
internal computation has finished, and abstraction becomes legal.

7.3 5.3 Asynchronous Composition

In NCL, circuits may be composed only when their inputs have stabilized. Composition therefore
depends on abstraction: the component must have completed its internal computation before the
larger system can proceed.

This is the physical version of the type signature discipline in programming languages: one must

not use a component before its behavior has been sufficiently abstracted through stabilization.

7.4 5.4 Completion Detection

The mechanism that detects stabilization is itself a computational abstraction. A completion
detector observes the dual-rail signals and announces when they have entered a stable state. It
does not care how they stabilized, only that they have.

Thus abstraction arises in hardware precisely where internal complexity ceases to affect outward
behavior.

7.5 5.5 Temporal Mereology

The incomplete state acts as a temporary whole whose parts are still in flux. When the compu-
tation finishes, the whole collapses into a determinate value and participates as a part in a larger
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computation. Thus mereological ascent and descent occur in real time: abstractions emerge and

dissolve as computations stabilize.

7.6 5.6 Substrate-Independence Revisited

NCL systems illustrate that abstraction does not depend on the material substrate. Whether imple-
mented as silicon pathways, optical pulses, fluidic valves, or biological circuits, the same three-state
dual-rail logic persists. Abstraction is not tied to the medium; it is tied to the structural requirement

that incomplete computations must resolve before higher-order behavior becomes meaningful.
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8 Chapter 6: Curry—Howard and the Normalization of Proofs

The Curry—Howard correspondence, often summarized with the memorable slogan “propositions as
types, proofs as programs,” provides one of the deepest structural bridges between logic and com-
putation. Yet what is often understated in introductory treatments is that the correspondence is
not merely a mapping between two notational systems but a profound identity: the act of proving is
the act of evaluating, and the act of evaluating is the act of abstracting. Proof normalization is pro-
gram execution, and program execution is precisely the reductional process that allows abstraction

to emerge.

8.1 6.1 Proof Terms and Computational Content

In natural deduction, a proof of a proposition corresponds directly to a lambda term inhabiting
the associated type. A proof of an implication A — B is a procedure that transforms proofs of A
into proofs of B. A proof of a conjunction A A B is a pair of proofs, and a proof of a disjunction
AV B is one of two injections, each carrying the relevant proof term.

The computational interpretation is immediate: a proof is not a static certificate but a value
constructed from operations on other values. The proof term carries the entire internal machinery
of the argument.

8.2 6.2 Cut-Elimination as Redex Reduction

Gentzen’s cut-elimination theorem states that every derivation in the sequent calculus may be
transformed into a cut-free derivation. Strategically, the cut rule allows the insertion of a lemma;
operationally, it corresponds to supplying a proof of an antecedent to a proof that depends on it.

Cut-elimination is therefore exactly the same as lambda-calculus S-reduction: it removes in-
termediate terms and normalizes the proof structure so that no suspended computations remain.
A cut-free proof contains no “unresolved obligations”—all intermediate constructions have been
executed away.

Thus abstraction corresponds to the removal of cuts: once the computation implied by the cut
has been carried out, the proof abstracts over that intermediate reasoning step.

8.3 6.3 Normal Forms as Canonical Abstractions

Just as lambda terms possess normal forms under S-reduction, proofs possess normal forms un-
der cut-elimination. These normal forms represent the pure essence of a derivation: all detours,
redundancies, and administrative scaffolding have been removed.

A normal proof is an abstract proof because its internal computational detours have been
evaluated. The structure is stable and suitable for composition in larger logical arguments.

8.4 6.4 Proof Irrelevance and the Suppression of Computational Detail

Proof irrelevance—the principle that only the existence of a proof matters, not its particular iden-

tity—constitutes a radical form of abstraction. It asserts that two proofs of the same proposition
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may be treated as identical if no consequences depend on their differences.
This mirrors the category-theoretic notion of morphism equality by contextual equivalence: if
two programs behave equivalently in all contexts, then they are abstractly identical.

8.5 6.5 Homotopy Type Theory and Higher Abstraction

Homotopy type theory (HoTT) generalizes Curry—Howard by interpreting proofs as paths and
higher proofs as homotopies between paths. In HoTT, abstraction becomes the suppression of
higher-dimensional structure. When two proofs of equality are identified through a higher path,
the system abstracts over their differences.

This is a geometric expression of reduction: higher-dimensional complexity is collapsed into

lower-dimensional equivalence.

8.6 6.6 Logical Consequence as Computational Confluence

The confluence of reduction—the property that different orders of reduction lead to the same
normal form—mirrors the logical notion that a proposition has a unique content regardless of the
path taken to prove it. Abstraction in both domains is licensed by this confluence: if the details of
the internal reduction do not matter for the final form, they may be abstracted away.

Thus Curry—Howard reveals that abstraction is not a linguistic convenience but a logical in-
evitability, arising from the structural correspondence between proof normalization and program

execution.
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9 Chapter 7: Philosophical Synthesis — Abstraction as Epistemic
Compression

The preceding chapters traced abstraction across the lambda calculus, type theory, category theory,
mereology, asynchronous circuits, and logic. These perspectives, though diverse in surface vocabu-
lary, converge on a single structural notion: abstraction is the epistemic compression that results
when a computational or logical process completes its internal work and stabilizes into a form that
can participate in larger constructions without reintroducing internal instability.

9.1 7.1 Abstraction as the Condition for Composability

Systems that cannot abstract cannot compose. Without reduction to stable interfaces, no complex
structure could ever be built. Molecules could not form cells, cells could not form tissues, neurons
could not form networks, and software could not form modular systems. The world is built by
abstraction, not merely described by it.

To call something abstract is to affirm that it has completed its internal obligations sufficiently

that it may participate as a component of something larger.

9.2 7.2 Compression Without Loss of Structural Invariance

Abstraction does not require that information be destroyed; it requires only that information ir-
relevant to outward interactions be suppressed. This is epistemic compression: many details are
removed, but the structural invariants needed for coherent interaction are preserved.

In all the domains we discussed, abstraction preserves exactly those invariants that survive

compositional interaction:
e the normal form of a lambda term retains its extensional function,
e a type signature preserves input-output behavior,
e a categorical morphism preserves compositional identity,
e a mereological whole preserves relational context,
e a dual-rail signal preserves logical value,

e a normalized proof preserves logical consequence.

9.3 7.3 Abstraction as the Boundary Between Knowing and Not-Knowing

Knowledge requires abstraction because finite beings cannot hold infinite complexity. The world
presents itself at many levels of description, and abstraction is the process by which those levels
become cognitively accessible.

To understand a phenomenon is to choose the appropriate abstraction boundary for it. Too low,
and one is overwhelmed by detail; too high, and one misses the internal dynamics that determine
behavior. Abstraction is therefore a dynamic epistemic skill rather than a static ontological fact.
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9.4 7.4 Computation, Logic, and Ontology Converge

The unity across domains is not coincidental. Computation, logic, and ontology share a deep
structural skeleton. The world is made of parts that must stabilize before they can compose;
reasoning is made of proofs that must normalize before conclusions can be drawn; programs are
made of expressions that must reduce before they can interact.

Abstraction is the invariant across these domains: the point at which complexity becomes

ordered enough to support compositionality.

9.5 7.5 Abstraction as the Engine of Theorizing

All theories are machines for abstraction. A scientific theory abstracts over empirical regularities.
A mathematical theory abstracts over structural invariants. A computational model abstracts over
operational patterns.

To theorize is to abstract; to abstract is to reduce; to reduce is to compute. Thus theoretical

thought itself is a computational process.

28



10 Chapter 8: The Unity of Reduction and Abstraction

Across all the domains explored so far, abstraction emerges not as a retreat from detail but as the
execution of detail. The lambda calculus shows abstraction as reduction to normal form. Type
theory shows abstraction as the imposition of stable interfaces. Category theory shows abstraction
as structural equivalence under compositional laws. Mereology shows abstraction as the fusion
of parts into wholes. Null convention logic shows abstraction as stabilization in physical circuits.
Curry—Howard shows abstraction as proof normalization.

These perspectives do not merely rhyme; they express the same structural truth: abstraction
is the enabling condition for compositionality. It is the moment at which an entity becomes
stable enough, predictable enough, and context-independent enough that it can serve as a unit
within a larger system.

The unity of abstraction and reduction reveals a deep principle:
To abstract is to complete the necessary computation.

Computation is not one domain among many; it is the backbone along which abstraction occurs
in all domains. Logic, ontology, physics, and engineering each express in their own idioms the
same essential insight: complex systems become coherent only when their components have been
stabilized through reduction.

Thus abstraction is not merely a tool of thought; it is a structural feature of existence. It is
the universal mechanism by which complexity is tamed, knowledge is organized, systems are built,

and meaning becomes possible.
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11 Chapter 9: Against the Phenomenological Interpretation of
Abstraction

A widespread popular misconception holds that phenomenology, particularly in its Husserlian for-
mulation, provides a philosophical analogue to computational abstraction. This misconception as-
serts that the epoché—the bracketing of the natural attitude—resembles the reduction of a lambda
term to normal form, or the stabilization of a dual-rail asynchronous signal, or the construction
of an interface boundary in typed functional programming. Such readings, though superficially
compelling, misinterpret both phenomenology and abstraction. They conflate a methodological
suspension of existential commitment with a computational elimination of internal dependency.
This chapter aims to dismantle that confusion by showing that phenomenological reduction is not
abstraction at all, but a reversal of the very operation that makes abstraction possible in logic,

computation, and ontology.

11.1 9.1 Husserl’s Reduction Does Not Abstract: It De-Abstracts

In Ideas I (Husserl1913), Husserl describes the phenomenological reduction as a turning-toward
the structures of lived consciousness, not a turning-away from them. The epoché suspends belief in
the external world not to produce a simplified model, but to force attention back toward the fullness
of intentional experience. Whereas computational abstraction removes detail to reveal structural
invariants, phenomenological reduction removes presupposition to reveal experiential density. The
former reduces complexity; the latter restores it.

Computational abstraction operates by eliminating internal redexes and unused degrees of free-
dom; Husserlian reduction eliminates none of these. Instead, it reinstates all the tacit layers of
meaning that abstraction normally brackets. Thus phenomenological reduction is not reductive
but re-saturating.

11.2 9.2 Heidegger and the Primacy of Involvement

Heidegger’s project in Being and Time (Heidegger1927) intensifies this divergence. The phe-
nomenological uncovering of Being-in-the-world is an immersion into practical engagement rather
than a withdrawal into formal structure. For Heidegger, abstraction represents a derivative, impov-
erished attitude—a fall from the primordial understanding of being. Categorization, formalization,
and reduction belong to the “present-at-hand” mode, a stance that conceals rather than reveals
primordial relationality.

Thus the computational notion of abstraction is not merely distinct from Heideggerian phe-
nomenology; it is precisely what Heidegger diagnoses as a forgetfulness of Being.

11.3 9.3 Merleau-Ponty: Embodiment Against Abstraction

Merleau-Ponty takes this further in Phenomenology of Perception (MerleauPonty1945), arguing
that abstraction is always posterior to embodied experience. The body is a site of irreducible

thickness, not a logical structure that can be normalized. The phenomenological body resists
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computational interpretation because it is not a system of interfaces but a field of capacities,
opacities, and gestures. It cannot be abstracted without distortion.
Thus phenomenology stands against abstraction as the recovery of depth against the flattening

impulse of structural analysis.

11.4 9.4 Derrida: The Impossibility of Complete Reduction

Derrida’s Speech and Phenomena (Derridal967) further complicates the reduction by showing
that Husserl’s project cannot fully escape expression, iteration, and difference. The attempt to
reach pure presence is perpetually deferred. Computational abstraction, by contrast, succeeds
precisely insofar as reduction reaches completion. A lambda term normalizes; a dual-rail signal
stabilizes. Phenomenological presence, according to Derrida, never stabilizes—it differs and defers.

Thus phenomenology does not produce abstraction; it produces instability, complication, and

the impossibility of closure.

11.5 9.5 Foucault: Historicity Against Reduction

Foucault’s archaeology of knowledge (Foucault1970) rejects phenomenology’s claim to founda-
tional experience. For Foucault, experience itself is historically constituted. Abstraction, by con-
trast, operates by removing historical contingency and collapsing structure into functional invari-
ants. If abstraction seeks generality, Foucault sees only epistemic regimes; if abstraction seeks
invariants, Foucault sees only discontinuities.

Thus phenomenology is doubly unsuited as a model of abstraction: it neither eliminates irrele-

vant detail nor provides invariant structure.

11.6 9.6 Why Phenomenology Cannot Model Computational Abstraction

We may summarize the divergence:

1. Computational abstraction stabilizes; phenomenological reduction destabilizes.
Lambda terms reduce to normal forms; phenomenological experience proliferates further hori-

zons.

2. Abstraction removes detail; reduction restores it. Abstraction collapses multiplicity

into function; phenomenology reopens multiplicity in intentional analysis.

3. Abstraction yields compositional units; phenomenology yields irreducible singu-
larities. A function type is a building block; a phenomenological intuition is not composable

in this sense.

4. Abstraction is extensional; phenomenology is intensional. Abstraction cares only
about input-output behavior; phenomenology cares only about internal givenness.

5. Abstraction is convergent; phenomenology is divergent. Normalization ends compu-

tation; phenomenology begins description.
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Therefore phenomenology is not an instance of abstraction; it is the antithesis of abstraction.
It is a method for reintroducing the very thickness of experience that abstraction meticulously

removes.

11.7 9.7 Why the Confusion Persists

The confusion arises because both phenomenology and abstraction invoke the term reduction. But

the reductions are mirror opposites:

« Computational reduction: eliminate inner structure until only observable behavior re-

mains.

e Phenomenological reduction: eliminate presuppositions until all inner structure becomes

observable.

In one case, the world is made smaller; in the other, it is made larger.
Phenomenology is thus not an ally of abstraction but a philosophical critique of it, a call to

return to the lifeworld that abstraction necessarily occludes.
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12 Chapter X: Interfaces, Affordances, and Ontological Abstrac-
tion in Haskell

In order to clarify the connection between computational abstraction and the philosophical notion of
an affordance-bearing ontology, it is useful to begin with entirely concrete constructions. Consider
the familiar arithmetic operations defined on the type Int. In Haskell one may write:

add :: Int -> Int -> Int
add x y=x +y

mul :: Int -> Int -> Int

mul x y =X *xy

square :: Int -> Int

square X = X * X

These definitions depend on the concrete structure of integers and expose no abstraction what-
soever. They correspond to the pre-theoretical world of direct manipulation: every operation is
grounded in its substrate.

The ascent toward abstraction begins when we replace concrete data types with contracts on
behavior:

class Additive a where
add :: a -> a -> a

class Multiplicative a where
mul :: a -> a -> a

class Negatable a where

neg :: a -> a

These type classes represent the first philosophical threshold. The identity of a becomes irrel-
evant; only its affordances remain. A type is now understood not by its internal constitution but
by the operations it admits. The object is replaced by its interface; the ontology by its contract.

We may then compose these affordances into higher-order structures:

class (Additive r, Multiplicative r, Negatable r) => Ring r

The type r becomes a Ring not by virtue of its material constitution but by participating
in the network of operations licensed by the Ring interface. This is precisely the computational
manifestation of the philosophical thesis: abstraction is the elevation of affordances into the role of
ontological determinants.

In more formal notation, we may express these contracts as existential commitments:

TEAdd if JA:TxT T,
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TEMul iff AM :TxT —T,
TFNeg iff AN T —T.

A Ring is then the composite affordance:
T E Ring <= (T F Add) A (T E Mul) A (T = Neg) A ®(T),

where ®(T) denotes the family of ring axioms. What matters is not what is inside T' but what T
permits. To design a type class is to design an affordance; to implement a type is to instantiate a
mode of participation.

Thus both in Haskell and in ontology more generally, abstraction consists not in hiding the
world but in specifying the actionable boundary of a thing. An interface is a philosophical claim:
a declaration of what inputs a thing may receive, what outputs it may generate, and what trans-
formations it affords. Abstraction is therefore the reduction of objects to the invariants of their

participation.

13 Chapter X: Arithmetic, Abstraction, and Affordance-Bound
Ontologies in Haskell

In order to illustrate how computational abstraction arises from the disciplined removal of con-
crete detail, we begin with the simplest possible domain: arithmetic on integers. The point of
this excursion is not to teach programming but to show, through the clarity of typed functional
languages, how abstraction corresponds to the elevation of affordances over substrates, and how
the philosopher’s notion of an interface or an ontological boundary is precisely what a type system

formalizes.

13.1 X.1 Concrete Arithmetic and the Non-Abstract World

Consider the following definitions in Haskell, each of which operates directly on the primitive type
Int:

add :: Int -> Int -> Int
add x y =x +y

mul :: Int -> Int -> Int

mul x y =X *xy

square :: Int -> Int

square X = X ¥ X

neg :: Int -> Int

neg x = -Xx
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Here nothing has been abstracted. The operations act in the world of concrete integers, and
their validity depends entirely upon the specific implementation of Int and the primitive arithmetic
of the machine. This is the analogue of a phenomenological foreground: the tasks are performed
directly within a single experiential layer, without any interface boundary that separates behaviour
from substrate.

Such definitions are computationally legitimate but ontologically primitive. They offer no gener-
ality, no portability, and no elevation to the level of structure. They are concretes, not abstractions.

13.2 X.2 The Rise of Interfaces: Type Classes as Behavioral Contracts

The ascent into abstraction occurs when one ceases to speak about integers and begins to speak
about behaviours. In Haskell this appears through type classes, which do not define data but rather
the affordances that a type may exhibit. We may define, for example:

class Additive a where
add :: a -=> a -> a

class Multiplicative a where
mul :: a -> a -> a

class Negatable a where
neg :: a -> a

These type classes are not descriptions of objects but declarations of what objects can do. They
are ontological commitments in the form of contracts. A type is no longer defined by its material
constitution but by its permissible participation in operations.

A type a is Additive precisely when it affords an operation of the form:
A:axa—a.

The internal structure of a becomes irrelevant; only the affordance matters. Abstraction has re-
placed concreteness.

Concrete instances may then be supplied:
instance Additive Int where

add = (+)

instance Multiplicative Int where

mul = (%)

instance Negatable Int where

neg = negate

The functions now operate in the space of contracts rather than the space of objects. For

example:
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square :: Multiplicative a => a -> a

square x = mul x x

subtract' :: (Additive a, Negatable a) => a -> a -> a
subtract' x y = add x (neg y)

These functions no longer know or care what a is. They live entirely within the ontological
space defined by the type class constraints. This is genuine abstraction: all internal details of the
substrate have been removed while preserving the invariant structure of interaction.

13.3 X.3 Composite Abstractions: Rings as Bundles of Affordances

Mathematics often organizes behaviours into families. A ring, for instance, is a type that affords
addition, multiplication, and negation, along with certain structural laws. In Haskell we may
therefore write:

class (Additive r, Multiplicative r, Negatable r) => Ring r

A type r becomes a Ring not by virtue of its microscopic constitution but by satisfying a
collection of abstract affordances and laws. What matters is not what r is but what r can participate
in.

This corresponds to the philosophical notion that ontology is not a catalogue of substances but
a catalogue of participation constraints. A thing is identified by the operations in which it may
enter and the transformations that it sustains.

Formally, we may express the contracts as follows:
TEAd << 3JA:TxT->T,

TEMul << dM:TxT-—=>T,
TENeg << IN:T-=>T.

A Ring is then defined as:
TERing <= (TEAdd)A(TE Mul)A (T FE Neg) A®(T),

where ®(T') encodes associativity, distributivity, identities, and inverses.
Thus a Ring is not a kind of object; it is a structured affordance-space. Any inhabitant of that
space qualifies as a ring, regardless of its inner design.

13.4 X.4 Interfaces as Ontological Boundaries

What we normally call “object-oriented design” is in essence a philosophical practice: to design
an interface is to assert the what of an entity rather than the how. An interface specifies which
interactions are admissible, which transformations are possible, and which inputs and outputs define
the role that the entity occupies within a conceptual ecology.
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Thus, to design:

class Drawable a where

draw :: a -> Canvas -> Canvas

is to assert:
T &= Drawable <= dD : T x Canvas — Canvas.

This shifts ontology from substance to relation. A Drawable is not a thing that has drawable
properties; it is a thing that participates in the operation of drawing. The identity of the type lies
entirely in its affordances.

In this sense, type classes, interfaces, and object hierarchies are computational realizations of
an ontological thesis: that the being of a thing is determined by the roles it may occupy and the
transformations it may uphold. Abstraction is the design of these roles, and type checking is the
enforcement of their coherence.

13.5 X.5 Abstraction, Affordance, and the Reduction of Detail

Returning to the broader argument of this monograph, we may now see that abstraction functions
by stripping away whatever details do not affect the affordances of participation. A type class
specifies the minimal invariant structure necessary for a program to interact with a value. The
reduction of a lambda term to normal form, the stabilization of an asynchronous signal, and the
normalization of a proof under Curry—Howard all serve the same purpose: they eliminate internal
obligations so that the term may act as an abstract unit.

The general principle is simple:

An abstraction is the reduction of an entity to its stable affordances.

This is not a loss but a refinement. It replaces the sprawling interior of an implementation
with the precise boundary of its interaction. Such boundaries define ontologies, not by reifying
substances, but by specifying the admissible relations among their parts.
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14 Chapter Y: The Categorical Translation of Haskell Abstraction

The transition from concrete arithmetic to abstract interfaces can be expressed not only in the
idiom of type classes but in the more general and highly structural language of category theory. In
that setting, abstraction appears as a movement from sets and functions to objects and morphisms,
and from concrete evaluation rules to universal properties. This translation clarifies the deeper
claim that abstraction is not merely a programming convenience but an ontological fact that arises

wherever compositional structure exists.

14.1 Y.1 Objects as Types, Morphisms as Functions

A Haskell type corresponds to an object in a Cartesian closed category, and a function corresponds
to a morphism. The internal construction of a type becomes irrelevant: it is represented only by
its location within a web of morphisms. Thus the following Haskell type:

f:A—B

is rendered in categorical notation as a morphism:

f+A— B.
The abstraction lies in the refusal of category theory to specify what A and B “are” Their
identity is exhausted by the compositions they support.
14.2 Y.2 Interfaces as Subcategories of Structure

A type class such as:

class Additive a where
add :: a -> a -> a

corresponds to equipping an object A with a morphism:

w:AxA— A

The type class constraint Additive a is a declaration that such a morphism exists. Thus, an
interface corresponds to the requirement that a type be an object in a structured category, one
whose morphisms satisfy specific algebraic properties.

A Ring in Haskell:

Ring(A)

corresponds to an object in the category of rings, where both addition and multiplication mor-
phisms exist and satisfy the ring axioms. The identity of the object is determined entirely by its

admissible morphisms.
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14.3 Y.3 Functors as Abstraction-Preserving Translations

A functor F' : C — D corresponds to a structure-preserving translation between programming
languages, module systems, or semantic domains. When one writes a Haskell function that is
polymorphic over type classes, the compiler ensures that any instantiation preserves the required
morphic structure. Functoriality thus appears as the categorical analogue of type checking: a
guarantee that abstraction boundaries are respected.

This reinforces the thesis: abstraction is structure-preservation across levels.
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15 Chapter Z: Why Object-Oriented Hierarchies Fail as Ontolog-
ical Models

Object-oriented ontology in programming languages attempts to classify entities according to inher-
itance relations. Yet as a model of abstraction this hierarchy fails to capture the proper granularity
of affordance-based reasoning. The essence of a type is not its ancestry but the interactions it

admits.

15.1 Z.1 Inheritance as the Reification of Irrelevant Detail

In an inheritance hierarchy, a subclass inherits all attributes and methods of its parent. This
forces the subclass to carry behaviours it does not require and to expose behaviours it does not
endorse. The hierarchy thus encodes accidental historical choices rather than principled affordances.
Ontologically, the subclass cannot abstract away from the internal details of its parent; it merely
accumulates them.

This is the opposite of reduction: it proliferates obligations rather than eliminating them.
15.2 7.2 Interface-Based Ontologies as Shortest Descriptions of Participation
In contrast, type classes or interfaces describe only what a type must support. They define an
affordance boundary by specifying allowable interactions:

T F Drawable <= 3d:TxC—C.

This contract contains nothing more than the essential information needed to participate in a

drawing context. All incidental detail is excluded, and therefore abstraction succeeds.

15.3 Z.3 Polymorphism as Ontological Freedom

Object-oriented polymorphism relies on inheritance; functional polymorphism relies on interface
satisfaction. The latter is properly abstract because unrelated types can satisfy the same interface.
This models an ontology of roles rather than an ontology of substances.

A type class therefore embodies the correct philosophical principle:

An entity is what it affords, not what it descends from.

This reverses the metaphysical commitments of object-oriented design and aligns computation

with a more structural, affordance-based ontology.
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16 Chapter W: Abstraction, Phenomenology, and the Anti-Phenomenologica
Boundary

To situate computational abstraction within a broader philosophical context, it is necessary to con-
trast it with phenomenology, particularly with Husserl’s epoché and the methodological reduction.
Popular commentary sometimes claims that phenomenological reduction resembles abstraction, but
this is mistaken. The phenomenologist does not remove detail but suspends presupposition in or-
der to recover detail. The computer scientist removes operational complexity in order to expose
structural invariance.

These two movements are not analogous; they are opposed.

16.1 W.1 Computational Reduction Eliminates Detail

Lambda-calculus normalization, proof reduction, and type class abstraction all work by collapsing

internal mechanisms:

(Az.t)u — t[x = ul.

Only behaviour at the boundaries remains. The abstraction is complete when all internal
obligations have been discharged.

16.2 W.2 Phenomenological Reduction Restores Detail

By contrast, the Husserlian reduction brackets the natural attitude to reveal the multiplicity of lived
intentional experience. The reduction reintroduces everything that abstraction removes: nuance,
context, horizon, ambiguity. It is a thickening of experience, not a thinning.

Thus, Husserl’s reduction is anti-abstraction.

16.3 W.3 Why the Confusion Arises

Both traditions use the term “reduction,” but the semantics diverge. Computational reduction elim-
inates structure irrelevant to composition. Phenomenological reduction eliminates presuppositions
in order to reveal structure previously concealed.

In one case, the world becomes simpler. In the other, the world becomes richer.

Thus phenomenology does not model abstraction; it critiques it. The interface economy of
computation distills being into roles and transformations, whereas phenomenology expands being
by examining how those roles are constituted in consciousness.

16.4 W.4 Ontological Boundaries Versus Intentional Horizons

Type classes, category-theoretic constructions, and object affordances all operate at the surface of
entities: what they may do, what they accept as input, and what they produce as output. They
define ontological boundaries.
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Phenomenology operates on intentional horizons: what appears, how it appears, and what
presuppositions govern appearance. To mistake one for the other is to mistake interaction for
givenness.

The boundary that abstraction erects is the very boundary that phenomenology attempts to
dissolve.
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17 Chapter V: Crimes Committed in the Name of Abstraction

Abstraction is not an innocent operation. If it is the mechanism by which complexity becomes
tractable, it is also the mechanism by which reality becomes disposable. Every abstraction discards
detail, and the discarded detail is frequently the locus of suffering. It is therefore appropriate,
even necessary, to acknowledge the darker genealogy of abstraction: the historical, political, and
personal violence that becomes possible when a human, a community, or an ecosystem is reduced
to a mere data point, a category, or a transferable resource. The joke that “many crimes have been
committed in the name of abstraction” is not merely humorous; it is philosophically exact.

17.1 V.1 The Abstraction of the Closed Eye

To close one’s eyes while acting, to look away from the immediate field of consequence, is already
an abstraction. It is the attempt to remove the moral thickness of perception in order to replace it
with a simplified internal model in which only the desired action remains. The abstraction here is
phenomenological: the agent brackets the world not to recover its richness but to avoid it. This is
the inversion of Husserl’s reduction; instead of revealing detail, it annihilates it.

Such an abstraction eliminates the other as a perceivable presence. Action becomes a procedure
without recipients, a function without arguments. The world is reduced to a canvas for will alone.

17.2 V.2 Architectural Abstraction and the Broken Back

)

When a builder of monuments declares, “I do not care how many backs are broken,” a deeper
abstraction is at work. The human body, in all its fragility, effort, and vulnerability, is replaced by
a generic unit of labor. Each worker becomes a symbol, a variable, an interchangeable component
of a grand design whose value is computed at a higher level of abstraction.

This is the metaphysical danger of mereology: one may ascend to the level of the whole and
forget that the whole is built from parts that suffer. The pyramid becomes the object; the worker
becomes invisible. Only the structure remains.

Abstraction has committed a crime: it has removed precisely the details that mattered.

17.3 V.3 Bureaucracy and the Datapoint

The bureaucratic impulse—to render a person, a house, a river, or a mountain in the form of a
number on a spreadsheet—is abstraction in its most corrosive form. It is the reduction of lived
reality to a representation that can be manipulated algorithmically. The house becomes a row in a
database; the person becomes a case number; the watershed becomes an entry in an environmental
impact table.

The philosophical structure of the problem is clear: the bureaucratic abstraction retains only
those attributes that support administrative operations. Every other attribute—every layer of
meaning, history, identity, kinship, dependence, or ecological interrelation—is discarded as “not
relevant to the form.”

Yet in life, those discarded layers are the very substance of what is real.
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When abstraction becomes a governance technique, the world is reconstructed according to the
shape of the abstraction. This is the clinical violence of the spreadsheet: the world must conform
to the grid.

17.4 V.4 When Abstraction Replaces Responsibility

The moral complication is that abstraction is not always chosen maliciously; it is often chosen
for convenience. It is easier to manage numbers than families, easier to manage metrics than
forests, easier to manage categories than communities. Abstraction reduces cognitive load, but the
reduction of cognitive load is frequently the reduction of ethical load as well.

A function that takes a person and returns a quantity is a computational artefact, but it is also
an ethical artefact. It tells the system which aspects of the person matter and which do not. The
abstraction becomes an encoded indifference.

Thus responsibility evaporates in the same place detail does.

17.5 V.5 The Ontological Cost of Abstraction

Every abstraction has an ontological cost. In programming, the cost is negligible: internal details
are suppressed for the sake of compositional clarity. But in social and ecological systems, abstraction
can erase the very conditions of existence. The simplification of a forest to a carbon metric, the
simplification of a culture to a demographic variable, the simplification of an illness to a billing
code—all of these act by reduction, but they reduce precisely the dimensions where meaning resides.

Abstraction, when misapplied, becomes a weapon of disappearance. It removes what cannot
easily be counted, and therefore removes what cannot easily resist.

The crime is not the abstraction itself but the assumption that abstraction is sufficient.

17.6 V.6 Toward an Ethical Theory of Abstraction

If abstraction is indispensable, then its dangers must be acknowledged in its design. An ethical

abstraction must satisfy a double constraint:

1. It must reduce internal complexity only to the degree required for functional coherence.

2. It must not erase the moral, ecological, or phenomenological substrates that give rise to the
abstraction.

This is analogous to disciplined use of interfaces in programming: an interface hides imple-
mentation detail without erasing the existence of that detail. The details remain real, even if not
immediately visible.

Ethical abstraction therefore requires that we know precisely what we are forgetting.

Only then do we avoid the long history of crimes committed in abstraction’s name: the closed
eye, the broken back, the erased village, the vanished species, the generalized citizen, the flattened
world.
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18 Chapter VI: The Ethics of Reduction: When Abstraction Be-

comes Extraction

If abstraction is a reduction of the world to its operative invariants, then extraction is the conver-
sion of those reduced invariants into exploitable resources. Abstraction, when ethically grounded,
clarifies the contours of interaction; extraction, when unrestrained, treats those contours as the
boundaries of ownership. This chapter develops an ethical taxonomy of reduction, distinguishing
between the abstractions required for comprehension and the reductions that permit domination.
The danger lies in the ease with which one becomes the other.

18.1 VI.1 Reduction as a Tool and Reduction as a Weapon

Reduction may be motivated by humility or by conquest. In computation, reduction simplifies
a term so that a larger program may operate coherently; it is a gesture of service. In violent
epistemologies, reduction simplifies a person so that a system of power may operate efficiently; it
is a gesture of control.

The same operation—discard detail, retain invariant—becomes either a method of reasoning or
a weapon of governance depending on the intention and the institutional structure within which it
operates. The ethical tension arises from the fact that reduction, by design, obscures the parts of
the world most in need of recognition.

18.2 VI.2 Extraction as the Appropriation of Abstracted Structure

Where abstraction removes irrelevant detail, extraction removes inconvenient reality. The distinc-
tion is subtle but absolute. A computational abstraction might hide the internal structure of a term
while preserving its behavioural essence; an extractive abstraction hides the internal structure of
the world while preserving only what may be appropriated.

Ecological systems offer the clearest illustration. A forest may be abstracted as a carbon sink, a
timber reserve, or a leisure amenity. Each abstraction removes detail. But extraction occurs when
the abstraction is taken as the entirety of the forest’s identity. When that reduction is used to
justify removing everything else the forest is, the abstraction has become extractive.

The shift from abstraction to extraction is the shift from necessity to indifference.

18.3 VI.3 Quantification as the Engine of Extractive Abstraction

Quantification is not inherently violent, but it is uniquely suited to violence. A number does not
protest. When a river becomes a numerical flow-rate, or a community becomes a demographic cell,
or a species becomes a calculated biodiversity index, the resulting abstraction strips away precisely
the forms of vulnerability that resist exploitation.

A numerical representation can be optimized without remorse. This is the bureaucratic fallacy:
if a person is a metric, then a policy that improves the metric is assumed to improve the person.
Extraction occurs when the number replaces the life it was meant to describe.
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In this way, quantification becomes the mechanism by which the world is made available to
systems that recognize only input-output efficiency.

18.4 VI.4 The Ontology of Ignorance: What Must Be Forgotten to Extract

Extraction depends on active forgetting. One must forget the interdependencies that bind an
organism to its habitat, the histories that bind a community to its land, the relations that bind a
species to its niche, the stories that bind a family to its home. To extract is to ignore exactly those
connections that make the world thick, relational, and irreducible.

Every extraction thus contains an embedded epistemology: the claim that what has been omit-
ted does not matter. That claim is almost always false.

The ontology of extraction is an ontology of fragments floating free from their ecologies. It is

an ontology in which wholes do not exist, only resources do.

18.5 VI.5 Failed Abstractions in Computation as Ethical Parables

Software engineers know well the dangers of premature abstraction, in which a structure is simplified
before its invariants are understood. Such abstractions become brittle, error-prone, and dangerously
misleading. They conceal instability behind a facade of structure.

The same occurs in political and ecological abstractions. A premature abstraction of a watershed
as a “resource polygon” or a community as a “statistical entity” hides volatile dynamics behind rigid
categories. Policies based on such abstractions fail catastrophically because they do not respect the
underlying complexity.

A failed abstraction in software leads to runtime errors. A failed abstraction in governance
leads to famine, displacement, collapse.

18.6 VI.6 Abstraction Without Encounter: The Metaphysics of Distance

Extraction thrives on distance: geographic, moral, phenomenological. The further an abstraction
is removed from the lived reality it represents, the easier it becomes to treat the abstraction as
reality itself. Colonial records reduce entire nations to inventories; supply chain spreadsheets reduce
workers to quantities; imperial taxonomies reduce cultures to categories.

Distance anesthetizes responsibility. Abstraction becomes not a tool of understanding but a
shield against encounter. It permits the agent to manipulate the world without facing it.

This is the metaphysics of extraction: reality at arm’s length.

18.7 VI.7 Ethical Abstraction as Reduction With Remembrance

If abstraction is unavoidable, it must be made accountable. Ethical abstraction acknowledges its
own incompleteness. It retains memory of what it omits. It places a boundary around reduction
and refuses to let reduction redefine the world.

An ethical abstraction satisfies the following constraints:

1. It reduces only as much as is necessary for structural coherence.
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2. It stores, signals, or foregrounds the existence of the omitted complexity.
3. It never treats the abstraction as the whole.

4. Tt allows the underlying reality to veto the abstraction.

Such constraints transform abstraction from an act of erasure into an act of care. They ensure

that the reduction serves understanding rather than subjugation.

18.8 VI.8 Extraction as the Corruption of Reduction

Extraction is therefore not a separate phenomenon from reduction but its pathological form. It

arises when:

abstraction is mistaken for the world,
o efficiency is mistaken for value,
o simplification is mistaken for truth,

e and the omitted details are those upon which lives depend.

Extraction is reduction without humility, abstraction without limits, simplification without
accountability. It is the belief that what is minimal for computation is also sufficient for existence.
This is the fundamental error of empires, of bureaucracies, of markets, of technocracies: the

belief that the world is no more than the abstraction they have chosen.
18.9 VI.9 Toward a Responsible Theory of Reduction
A responsible theory of reduction must integrate the following principles:

1. All abstractions are partial.

2. All extractions depend on ignored relations.

w

. Ethical systems must expose, rather than conceal, this partiality.

4. Complexity must be allowed to exceed the reduction.

In computation, this is the distinction between an interface that safely hides detail and an
interface that lies about what it hides. In society, the stakes are literal rather than technical.

The measure of an abstraction is not how efficient it makes a system but how faithfully it
preserves the life it represents.

Reduction must therefore be governed by ethics. Abstraction must remain in dialogue with the
world. And systems built upon abstraction must remain open to the realities they simplify.

Only then can reduction be redeemed from its long history of becoming extraction.
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19 Chapter VII: Algebra as Evaluation: Homework, Scopes, and
Functional Contracts

It may appear, at first glance, that the abstraction performed in programming is foreign to the
abstraction performed in elementary algebra. Yet the opposite is true: every student who has
ever solved a linear equation, whether or not they “show their work,” has already acted as a
parser, an interpreter, and a compiler. The student performs reduction, scope evaluation, contract
enforcement, and transformation of expressions into normal forms. Algebra is not merely symbolic
manipulation; it is computation in the precise technical sense. To understand this is to reveal the
deep unity between school arithmetic and advanced theories of abstraction.

19.1 VII.1 Showing Work as Exposing Intermediate Reductions

When a student writes:
3z + 5 = 20,

they have produced an expression whose meaning depends on its internal structure. To solve it, they
must reduce the expression step by step. If they “show their work,” they expose the intermediate

reduction sequence:

3xr =20 — 5,
3x = 15,
aj—g

37
T = 5.

Each line is a normal form relative to the previous one. The student behaves exactly like a
reduction engine in the lambda calculus: each transformation eliminates a computational obligation.
Showing the work is exposing the redexes, the scopes, and the evaluation steps.

Not showing the work is performing the same reductions while withholding the trace. In both

cases, abstraction occurs. The student hides or reveals detail according to contextual constraints.

19.2 VIIL.2 Every Algebraic Expression Has Scopes

Consider the expression:
2(z+3) — 4.

The parentheses define an inner scope. To evaluate the whole, one must first evaluate the inner

subexpression. This is normal-order evaluation:
x4+ 3 is a redex.

The student reconstructs meaning by identifying the deepest nested scope and resolving it before
resolving its surroundings. This mirrors lexical scoping and evaluation strategies in programming
languages.
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Thus, algebraic manipulation is a structured traversal of scopes, governed by the same principles
as interpreter semantics.

19.3 VII.3 The Student as Parser, Interpreter, and Compiler
When performing algebra, the student must:
1. Parse the expression, identifying operators, precedence, and grouping.

2. Interpret the meaning of each symbol in context, applying rules such as distributivity or

inversion.

3. Compile the result into a simplified canonical form.

These are not metaphors: they are literal descriptions of cognitive operations that mirror their
computational counterparts. The algebraic solver is a distributed, embodied implementation of a
reduction engine.

A linear equation is executed. Its solution is a compiled value.

19.4 VII1.4 Linear Equations as Functional Contracts

A linear equation does not merely bind variables; it defines an interface. Consider:
ar +b=c.

This can be understood as a functional contract specifying the transformation from input = to
output c:
f(z) = ax +b.

Solving the equation for z is reversing the contract:
z=f1(c),
when the inverse exists. The equation therefore defines:

o a domain (all z for which the function is defined),
o a codomain (all possible outputs),
o a behavioural rule (multiply by a, then add b),

e and, when invertible, a reconstruction rule.

This is exactly analogous to a type class or interface:
Linear(a,b) <<= 3f:X — Y such that f(z) = ax +b.
The equation defines the affordance: to be a solution is to satisfy the contract.
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19.5 VIL.5 Solving an Equation as Satisfying a Constraint

From the perspective of type theory, the statement:
3r+5=20

may be interpreted as a constraint satisfaction problem. The solution is a witness that inhabits
the type:
z:{zeR|32+5=20}.

Thus the equation becomes a dependent type, and solving it is constructing an inhabitant.
“Doing your homework” becomes a form of proof construction, and the final answer is the normal
form of a term.

19.6 VIIL.6 Algebraic Rules as Type-Checking Rules
The algebraic rules students memorize correspond to type-checking or rewriting rules. Examples

include:

b
Ifax =b, thenz = —, a #0,
a

or:

r+c=y+c = x=y.

These are not merely heuristic shortcuts; they are inference rules in a sequent calculus for linear
arithmetic. The student applies them to maintain correctness under abstraction.
Abstraction is precisely what these rules enforce: they eliminate unnecessary detail while pre-

serving equivalence.

19.7 VII.7 Homework as a Sequence of Abstractions
To do algebra homework is to perform abstraction repeatedly:

1. Identify the next reducible scope.

2. Apply the rule that removes maximal local complexity.

3. Normalize the expression.

4. Collapse resolved inner structure into an abstract value.

5. Proceed outward.

The student imitates the structure of functional evaluation, not by analogy but by necessity.
The equation is a nested function; solving it is running the program.
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19.8 VIIL.8 The Educational Consequence: Mathematics as Interface Literacy

Seen from this perspective, algebra is not a manipulation of symbols but training in the recognition

and execution of abstractions. The student learns to:

e evaluate inner scopes before outer ones,

o satisfy structural contracts,

« identify equivalence classes of expressions,
e distinguish syntax from semantics,

e and produce normal forms from nested structures.

These are the same skills required to understand programming languages, category theory, and
formal proofs. Their unity lies in the shared logic of abstraction.

Thus the elementary act of “doing your homework” already contains the seeds of computational
ontology: every equation solved is a contract satisfied, every reduction performed is an abstraction

achieved, and every answer given is a normal form at the boundary between meaning and use.
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20 Chapter VIII: Algebra as a Substrate-Independent Computa-
tion Model

If algebra can be understood as the repeated application of reduction rules over nested scopes,
then it follows that algebra is a computation model. More precisely, algebra is a computation
model whose semantics remain invariant across substrates: pencil and paper, blackboard, formal
proof systems, symbolic manipulators, and neural cognition all instantiate the same operational
dynamics. The substrate changes, but the reduction rules do not. In this sense, algebra is an early
and unacknowledged example of substrate-independent computation.

20.1 VIII.1 Expressions as Programs, Reductions as Execution

An algebraic expression such as:

fl@)=23x—1)+4

is a program. It defines a transformation from an input = to an output value. To evaluate it, one
performs a sequence of reductions that bring the expression to normal form. This is structurally
identical to evaluating a functional program.

The expression possesses a tree structure; leaves represent variables or constants, and internal
nodes represent operations. Execution is achieved by recursively reducing subtrees. The semantics
are independent of the medium: whether the reduction occurs in a human mind or in a symbolic
computer system, the invariant is the reduction sequence.

20.2 VIIIL.2 Algebraic Laws as Rewrite Rules

The familiar algebraic identities, such as:
a(b+ c) = ab+ ac,

or:

(a+b)+c=a+ (b+c),

function as rewrite rules in a term-rewriting system. They define which transformations preserve
equivalence. The universal validity of these transformations across modalities reveals algebra as
a universal computational substrate. The same rules govern handwritten reasoning, automated
theorem proving, and CPU-level arithmetic pipelines.

These identities ensure confluence: regardless of which subexpression is reduced first, all valid
reduction sequences lead to the same canonical form.

20.3 VIIL.3 Substrate Independence and Compositionality

What makes algebra substrate-independent is the preservation of compositionality. A complex
expression is built from the composition of simpler ones, and each abstraction layer preserves the
meaning of the whole. This parallels the design of purely functional programs, where referential
transparency ensures that internal details remain stable under substitution.
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Thus algebra is not merely compatible with computation; it is computation in its purest,
substrate-free manifestation.

20.4 VIIIL.4 Algebra as a Universal Interface for Quantitative Worlds

Because the reduction rules are invariant, algebra functions as a universal interface for interact-
ing with quantitative systems. Physics, economics, engineering, and computer science all rely on
algebraic abstraction because it provides a language of operations that remain stable under trans-
formation.

In this way, algebra becomes a meta-programming language for describing the behaviour of
other worlds. It abstracts away the substrate of the discipline and exposes only the relations that

must be preserved.
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21 Chapter IX: Symbol Manipulation as Phenomenological Re-

duction

Phenomenological reduction, in the Husserlian sense, involves the suspension of the natural attitude
in order to examine the structures of consciousness directly. Although this reduction is conceptually
distinct from computational abstraction, symbol manipulation in algebra exhibits an unexpected
philosophical parallel: both operations involve bracketing the world in order to examine a structured
internal field. The similarity is formal rather than substantive, but it illuminates how human

cognition manages complexity.

21.1 IX.1 The Blackboard as a Field of Intentional Objects

When a student writes:
r+7=12,

the symbols on the page become the objects of intentional focus. The world beyond the page is
bracketed. All attention is drawn into the symbolic space, whose internal relations now constitute
the “world” for the duration of the reasoning process.

This is not a phenomenological reduction in Husserl’s technical sense, yet it shares structural
features: the displacement of natural cognition, the isolation of a domain of objects, and the careful
examination of their relations. The student inhabits a reduced world in which symbols stand in for
reality.

21.2 IX.2 The Epoché as a Precondition for Formal Reasoning

The very possibility of manipulating symbols depends on suspending their worldly meanings. The
letter « no longer refers to a physical quantity; it becomes a placeholder in a formal system. This is,
in miniature, the epoché: a bracketing of worldly presuppositions to engage with the pure structure
of a domain.

Yet this similarity conceals an important difference: the abstraction in algebra removes lived
content in order to expose structure; the phenomenological reduction removes presupposition in

order to restore lived content. One reduction simplifies; the other enriches.

21.3 IX.3 Symbolic Reasoning as the Training of a Phenomenological Attitude

There is a pedagogical convergence: algebra teaches the ability to hold an abstract structure in view
while disregarding irrelevant context. This capacity is phenomenological in an attenuated form. It
teaches the mind to isolate, to focus, to structure, and to navigate an abstract meaning-space.

Thus symbolic manipulation becomes a form of cognitive staging: a rehearsal for the broader
human ability to inhabit multiple layers of representation simultaneously.
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21.4 1IX.4 The Divergence: Abstraction Simplifies, Phenomenology Thickens

Despite the structural echoes, the aims diverge. Algebraic abstraction aims at thinning: removing
content until only form remains. Phenomenological reduction aims at thickening: reclaiming the
fullness of experience obscured by abstraction. The two therefore operate in opposite directions,

yet both reveal the mind’s capacity to reshape its field of attention.
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22 Chapter X: Teaching Abstraction: A Cognitive Architecture

for Human Reasoning

If abstraction is fundamental to algebra, programming, ontology, and phenomenology, then it plays
a central role in human cognition. To teach abstraction is not merely to teach mathematics or
computer science; it is to cultivate a cognitive architecture capable of managing complexity through
layered representation and controlled reduction.

This chapter offers a structural account of how abstraction is learned, represented, and deployed

in human reasoning.

22.1 X.1 The Cognitive Load of Raw Experience

Raw experience is dense. Sensory data contains far more detail than cognitive systems can process in
real time. Abstraction arises as a biological necessity: the nervous system must reduce, categorize,
and compress incoming information in order to act coherently. This primal need for simplification
is the root of all later conceptual abstraction.

When a child first learns that many objects share the name “ball,” they are performing an

ontological abstraction: identifying an invariant across variable instantiations.

22.2 X.2 Abstraction as Layered Representation

Human reasoning operates through layers. A problem is encoded at a surface level, then decomposed
into subproblems. At each level, irrelevant detail is discarded and relevant structure retained. This
mirrors the structure of interpreters, where scopes nest and reduction proceeds from the innermost
outward.

The architecture can be summarized as:

1. Perception of surface structure.

2. Isolation of significant substructure.

3. Reduction of internal complexity.

4. Construction of a higher-order representation.
5. Iteration of the process across levels.

Skill in abstraction is skill in navigating this hierarchy.

22.3 X.3 Abstraction as Skill: The Developmental Pathway

Children initially perform reductions concretely: counting on fingers, drawing pictures, manipulat-
ing physical tokens. Over time, these sensory-driven operations are internalized. The mind becomes
capable of “running” the reduction engine without external scaffolding. Symbols replace objects;
rules replace gestures; abstraction replaces manipulation.

This developmental sequence is analogous to compiling a high-level program into optimized
machine code: the cognitive operations become internal, faster, and more abstract.
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22.4 X.4 The Role of Metaphor and Schema

Humans rarely learn abstraction directly. Instead, they learn through metaphors and schemas that
map complex structures to simpler, more intuitive ones. A linear equation is described as a balance
scale; a function as a machine; a derivative as a slope. These metaphors provide cognitive handles
but eventually fall away as the learner internalizes the structure itself.

Metaphor is the training wheel of abstraction.

22.5 X.5 The Expert: A Compiler of Representations

The expert mathematician or programmer does not manipulate symbols line by line. Instead, they
operate on entire structures at once. They compile the problem into an abstract representation,
evaluate it, and reconstitute the result in a comprehensible form. What appears as leaps of intuition
is often rapid reduction across multiple levels of representation.

Expertise is the internalization of abstraction pipelines.

22.6 X.6 The Ethical Dimension of Teaching Abstraction

Teaching abstraction is not value-neutral. The forms of reduction one learns become the forms of
reduction one applies to the world. A pedagogy that teaches abstraction without responsibility risks
producing agents capable of great technical power and great ethical blindness. The spreadsheet-
bureaucrat and the algorithmic technocrat are failures not of intelligence but of abstraction without
context.

Thus, the cognitive architecture of abstraction must be accompanied by a cognitive ethics: a
recognition that what is omitted remains real and that every abstraction must remain accountable
to the world it simplifies.
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23 Chapter XI: The Algebra of Ethics — Constraints as Moral
Contracts

If equations are constraints and solving them is the construction of a witness that satisfies these

constraints, then ethics may likewise be understood as a system of constraints on action. A moral

principle is not a rule of behaviour but a contract on possible transformations: a declaration that

certain mappings from situation to action preserve the values encoded within the system. This

chapter develops the analogy between ethics and algebra, showing that moral reasoning can be
understood as inhabiting the type of all act-terms that satisfy a given evaluative contract.

23.1 XI.1 Ethical Principles as Constraint Sets

Consider an ethical injunction such as “Do not harm innocents.” This may be rendered not as a

prohibition but as a constraint on the morphisms that represent actions:
Action — World must lie in a subset H C World

where H denotes worlds in which no unnecessary harm occurs.

A permissible action a satisfies the ethical contract:
a F NoHarm.

Just as an algebraic expression must satisfy an equation, an action must satisfy a moral con-
straint. Ethics becomes a constraint satisfaction problem in the space of possible transformations.

23.2 XI.2 Moral Consistency as Confluence

In algebra, a rewriting system is morally trivial unless it is confluent: independent reduction paths

must lead to the same result. In ethics, moral reasoning must likewise be confluent: different

reasoning routes should lead to the same normative conclusion, or else the system is inconsistent.
Thus moral consistency is not a subjective harmony but a structural analogue of the Church—Rosser

property.

23.3 XI.3 Ethical Inference as Type Checking

To ask whether an act is moral is to ask whether the act inhabits the moral type:
a : Permissible.

In this sense, moral deliberation is type checking. The rules of inference that structure ethi-
cal systems (Kantian universalization, utilitarian evaluation, virtue-theoretic flourishing) become
typing rules determining which actions are admissible inhabitants of the moral interface.

Thus ethics is a kind of operational semantics for agency.
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23.4 XI.4 Incommensurable Values as Non-Unifiable Types

Two moral principles that cannot be reconciled correspond to type constraints that cannot unify.

A moral dilemma arises precisely when no transformation satisfies all constraints simultaneously:
Safe(a) A Truthful(a) A Loyal(a)

may be unsatisfiable.

The impossibility of unification is the impossibility of moral resolution.

23.5 XI.5 Structural Ethics

Thus an ethical theory is not a list of rules but a structured interface specifying;:
e admissible transformations,
e invariants to preserve,
e and equivalence relations among outcomes.

Ethical reasoning becomes the search for normal forms in the space of actions.
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24 Chapter XII: The Category Theory of Educational Systems

Education can be understood as a category whose objects are cognitive states and whose morphisms
are learning transformations. When teaching abstraction, the educator’s goal is not to transfer
information but to construct morphisms that preserve meaning across cognitive levels. This chapter
develops a categorical model of pedagogy, in which a curriculum is a functor and understanding is
a natural transformation.

24.1 XII.1 Learners as Objects, Lessons as Morphisms

Let each learner’s cognitive configuration be an object L in a category £. A lesson or instructional
event is a morphism:
0 Lbefore — Lafter-

The composition of lessons corresponds to the sequential transformation of understanding. Fail-
ure to compose indicates pedagogical incoherence—precisely as in programming, inconsistent ab-

straction leads to runtime failure in the learner’s reasoning.

24.2 XII.2 Curricula as Functors

A curriculum can be modeled as a functor:
C:.:8—=¢€,

mapping subject-matter structures S to educational experiences £. The functor preserves relation-
ships: concepts connected in the discipline must remain connected in the pedagogy.
A poorly designed curriculum is non-functorial: it breaks structural relationships, making con-

cepts appear arbitrary or unmotivated.

24.3 XII.3 Understanding as a Natural Transformation

Let C and D be two distinct curricular functors (for example, two ways of teaching algebra). A

student’s understanding is a family of morphisms:
ng : C(L) — D(L)
constituting a natural transformation if:
D(f)onr =nw o C(f)

for all morphisms f: L — L'
In this model, understanding is coherence: the student’s internal mapping respects the disci-
pline’s structure. Misunderstanding is a broken naturality condition.
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24.4 XII.4 Educational Failure as Non-Commutativity

When diagrams fail to commute, learning breaks down. For example, if a student learns a rule in
isolation without understanding its place in the conceptual structure, the corresponding diagram

becomes non-commutative:
noC(f)# D(f)on.

This produces conceptual fragility: the student can apply rules but cannot reason about them.
In categorical terms, their mind contains morphisms without structure.

24.5 XII.5 Pedagogy as Structure-Preserving Transformation

An effective pedagogy transfers invariants from domain to learner. The educator is not a transmitter
of facts but a functorial mediator ensuring that structural coherence survives translation between
cognitive architectures.

Teaching abstraction therefore requires structural preservation, not mere instruction.
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25 Chapter XIII: The Semiotics of Reduction — Symbols as Shad-

ows of Operations

Symbols are not objects but traces of operations. A written equation, a function name, a type
signature, or a categorical diagram is not the thing itself but a semiotic residue of the computational
or conceptual dynamics it represents. Reduction, in this view, is not merely a computational process
but a semiotic event: a symbol emerges when a process has been sufficiently abstracted to leave a

stable mark.

25.1 XIII.1 Symbols as Fixed Points of Meaning

A symbol can function only if its meaning remains stable under repeated interpretation. This
stability results from the reduction of internal structure to a canonical form. Thus, the symbol “z”
becomes a reusable placeholder precisely because its history has been erased.

Symbols are fixed points of semantic reduction.

25.2 XIII.2 Writing as Externalized Abstraction

When a student writes:
T =9,

they externalize the result of internal computation. The written form is a semiotic surface upon
which further computation may occur. The symbol means precisely because the reduction has
already been done.

Writing is therefore the interface between internal computation and external collaboration.

25.3 XIIIL.3 Diagrams as Morphisms in Visual Space

A diagram is a morphism rendered spatially. Its nodes represent objects; its arrows represent
transformations. The diagram is a visual reduction of a conceptual space, preserving only its
structural invariants.

A commutative diagram is a semiotic guarantee: it asserts that meaning is preserved across

multiple interpretive routes.

25.4 XIII.4 Misleading Symbols: The Semiotics of Failed Reduction

When a symbol hides essential complexity, it becomes misleading. For example, a statistic com-
presses multiplicity into a single value; a codename obscures the reality of an event; a metric erases
the phenomenon it measures. These symbols become instruments of misdirection because their
reductions omit precisely what is required for understanding.

Semiotic violence occurs when reduction is mistaken for representation.
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25.5 XIII.5 Toward a Responsible Semiotics of Abstraction

A responsible semiotic practice acknowledges that symbols are abstractions of processes, not re-
placements for them. It ensures that the reduction preserves the relational invariants of the under-
lying reality. It avoids treating the symbol as the thing itself.

In this view, abstraction, computation, pedagogy, and ethics intersect: all require systems of
notation, all rely on reduction, and all risk erasure if the reduction becomes absolute.

The symbol is a shadow. The operation is the substance.
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26 Chapter XIV: The Metaphysics of Interfaces — Boundaries,
Behaviours, and Being

An interface is not merely a technical device for organizing software systems; it is a metaphysical
operator that determines how entities may appear to one another. Every interface establishes a
boundary, and every boundary defines a mode of being. In computation, interfaces specify the
operations a type affords. In ontology, interfaces specify the relations an entity can enter. This
chapter develops a metaphysics of interfaces by examining how boundaries produce identities, how
affordances constitute existence, and how abstraction transforms raw phenomena into structured

participation.

26.1 XIV.1 Interfaces as Ontological Boundaries

An entity becomes intelligible only through the boundaries that shape its interactions. In program-
ming, a type is a boundary: it specifies what values may enter or exit a function. In a biological
organism, the membrane functions as a boundary, permitting selective exchange. In social systems,
norms form boundaries that regulate permissible actions.

Thus the interface is the metaphysical schema underlying all these domains. It is the minimal
invariant that permits participation without revealing the internal constitution of the entity. Being,
in this sense, is behaviour constrained by boundaries.

26.2 XIV.2 Internal Detail as Hidden Implementation

An interface hides detail. It does not matter how a function computes its output, how an organism
regulates its interior, or how a person forms intentions. What matters is the structure of allowable
interaction. This hidden implementation is ontologically significant: it is the domain of individua-
tion, the space where differences reside. Yet it remains concealed because the interface reveals only
what must be shared.

Thus, the metaphysics of interfaces reveals a duality:

o internal constitution (the hidden implementation),

o external affordances (the interface itself).

The world we navigate is composed not of implementations but of interfaces.

26.3 XIV.3 Interfaces Determine Identity

If an entity is defined by its affordances, then identity is relational, not intrinsic. A mathematical
group is defined not by what it “is” but by the operations it supports. A function type is defined
by how it maps inputs to outputs. A tool is defined by the tasks it affords. Even persons, in their
social ontology, may be understood through the roles they can inhabit and the relationships they

sustain.
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Identity, therefore, arises from a pattern of interactions. The interface is the blueprint for this

pattern.

Entity = Interface + Hidden Implementation.

The metaphysical significance lies in the fact that only the interface is available to others; only

the interface participates in the world.

26.4 XIV.4 Abstraction as Interface Stabilization

Abstraction stabilizes the boundary. To abstract is to reduce the internal complexity of an entity
into a small set of stable affordances that remain valid across contexts. In this view, a successful
abstraction is an interface that neither leaks information nor misrepresents the underlying imple-
mentation. A failed abstraction is an interface that either exposes too much detail or conceals
essential behaviour.

This distinction appears in software engineering, in biology, in jurisprudence, and in ethics. All
hinge on the same structural property: whether the boundary preserves the invariants that matter.

26.5 XIV.5 Interoperability as Shared Ontology

When two systems communicate—two software modules, two organisms, two conceptual frame-
works—they succeed only if their interfaces share a compatible ontology. Interoperability is there-
fore the alignment of interfaces. It requires not identical implementations but shared invariants.

We may formalize this as the existence of at least one admissible morphism:

f : Ainterface — Binterface

that respects the operational contracts of both sides. When no such morphism exists, the systems
cannot interact, regardless of the richness of their internal structures.

Interoperability is therefore not a matter of translation but of ontological compatibility.

26.6 XIV.6 Interfaces as Sites of Power

Every boundary is also a structure of power. Whoever defines the interface controls what can pass
through it. When a bureaucracy defines the categories into which citizens must fit, it defines the
world in which citizens may be recognized. When a corporation defines an API, it determines how
other actors may participate in its ecosystem. When a language defines its grammar, it restricts
the thoughts that may be expressed.

Thus interfaces are not neutral; they shape the terrain of possibility. They include and exclude,
empower and constrain.

The metaphysics of interfaces therefore carries political implications: the boundary is a law.
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26.7 XIV.7 Incompleteness and the Limits of Interface Ontology

No interface can fully capture the complexity of its underlying implementation. There will always
be hidden invariants, emergent behaviours, or unarticulated dependencies that escape formaliza-
tion. This incompleteness is not a flaw but an essential property of abstraction. It preserves the
singularity of the implementation, ensuring that not all of the entity is available to the world.

This is the ontological remainder that escapes representation. It is what phenomenology calls
the “excess of givenness,” what physics calls “internal degrees of freedom,” and what computation
calls “hidden state.” Every abstraction leaves something out.

The interface cannot be the whole.

26.8 XIV.8 Toward a Metaphysics of Responsible Interfaces

A responsible interface must satisfy the following conditions:

1. It represents faithfully the invariants that matter.
2. It does not erase the existence of the hidden implementation.
3. It does not impose unnecessary constraints on interaction.

4. It allows for revision when the underlying reality changes.

In this sense, abstract design is ethical design. A responsible interface preserves dignity, com-
plexity, and possibility. It avoids the totalizing impulse to reduce an entity to what is useful, legible,
or efficient. It acknowledges that every interface conceals a deeper world and that this world must

remain respected even when unseen.

26.9 XIV.9 Being as Interface-Participation

The metaphysical conclusion is simple and profound:

To be is to participate through an interface.

The interface is the boundary through which existence becomes mutual. Entities reveal them-
selves only through the patterns of interaction they afford. Their reality is both constituted and
constrained by these patterns.

Thus we arrive at a relational metaphysics: being is not substance but participation; not essence
but affordance; not isolation but interaction.

The interface is where ontology meets the world.
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27 Chapter XV: The Logic of Constraints — Worlds Built from
Rules

A world is not defined by what it contains but by what it permits. Constraints determine the
shape of possibility, the limits within which entities may act, the laws that govern transformation.
In mathematics, physics, computation, and ethics, constraints do not merely limit behaviour; they
create the space in which behaviour becomes meaningful. This chapter develops an ontology of
rules in which a world is a structured bundle of constraints, and agency is the navigation of that

constrained manifold.
27.1 XV.1 Rules as Ontological Operators
A rule is not an external imposition but an operator that determines how an expression, a state,
or an entity may evolve. The constraint:
ax+b=c

defines a world of permissible values for x. Similarly, Maxwell’s equations define worlds of
permissible electromagnetic configurations, and conservation laws define the permissible transfor-
mations of physical systems.

Thus, rules constitute ontological operators: they shape the form of being.

27.2 XV.2 Constraints in Algebra

In algebra, constraints define feasible sets. When a student solves:

3z — 2 =10,

they are navigating a constrained space: the set of values that satisfy the equation. Solving is
locating a permissible inhabitant of the constraint-defined type. Algebra is therefore the study of

rule-defined worlds.

27.3 XV.3 Constraints in Computation

Type systems are constraint logics. Every type imposes restrictions on what values may flow
through a function. Monads impose sequencing constraints. Effects impose ordering constraints.
A program is correct when all constraints unify.

Thus, computation is the execution of constraints, not merely the manipulation of values.

27.4 XV.4 Constraints in Physics

In physics, constraints take the form of laws and boundary conditions. Conservation of momentum
restricts permissible dynamics. Gauge symmetry restricts permissible descriptions. A black hole
horizon imposes informational constraints that shape causal structure.

A universe is a system of constraints and the transformations consistent with them.
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27.5 XV.5 Constraints in Ethics

Ethics is a normative constraint system. A moral principle such as “Do not lie” restricts the space
of permissible actions. Moral reasoning seeks an action that satisfies all constraints simultaneously,
just as solving simultaneous equations seeks a value satisfying all equalities.

Thus, ethics is a constraint satisfaction problem in the manifold of possible actions.

27.6 XV.6 Free Will as Constraint Navigation

Agency is not the ability to violate constraints but the ability to navigate within them. Free will is
the selection of a path through a constrained state space. What appears as freedom is structured
possibility.

Freedom is the geometry of constraint, not its absence.

27.7 XV.7 Constraints as Generative Ontologies

Constraints do not merely forbid; they generate. A rule defines a world by determining what
can happen. Without constraints, nothing can happen at all, for there is no structure to guide
transformation.

Thus, worlds are built from rules, and rules are the architecture of being.
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28 Chapter XVI: The Algebra of Explanation — Why Some Re-
ductions Enlighten

An explanation is a reduction that reveals structure. To explain is to compress a domain into a
form that preserves its essential invariants while eliminating its incidental complexity. This chapter
analyzes explanation as algebra: the transformation of experience or phenomenon into a canonical

form that both simplifies and illuminates.

28.1 XVI.1 Explanation as Reduction with Illumination

A good explanation reduces complexity while retaining the relational invariants that define the
phenomenon. A bad explanation reduces complexity by discarding precisely what matters. The
difference is algebraic: good reductions preserve structure under transformation.

Thus, explanation is the search for an invariant-preserving map from complexity to understand-

ing.

28.2 XVI.2 Explanatory Invariants

Every explanation has invariants: features that must remain unchanged for the explanation to
hold. In mechanics, invariants include conservation laws. In algebra, invariants include equivalence
classes. In pedagogy, invariants include conceptual scaffolds.

A successful explanation identifies the minimal invariants necessary for coherence.

28.3 XVI.3 Canonical Forms as Explanatory Targets

Just as algebraic expressions are reduced to normal forms, explanations aim to transform phe-
nomena into canonical forms: representations in which relationships become transparent. Euler’s
identity is a canonical form of trigonometric and exponential structure. Maxwell’s equations are a
canonical form of electromagnetism.

Canonical forms enlighten because they reveal the underlying symmetries.

28.4 XVI.4 Elegance as Compression

Elegant explanations achieve maximal compression with maximal clarity. They discard noise while
amplifying structure. In this sense, elegance is not aesthetic but epistemic.
The ideal explanation is the shortest path between complexity and comprehension.

28.5 XVI.5 The Semiotic Layer

Explanations are symbolic compressions. They rely on semiotic reduction: replacing rich phenom-
ena with symbols that preserve relational form. A metaphor is a temporary reduction operator; it
preserves structure while shifting the domain.

Thus, all explanation is semiotic algebra.
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28.6 XVI.6 Cognitive Resonance

An explanation succeeds when it aligns with the learner’s internal structures. When the learner’s
conceptual category system is compatible with the explanatory mapping, comprehension emerges
as a natural transformation.

Thus, explanation is a dialogue between structures.

28.7 XVI.7 Explanation as Algebraic Reduction

To explain is to compute: to apply reduction rules that transform complex expressions of the world
into simpler ones without loss of meaning. Explanation is algebra; algebra is explanation.
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29 Chapter XVII: Interfaces in Physics — Fields, Boundaries, and
Observers

Physics is the study of interactions across interfaces. Fields, boundaries, and observers are all inter-
face constructs: relational surfaces across which information, force, and measurement propagate.
This chapter interprets physical theory as an extended ontology of interfaces.

29.1 XVII.1 Fields as Affordance-Structures

A field defines what motions are possible in its presence. To exist within a field is to be constrained
by its affordances. Electromagnetic fields afford charged particles certain trajectories; gravitational
fields afford geodesic motion.

In this sense, fields are physical interfaces that govern permissible transformations.

29.2 XVII.2 Boundaries Generate Behaviour

Boundary conditions constrain solutions to differential equations. A vibrating string, a potential
well, or a waveguide all produce behaviour determined by boundaries. The interface defines the
space of allowed states.

Thus physical systems are boundary-driven.

29.3 XVII.3 Gauge Symmetry as Interface Redundancy

Gauge choices are interface presentations: multiple descriptions that encode the same underlying
reality. Only gauge-invariant quantities cross the interface of measurement.
The redundancy of gauge degrees of freedom is the redundancy of interface choices.

29.4 XVII.4 Quantum Measurement as Interface Coupling

Quantum measurement occurs at the boundary between system and apparatus. The observer-
system interface determines which basis of states becomes accessible. Measurement is not meta-
physical but operational: a coupling of interfaces.

Thus quantum mechanics is a theory of interface transformations.

29.5 XVII.5 Relativity as Frame-Dependent Interface Structure

In relativity, simultaneity is not intrinsic but interface-defined. Observers in different frames inhabit
different relational structures. Spacetime itself becomes an interface whose geometry shapes causal
interaction.

Thus, the observer is part of the interface.
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29.6 XVII.6 Thermodynamics and Informational Boundaries

Entropy is a boundary quantity. Event horizons define maximal informational interfaces: surfaces
across which information cannot pass. The second law is a statement about the irreversibility of

interface transformations.
The physics of boundaries is the physics of information.

29.7 XVII.7 Physics as Interface Ontology

Physical laws specify which interactions cross which boundaries. Thus physics is not a theory of

substances but a theory of interfaces.
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30 Chapter XVIII: The Grammar of Agency — Actions as Com-
putational Morphisms

Agency is the ability to transform states. Actions are morphisms in the state-space of an agent. To
understand agency is to understand the grammar by which actions compose, conflict, and generate
new possibilities.

30.1 XVIII.1 Agency as a Computational Process
An agent evaluates an affordance-space and selects a transformation:
a:S— 9.
Thus agency is computation: the production of a new state through morphism application.

30.2 XVIII.2 The Syntax of Action

Actions possess syntax: atomic acts combine into complex sequences. Each act has preconditions
(domain) and effects (codomain). Planning is the construction of composite morphisms.
Complex agency is syntactic agency.

30.3 XVIII.3 Non-Commutativity of Action

In general, action sequences do not commute:
aob#boa.

This non-commutativity encodes the temporal and structural dependencies of agency. Order

martters.

30.4 XVIII.4 Constraints on Agency
Agency is limited by:

o physical constraints (what is possible),

o ecthical constraints (what is permissible),

e cognitive constraints (what is thinkable).

Thus agency is a constrained morphism space.

30.5 XVIIIL.5 Agency as Grammar

Every agent possesses a grammar: a generative system of production rules that determines which
actions are available. Learning expands the grammar; wisdom optimizes its use.

Agency is shaped by the grammar it inhabits.
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30.6 XVIII.6 Agency Failures as Type Errors

An invalid action is a type error:

a:S 4S8

because its preconditions are unmet. Contradictory goals are non-unifiable types.

failure is semantic failure.
30.7 XVIII.7 Agency Enhancement
Agency is enhanced by:

o expanding the morphism set (skills),
 improving constraint navigation (judgment),

o refining composition strategies (planning).

To become more agentic is to become more computationally expressive.

30.8 XVIII.8 Conclusion: Agency as Transformational Syntax

Agency

Agency is the grammar of transformations by which an entity navigates its world. Syntax and

semantics intertwine: the form of action determines its meaning, and the meaning of action deter-

mines its place within the grammar.

Thus agency is computation expressed through participation.
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31 Chapter XIX: The Ontology of Rules — Generators of Worlds
and Meanings

A rule is more than a constraint. It is a generator: a mechanism capable of producing structure,
behaviour, and meaning. While constraints delimit what is permissible, rules determine what is
possible. They shape patterns of inference, patterns of motion, and patterns of interaction. This
chapter develops a metaphysics of rules, treating them as the primitive operators from which worlds
are constructed and within which entities acquire significance.
31.1 XIX.1 Rules as Generative Operators
A rule has dual aspects:

e a prohibitive aspect, limiting certain transformations,

e a generative aspect, enabling new transformations.

For example, the distributive law:
a(b+c) — ab+ ac

is not merely a constraint on algebraic manipulation; it is a generator of new expressions. Its role
is not to forbid but to produce. The essence of a rule is its capacity to transform a structure into
another while preserving a specific invariant.

Thus rules generate worlds by defining allowable transitions.

31.2 XIX.2 Rules in Logic: Inference as World-Building

Inference rules do not describe truth; they produce it. In natural deduction, the rules:

o =Y
(0

constitute a generative engine. They define what can follow from what. To participate in a logical

(modus ponens)

system is to inhabit a world constructed from inference patterns.
This reframes truth as participation in a rule-governed generative process. A proof is not a
static object but a path carved through a rule-defined landscape.

31.3 XIX.3 Rules in Computation: Rewriting as Ontological Dynamics

Lambda calculus evaluation rules such as:
(Ax.t)u — t[z := u]

define the entire ontology of functional computation. A program is not a collection of instructions
but a collection of rewrite potentials. The world of computation emerges as the closure of these
potentials under repeated application.
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Thus, computation is a dynamic ontology produced by the action of rules.

31.4 XIX.4 Rules in Physics: Laws as Dynamic Interface Operators

Physical laws are generative rules. Newton’s second law:
F=ma

does not describe motion; it produces it. Given a force field and initial conditions, the rule generates
a trajectory. Maxwell’s equations generate electromagnetic waves. Schrodinger’s equation generates
time-evolved quantum states.

Every physical world is the closure of its laws under temporal iteration.

In this sense, a universe is the fixed point of its rules.

31.5 XIX.5 Rules in Social Systems: Norms, Protocols, and Behaviours

Social norms and protocols are generative rules for behaviour. A traffic rule does not merely
prohibit driving on the wrong side; it generates a stable, coordinated flow of vehicles. Linguistic
grammar does not prohibit ungrammatical utterances; it generates the infinite space of meaningful
speech.

Thus society is a rule-generated manifold of permissible actions and interpretations.

31.6 XIX.6 Rules as Semantic Engines

Every rule encodes a semantic transformation. It does not merely map one form to another; it
preserves meaning across the transformation. For example, the algebraic rule:

zt+0==x

preserves the identity of x under augmentation. A grammatical rule preserves communicative value
across syntactic change. A physical law preserves invariants such as energy or momentum.
Thus, meaning is what remains invariant under a rule’s action.

Rules are therefore semantic engines: they propagate meaning through transformation.

31.7 XIX.7 Rulehood as Relation, Not Content

A rule is not defined by the symbols it acts upon but by the relations it enforces or generates. The
same logical rule can be written in different syntaxes; the same physical law can appear in multiple
coordinate systems; the same social norm can manifest in diverse cultural expressions.

What persists is the relational structure the rule maintains.

Thus rulehood is a property of relations, not of representations.
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31.8 XIX.8 Rules, Worlds, and Meta-Rules

Every rule presupposes a meta-rule: a principle governing its interpretation and application. In
logic, meta-rules govern valid proof transformations. In computation, meta-rules define evaluation
strategies. In physics, meta-rules define the invariances of the laws themselves (e.g., symmetry
principles).

Meta-rules determine which rules count as rules.

Thus, a world is not only a set of rules but a stratified hierarchy of rule-defining principles.

31.9 XIX.9 Rules as the Architecture of Being

The ontological thesis of this chapter is that being is rule-structured. Entities exist not by virtue
of their substance but by their participation in rule-governed transformations. Identity emerges
from invariants; behaviour emerges from rules; meaning emerges from semantics preserved under
rule action.

A world is the closure of its rules. An entity is a fixed point of its affordances. A meaning is an
invariant across transformations.

The metaphysics of rules is the metaphysics of generative being: everything that exists exists

through the rules that let it appear.
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32 Chapter XX: Active Inference and Predictive Coding — Ab-
straction as Anticipation, Constraint Navigation, and Model

Governance

If rules generate worlds and interfaces govern participation, then an agent must contend not only
with what ¢s but with what is expected. Active inference and predictive coding provide a formal
account of this process. They describe agents as systems that minimize surprise by continually
adjusting internal models, sampling their environment, and acting upon the world to reduce uncer-
tainty. In this framework, cognition becomes a negotiation between rules, constraints, abstractions,
and predictions. This chapter integrates active inference with the metaphysics developed so far,
showing that predictive models are themselves abstractions, operating as generative rules for inter-

preting and shaping sensory worlds.

32.1 XX.1 Predictive Models as Generative Rules

In predictive coding, the brain constructs a hierarchical generative model that produces predictions
of expected sensations. These predictions act as rules:

5= fo(2),

where fy is the parameterized generative function mapping hidden causes & to expected sensory
states 5. Prediction errors:

E=8—S8

drive updates both to the internal model and to the agent’s actions.

Thus the rules of the generative model produce a world of anticipated sensory consequences.
Perception becomes inference under these rules; action becomes the update of the environment
to match generative expectations. The predictive model is therefore a rule engine generating the

expected structure of the world.

32.2 XX.2 Active Inference as Constraint Satisfaction

Active inference describes action selection as the minimization of expected free energy. This can
be expressed as:

a* = argmin E[G(a)],

where G(a) encodes expected surprise, epistemic value, and instrumental desirability. Because
free energy can be decomposed into likelihood, complexity, and divergence terms, the optimization
landscape becomes a high-dimensional constraint manifold.

In this light, an agent acts as a solver of nested equations:

e constraints from sensory evidence,
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e constraints from internal priors,
e constraints from action affordances,

o constraints from epistemic uncertainty.

Active inference is the differential geometry of constraint navigation.

32.3 XX.3 Prediction as Abstraction

Predictive coding requires hierarchies: abstract layers predict the behaviour of concrete layers.
The highest layers encode global invariants, while lower layers encode local fluctuations. Thus
abstraction emerges as a functional necessity:

o Abstraction compresses sensory data into stable generative rules.
e These rules are interfaces for interacting with the world.

e Prediction is the enforcement of abstraction upon perception.

When the agent predicts, it deploys abstractions; when it perceives, it evaluates their success.

This reveals abstraction not as a passive representation but as an active, anticipatory force.
Abstraction becomes the agent’s commitment to a particular ontology of the world.
32.4 XX.4 Rules, Errors, and the Grammar of Expectation
Prediction errors are not failures. They are grammatical operators governing the transformation
of internal models. A prediction error instructs the system:

“Revise the rule such that the world becomes meaningful again.”

Thus, rules evolve through their own violations. The hierarchy stabilizes when prediction errors

propagate downward and cancel:
gl = 0 Vi y

yielding perceptual coherence. The structure resembles rewriting systems: a world-model is the
normal form of a predictive grammar under iterative error correction.

Perception is the reduction of surprise; cognition is the algebra that drives it.

32.5 XX.5 Action as Interface Control

In active inference, action is not reactive but corrective. The agent acts to make its predictions
true:

a — minimize (s(a)).
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This reinterprets the interface between organism and environment: action is the modification of
the boundary conditions so that the generative rules remain valid. The agent controls its interface
to maintain semantic stability.

A rock does not act to confirm its predictions. An organism does. Agency is the insistence that

one’s abstractions remain usable.

32.6 XX.6 Hierarchical Models as Stratified Interfaces

Layered predictive models correspond exactly to layered interfaces:

e The lowest layer interfaces with raw sensations.
o Intermediate layers interface with patterns and dynamics.

e Upper layers interface with meaning, intention, and belief.

Each layer enforces a smaller set of invariants than the one below, and thus each constitutes a
higher abstraction. The deepest interior of the model is an ontology of expectations: the world as
the agent believes it must be for meaning to hold.

Thus the predictive hierarchy is an interface-stack, a tower of abstractions compressing the

world into actionable form.

32.7 XX.7 Free Energy Minimization as Ontological Governance

The free energy principle states that biological systems maintain themselves by minimizing long-

term surprisal. This can be interpreted metaphysically:

Life is the governance of being through rule updates.

The organism:

1. constructs generative rules,
2. evaluates their success against sensory flux,
3. revises them through inference,

4. stabilizes them through action.

In this view, active inference generalizes the metaphysics of rules:

Rules define the world; prediction corrects the rules; action enforces them.

Life becomes a continual negotiation between expectation and reality.
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32.8 XX.8 Predictive Coding and the Ethics of Abstraction

Because agents rely on abstractions to predict, they also rely on abstractions to act. A distorted
abstraction yields distorted actions. A biased prior yields a biased world-model. An impoverished
generative model produces impoverished behaviour.

Thus:

Epistemic error becomes ethical consequence.
Active inference therefore implies an ethics:
o Abstractions must remain revisable.
e Priors must remain open to correction.

e Predictive structures must not conceal their failures.

The same principles that govern good code and good models govern good agents.

32.9 XX.9 Cognition as Abstraction-Driven World Negotiation
Predictive coding reveals cognition as a form of abstraction-driven negotiation:
e Perception resolves ambiguity through reduction.
e Cognition builds higher-order abstractions as generative rules.
o Action enforces those rules upon the environment.

e Learning updates the rules when they fail.

Thus the agent is a rule-governed entity within a rule-defined world, continually updating its

interfaces to remain synchronized with reality.

To perceive is to anticipate; to act is to commit; to learn is to revise.

Active inference therefore integrates seamlessly into the ontology of abstraction: it is the dy-

namical principle that governs how abstractions survive contact with the world.
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33 Chapter XXI: Compression, Surprise, and the Geometry of
Belief

If prediction is abstraction enacted in time, then compression is abstraction enacted in form. Like-
wise, if surprise is the deviation between expected and actual input, then belief is the geometric
structure that organizes these expectations. This chapter integrates compression, surprise, and
belief into a unified framework: one in which cognition is the continual remapping of a high-
dimensional belief manifold under the pressures of uncertainty and constraint.

33.1 XXI.1 Compression as the Essence of Abstraction

To abstract is to compress. Every abstraction discards detail in order to retain structure. In
predictive coding, the brain maintains a hierarchical model that compresses sensory flux into a
minimal set of explanatory causes. Let s denote the sensory stream and § the predicted stream.

The generative model compresses s by encoding it through latent variables z:

S = f@ (JAZ),
where & contains far fewer degrees of freedom than s. Compression is therefore a reduction of
dimensionality. It replaces complexity with structured constraint.
Mathematically, compression corresponds to selecting a model M such that:
Complexity(M) + Error(M) is minimized.

Thus abstraction is the solution to an optimization problem balancing fidelity against parsimony.

33.2 XXI.2 Surprise as the Failure of Compression

Surprise arises when the compressed model fails to predict incoming data. In predictive coding,
surprise is encoded as prediction error:

E=S8—S.

From the free energy perspective, surprise corresponds to an inability of the generative model to
compress the sensory stream without incurring excessive residuals. If compression fails, the agent
must revise its belief geometry or act upon the world to restore compressibility.

Surprise is therefore not randomness but misalignment: a mismatch between the world and the
model that compresses it.

33.3 XXI.3 Belief as a Geometric Structure

Beliefs are not propositions but positions in a high-dimensional manifold. Each belief corresponds
to a point in parameter space 6, where 6 governs the generative rules fy. The geometry of belief is
given by the metric induced by the curvature of free energy:
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99 = 96,00,
This metric determines how easily beliefs shift under new evidence. Regions of low curvature
correspond to flexible beliefs; regions of high curvature correspond to rigid priors.
Thus belief becomes a geometric object, shaped by both the structure of the world and the

structure of prior expectations.

33.4 XXI.4 Priors as Topological Commitments

A prior is not merely a bias; it is a topological commitment. It shapes the manifold of possible
beliefs by specifying which regions are permissible or likely. The prior determines the connectivity

of belief space:

p(0) defines the topology of inference.

Strong priors carve the manifold into deep basins of attraction, making certain beliefs stable
and others nearly unreachable. Weak priors flatten the manifold, allowing larger excursions.
Thus, the geometry of belief is a landscape sculpted by priors.

33.5 XXI.5 Updating Beliefs: Gradient Flows on the Belief Manifold
Belief updating corresponds to a gradient descent on free energy:

f=—VyF.
This defines a flow on the manifold of beliefs. Surprise pushes the system along this flow;
compression determines the shape of the gradient; priors constrain the basin of trajectories.
Inference becomes motion through a geometric space.
Prediction errors act as forces; priors act as potentials.

33.6 XXI.6 Action as Geometric Reconfiguration

Because free energy depends on both internal beliefs and external states, action modifies the geom-
etry of the sensory manifold. Instead of changing beliefs to reduce surprise, the agent may change
the world so that its predictions become true.

In mathematical terms, action modifies s, altering the sensory projection:

where @ is the sensorimotor mapping. Thus, action is a reshaping of the projected manifold so
that the current belief # remains a valid coordinate patch.
Belief governs action; action reshapes the world; the world reshapes belief.

The geometry is dynamical.

83



33.7 XXI.7 Compression as the Condition for Coherence

An agent’s world-model must be compressible; otherwise, it cannot maintain predictive coherence.
If the world is too complex relative to the agent’s representational capacity, prediction errors cannot
be resolved, and the belief manifold fractures into disconnected components.
Thus, coherence requires:
dim(2) < dim(s)
but also  fp(z) ~ s.

Compression must be sufficient but not excessive. A model that compresses too aggressively
ignores relevant structure; a model that undercompresses becomes computationally intractable.
Thus, belief geometry must be tuned to the complexity of the world.

33.8 XXI.8 Surprise as a Geometric Signal

Surprise indicates that the current tangent space of belief does not align with the curvature of the
world. When the world deviates from the linear prediction surface, prediction errors reveal the
discrepancy:

€#0 = curvature mismatch.

Thus, surprise is a curvature signal: it informs the agent how its belief manifold must deform
to better approximate the generative structure of the world.

Inference becomes differential geometry.

33.9 XXI.9 The Geometry of Belief as Ontological Mediation
We may now integrate the three themes:

e Compression defines the internal geometry of representation.

e Surprise measures misalignment between representation and reality.

e Belief is the evolving manifold that mediates this relationship.

Thus, cognition is neither representation nor reaction but geometric mediation: the continual
reshaping of an internal manifold that seeks to compress the causal structure of the external world.
The agent does not store data; it stores geometry.

Belief is the geometry of abstraction; surprise is its curvature; compression is its governing princij

This geometric perspective aligns predictive coding with the broader metaphysics developed in
the monograph: rules, constraints, interfaces, and generative structures are not disparate notions
but different manifestations of the same underlying logic of abstraction.
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34 Chapter XXII: The Predictive Self — Identity as a Generative
Model

If belief is a geometry and prediction a force shaping its curvature, then the self is not an object
but a generative structure: a model whose function is to stabilize experience by organizing it into
coherent, navigable form. The self is the highest-level interface in the predictive hierarchy, the locus
where expectations coalesce into identity. This chapter develops a theory of the predictive self as
a generative model—one whose purpose is not to mirror reality but to maintain coherence, reduce

surprise, and govern the flow between world, body, and mind.

34.1 XXII.1 The Self as the Highest Layer of a Generative Hierarchy

In predictive coding, the brain constructs a hierarchical model in which lower layers encode dense
sensory data while higher layers encode abstract causes. The highest level does not predict external

sensations directly; it predicts the structure of predictions themselves. This layer is reflexive:

§self = f@self(jlower—layers)-

Thus the self-model predicts the agent’s own predictive dynamics. It is an inference about
inference, a recursion of explanation.

Identity emerges not from sensory data but from stable patterns in the model that survive
continual updating.

The self is the slowest-moving, most abstract generative structure.
34.2 XXII.2 Continuity as a Constraint on Identity
For a self-model to function, it must impose continuity on experience. The generative model must
maintain:

p(zry1 | o) ~ identity transition.

This enforces temporal coherence: the presumption that the future self resembles the past self
unless evidence forces revision. The predictive self is therefore a dynamical attractor in the belief
manifold, a stable fixed point under gradient flows of free energy.

Identity is not stored; it is inferred continuously.

34.3 XXII.3 The Self as a Compression Mechanism

The self is an extreme form of compression. Instead of representing the full complexity of bodily,
emotional, and social states, it provides a compact generative schema:

e a condensed narrative,

e a stable set of priors,
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e a minimal interface to regulate behaviour.

Thus, the self can be understood as the compression kernel that minimizes surprise at the

longest temporal scales. This yields the guiding identity prior:

Oserr = arg melHE[F(H)]

Identity becomes the equilibrium that best compresses lived experience.

34.4 XXII.4 The Body as a Predictive Interface

The self is not disembodied. It depends on bodily predictions: interoceptive flows, autonomic
regulation, sensorimotor contingencies. The body supplies deep priors about:

e what is safe,
e what is familiar,
e what is possible,

o what is costly.

In this sense, the body is the interface through which the generative model engages the world.
The predictive self is scaffolded upon these bodily invariants; without them, belief geometry cannot
stabilize.

Identity is grounded in interoceptive prediction.

34.5 XXII.5 Self-Action Coupling: Acting to Maintain Identity
An agent may act not merely to reduce sensory surprise but to reduce identity surprise. Actions
that threaten the continuity of identity elicit anticipatory corrections:

a — Mminimize €identity-

Thus an agent acts to remain itself. The self-model imposes constraints on behaviour so powerful
that, at times, the world is modified to preserve internal coherence.
The predictive self is an active negotiator of its own existence.

34.6 XXII.6 The Narrative Self as a Generative Rule

At macroscopic scales, the self becomes narrative. Stories are generative models:

identity = the minimal narrative generating one’s experiences with coherence.

A story:

e compresses time,
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e organizes causality,
o stabilizes meaning,

o predicts future states.

This makes narrative the cognitive form of free-energy minimization over the longest temporal
horizons.
The self is not a memory of the past; it is a prediction of the future.
34.7 XXII.7 The Social Self as an Interface Contract
In social contexts, identity acts as an interface contract. Others interact with the agent on the
basis of inferred affordances:
self-modelyiper = self-modelgqs.

To maintain social predictability, an agent must constrain its own behaviour in line with the
expectations of others. Thus the social self is a mutual generative model: it arises at the interface
between agents.

Identity is a negotiated prediction.

34.8 XXII.8 Pathologies as Failures of Predictive Geometry

When the generative model becomes misaligned with sensory evidence or overly rigid, predictable
patterns break. Identity disorders, traumatic dissociation, and maladaptive habits can be under-
stood as failures in the geometry of belief:

o curvature too rigid (priors dominate),

o curvature too loose (sensory flux overwhelms priors),

manifold fragmentation (multiple incompatible identity attractors),

» hyperactive prediction errors (no stable fixed point).

Identity is fragile because its geometry must remain balanced under continual perturbation.
34.9 XXII.9 The Predictive Self as Ontological Regulator
We may now integrate the structure of the predictive self:

o It compresses long-term experience into stable generative priors.

It regulates action by shaping expected trajectories.
e It maintains continuity under environmental change.

o It negotiates alignment across bodily, cognitive, and social interfaces.

87



Thus, the predictive self is not an entity but a regulatory principle:

Identity is the symmetry the agent imposes on its own prediction errors.

It arises where abstraction meets anticipation, where compression meets narration, where world
and organism negotiate their mutual stability.
The self is not given but enacted. Not remembered but generated. Not found but maintained.
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35 Chapter XXIII: Markov Boundaries as Semi-Permeable Mem-
branes and Linear Interfaces

The previous chapter interpreted the self as a high-level generative model, implemented as a hier-
archy of predictive interfaces that compress experience, maintain continuity, and regulate action.
In this chapter, we formalize that picture using the language of Markov boundaries (or blankets),
conditional independencies, and linearized message-passing. We show that, under mild assump-
tions, each interface can be represented as a weighted linear function whose parameters play the
role of slopes and intercepts; thus, the geometry of belief and the dynamics of prediction can be
recast in the familiar form of linear equations with weights and biases.

35.1 XXIII.1 Markov Boundaries as Semi-Permeable Membranes

Let us consider a random vector of variables
X = (Xin7 Xouta dey)7

where:
o X, denotes internal states (e.g., latent self-states),
o Xout denotes external states (e.g., environment),
e Xpday denotes boundary states (e.g., sensory and active states).

[Markov Boundary| A set of variables X4y is a Markov boundary (or blanket) for Xj, if:
Xin 1 Xout { deya

and no proper subset of Xj,q, has this property.

Intuitively, Xpqy acts as a semi-permeable membrane between internal and external states: all
probabilistic influence between Xj, and X,,¢ must pass through Xjq,. The membrane is “semi-
permeable” because conditional dependencies can cross it, but only through specific channels en-
coded in the conditional distributions.

Formally, the joint distribution factorizes as:

p(XinaXoutadey) = p(Xin ’ dey)p(Xout ‘ dey)p(dey)'

Thus, from the perspective of Xj,, the entire external world Xyt is summarized by a set of

sufficient statistics Xpqy-

35.2 XXIII.2 Local Conditionals as Weighted Functions

We now consider a single node (or block) Y in a graphical model, with parents U = (Uy,...,Uy,)
that lie on its Markov boundary. The conditional distribution p(Y | U) encodes how information

passes through the boundary.
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We assume for simplicity that Y is either:

e a continuous variable with Gaussian noise, or

e a binary variable with Bernoulli noise.

In both cases, the conditional can be written in a generalized linear form.
[Linear-Gaussian Conditional] If Y is real-valued and

Y |U~Nw'U+b,0%),

then w € R™ and b € R are called the weights and bias of the conditional.
[Logistic-Bernoulli Conditional] If Y € {0,1} and

P(Y=1|U)=0(w'U+b),

where o(z) = 3 is the logistic sigmoid, then w € R™ and b € R are again the weights and

1
1+exp(—z
bias.

In both cases, the interface between U and Y is completely characterized by a linear function:
z=w'U+Db,

followed by a possibly non-linear but fixed link function (identity for Gaussian; logistic for Bernoulli).
The slope-intercept form (w, b) thus defines a semi-permeable channel: each component of U influ-
ences Y in proportion to its weight, and the bias shifts the threshold of activation or expectation.

35.3 XXIII.3 From Arbitrary Conditionals to Linear Forms

We now show that, under mild assumptions, any sufficiently smooth conditional distribution
p(Y | U) can be locally approximated by a linear equation in slope-intercept form. This is the
mathematical sense in which Markov boundaries can always be reduced to weighted linear inter-
faces.

[Local Linearization of Conditional Means] Let Y be a real-valued random variable and U € R”

a vector of parents. Suppose the conditional mean
m(U) :=E[Y | U]

is differentiable at some point Uy € R™. Then there exists a weight vector w € R™ and bias b € R
such that:
m(U) =w'U+b+o(||U — Uol)),

as U — Up.

Proof. By differentiability of m at Uy, we have the first-order Taylor expansion:
m(U) = m(Up) + Vm(Up) (U = Up) + o(|U = Up|)).
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Set w := Vm(Up) and b := m(Up) — w'Up. Then:
m(U) =w'U +b+o(|U - U),

which proves the claim. ]

Thus, even if the true conditional is non-linear, locally it behaves like a linear function with
slope w and intercept b. The Markov boundary can therefore be modeled, in a neighborhood, by a
weighted linear equation.

A similar argument applies to binary variables via the log-odds:

[Local Linearization via Log-Odds| Let Y € {0,1} and U € R", with

m(U):=P(Y =1|U),

and assume 7 is differentiable at Uy with 0 < 7w(Uy) < 1. Define the log-odds:

w(U)

LU) :=log T=n(0)’

Then there exist w € R™ and b € R such that:
(U)=w'U+b+o(|U = Upl]).

Proof. Since 0 < m(Up) < 1 and = is differentiable at Uy, the function ¢ is differentiable at Uy (com-
position of differentiable functions away from the singularities at 0 and 1). By Taylor expansion:

(U) = U(Us) + VU(Uo) " (U — Up) + o(|U = Us|)).-
Set w := VL(Up) and b := £(Uy) — w' Uy to obtain:
UU) =w'U+b+o(|U —TUp|),

as required. ]

Since 7 can be recovered from ¢ via w(U) = o(¢(U)), this shows that the Markov interface
between U and Y is locally equivalent to a logistic function of a linear combination of U, with
weights w and bias b.

35.4 XXIII.4 Linear Equations as Interface Geometry

The linear form
z=w ' U+b

defines a hyperplane in the space of boundary states U:

H:={UecR"|w'U+b=0}.
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In the Gaussian case, this hyperplane is a contour of equal expected value; in the logistic case,
it is the decision boundary where P(Y =1 | U) = 1/2. Thus the weights w encode the orientation
of the semi-permeable membrane in belief space, and the bias b encodes its offset.

Geometrically:

e w determines which directions in U-space matter,

e b determines where the membrane sits relative to the origin.

The Markov boundary is therefore equivalent to a weighted linear interface whose slope and
intercept define a separating geometry.
35.5 XXIII.5 Markov Boundaries and the Predictive Self

We now connect this formalism to the predictive self described in Chapter XXII. Recall that the self
was defined as the highest layer of a generative hierarchy, predicting lower layers and maintaining
continuity of identity. In probabilistic terms, we can model:

Xin = internal self states, Xt = environmental states, Xjq, = sensorimotor interface.

The self-model consists of conditional distributions:

p(Xin ‘ dey; eself)y
and,
p(dey ’ Xout; Henv)7
where Ogqr and Oqpy, parameterize the generative rules.
By the Markov boundary property:

Xin 1 Xout | deya

so all influence of the environment on the self, and vice versa, is mediated by Xj,q,. Each component
of this interface can be modeled as in the previous subsections by a weighted linear function, at
least locally:

E[Xvay | Xout) ® WoutXout + bout

E[Xin | Xbay] = WinXbay + bin-

Here Wyt and Wi, are weight matrices, and by, bin are bias vectors. Thus the sensorimotor
membrane is a composition of linear maps and simple link functions.

The predictive self, as a high-level generative model, can be represented as a composition of
such linearized blankets across layers:

Xeett ® WroWp_q1o(...o(W1Xout +01)...) +br—1) + bz,
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where each Wy, b, arises from local Markov boundary relations and o is a suitable non-linear link
(e.g., logistic, tanh, or identity). This is precisely the structure of a deep linear-nonlinear network,

whose layers are linearized semi-permeable membranes.

35.6 XXIII.6 Formal Summary: From Boundaries to Linear Contracts

We can summarize the argument in the following theorem, understood as a formal sketch rather
than a measure-theoretic completion.
[Markov Boundaries as Linearized Interface Contracts| Let (Xin, Xout, Xbdy) factorize according

to a Markov boundary:

P(Xins Xout, Xbdy) = P(Xin | Xbdy) P(Xout | Xbay) P(Xbdy)-

Assume each conditional mean (or log-odds, for binary variables) is differentiable in its arguments
and that the generative model is implemented as a hierarchical composition of such conditionals.
Then, in a neighborhood of any point where the conditionals are differentiable and non-degenerate,
there exist weight matrices W, and bias vectors by such that the mapping from external states Xqyus
to internal self states Xj, can be locally approximated by a finite composition of linear equations

of slope-intercept form:
Xin ~ F(Xout) := Wro(Wpq10(-- - o(W1Xout +b1) -+ ) +br1) + bz,

where o denotes fixed, elementwise link functions.
In particular, the interface contracts at each Markov boundary reduce locally to linear maps with
weights and biases, and the global predictive self-model can be represented as a matrix-weighted

composition of such linearized membranes.

Sketch of Proof. For each conditional distribution in the hierarchical generative model, apply the
local linearization lemmas (for continuous or binary variables) to approximate the conditional mean
(or log-odds) by an affine map U — WU + b in a neighborhood of interest. The overall mapping
from Xout to Xin is a composition of these conditionals along the directed edges of the hierarchy.

Composing affine maps yields another affine map when link functions are identity; when non-
linear link functions are present (e.g., logistic), the result is a composition of linear maps and fixed
non-linearities, i.e., a layered network. Thus, locally, the composed mapping is a function of the
stated form.

Because the Markov boundary condition ensures that all dependence between internal and
external states is mediated by boundary states, it suffices to consider the chain of conditionals
traversing the boundary and its hierarchical ancestors and descendants. Each such step admits a
local linear approximation as above.

Therefore, the entire predictive self-model can be represented as a composition of linearized
semi-permeable membranes, each specified by weights W, and biases b;, completing the sketch. [

In this sense, the predictive self described in Chapter XXII admits a formal realization as

a layered system of Markov boundaries, each behaving locally as a linear equation. The slope-
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intercept parameters of these equations are the weights and biases that govern how information
flows across semi-permeable membranes, encoding the geometry of belief and the dynamics of
identity as a system of linear interface contracts.
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36 Chapter XXIV: Compositional Functions, Neural DAGs, and
Semantic Geometry

In the previous chapter, we showed that Markov boundaries can be locally linearized, yielding
affine maps whose weights and biases describe semi-permeable interfaces between internal and
external states. These maps compose into layered structures, producing a global predictive self-
model that is, in effect, a deep network of linear-nonlinear transformations. In this chapter, we make
this compositional structure explicit, interpret it as traversal of a directed acyclic graph (DAG),
and show how such compositions are equivalent to successive scalings, twistings, and embeddings
of complex (and higher-dimensional) planes. This yields a geometric picture: any reduction or
evaluation is a path from one location to another in a semantic vector space, representing an

information-theoretic possibility or action space.

36.1 XXIV.1 Compositional Functions from Linear Interfaces

From Chapter XXIII, each Markov boundary interface can be locally represented as an affine map:
z=Wzx+b,

possibly followed by a fixed non-linearity o. Consider a hierarchy of such interfaces indexed by
¢ =1,..., L, with intermediate state vectors hy:

]’Ll :Ul(W11'+b1), h2 :02(W2h1+b2), hL :UL(WLhL_1+bL).

The overall mapping from input x (e.g., external states) to output hy, (e.g., internal self-states)
is the composition:

F(x)=hp =(opoApoop_10Ap_j10---0010 Aj)(x),

where each Ay(z) = Wy + by is an affine transformation.
Thus, the global function F' is a compositional function built by chaining together local inter-
face operations. Each step corresponds to crossing a semi-permeable membrane, transforming the

representation from one latent space to another.

36.2 XXIV.2 Neural Networks as Directed Acyclic Graphs

We can represent the structure of F' as a directed acyclic graph (DAG). Let each node represent
a latent state (layer activation), and each directed edge represent the action of an affine map
(optionally followed by a non-linearity). The input layer corresponds to x, the output layer to Ay,
and the hidden layers to hy,...,hp_1.

e Nodes: vg,v1,...,v with activations hg =z, h1,...,hr.

o Edges: (vy—1 — vy) labeled by (Wy, by, oy).
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The DAG is acyclic because information flows in a single direction (from input to output)
with no feedback loops in the feedforward case. Evaluation of F' corresponds to a topological
traversal of the DAG: one computes all parent nodes before their children, applying the associated
transformations.

Thus, any compositional function obtained by chaining linearized Markov boundaries can be
represented as a DAG traversal. The predictive self-model is a computation along paths in this
DAG.

36.3 XXIV.3 Complex Planes as Two-Dimensional Linear Interfaces

To connect this with complex geometry, recall that any affine map on R? can be represented as a

complex-linear (or affine) transformation on C:
!/
2 =az+c,

where z € C encodes a point in the plane, a € C encodes scaling and rotation (and possibly
reflection if complex conjugation is allowed), and ¢ € C encodes translation.

Interpreting a 2D latent state as a complex number, each affine interface becomes:
Zaz+c,

which simultaneously scales and twists (rotates) the plane, then shifts it. Composing such trans-

formations:
F(z)=ap(---az(arz+c1)+ea--+) +er,

yields a complex affine network.

Thus, a chain of linearized interfaces in two dimensions corresponds to successive scalings, twist-
ings, and translations of the complex plane. Each layer reorients and rescales the representational
space.

36.4 XXIV.4 Higher Dimensions as Generalized Complex Planes
In higher dimensions, each layer operates on R" via:
h' = Wh+b.

This can be seen as a generalized complex transformation: instead of a single complex plane,
we have an n-dimensional vector space. The weight matrix W performs:

e scaling along certain axes,
e rotation within subspaces,

e shearing and mixing across coordinates.

96



If we decompose W via singular value decomposition:
W =UxV",
then:

« VT rotates and reorients the input space;
e Y scales each axis by singular values;

e U rotates to the output basis.

This is the higher-dimensional analogue of complex scaling and twisting. Each layer acts as
a multi-dimensional scaling-and-rotation operator, followed by translation. Additional dimensions
allow the network to bend and fold the space in ways impossible in two dimensions, enabling more

expressive decision boundaries and semantic encodings.

36.5 XXIV.5 Reduction as Traversal in Semantic Vector Space

Every latent state hy can be understood as a point in a semantic vector space. The coordinates
of hy encode features, concepts, or abstract properties inferred at layer £. Evaluating the network

from input x to output hj, is therefore a path:
$=h0—>h1—>h2—>-~~—>hL,

where each arrow is an affine (and possibly non-linear) transformation.

This path can be interpreted as:

e a trajectory in an information-theoretic possibility space (the space of compressed descrip-

tions);
 a trajectory in an action space (the space of policy-relevant states);

 a sequence of semantic refinements (from raw data to abstract meaning).

Thus, reduction—whether algebraic, computational, or inferential—corresponds to moving from
one location to another in a semantic vector space via the edges of a DAG.
Every step in the reduction changes the representation while preserving certain invariants,

reshaping the meaning without losing its structural essence.

36.6 XXIV.6 Information-Theoretic Interpretation

From an information-theoretic perspective, each layer performs a lossy or lossless compression:

he = fo(hoe—1) = oe(Wehe—1 + be).

This mapping can be seen as:
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¢ discarding information irrelevant to higher-level predictions,
e preserving information needed for downstream tasks,

o reshaping probability distributions over states.

The semantic vector space at layer ¢ is therefore a space of compressed codes. Movement in
this space corresponds to changing hypotheses about the world. The DAG structure ensures that
information flows in a directed manner, from raw data toward increasingly abstract codes.

Thus, the vector space is an information-theoretic possibility space: each point represents a
distinct compression of the input consistent with the model’s constraints.

36.7 XXIV.7 Action Spaces as Embedded Semantic Manifolds

When the top layers of the network parameterize actions or policies, the semantic vector space
becomes an action space. A policy m can be modeled as a mapping from internal states h to actions
a:

a=m(h)=Wzh+ by,

possibly followed by a softmax or other decision function.

In this setting:

e Semantic representations h encode beliefs and goals.
e The action space is an embedded manifold within the high-dimensional semantic space.

e Traversing the network from x to a corresponds to a path from perception to action via

semantic compression.

The information-theoretic possibility space and the action space are thus intertwined: the

geometry of beliefs constrains the geometry of actions.

36.8 XXIV.8 Complex Twisting as Semantic Reparameterization

Returning to the complex-plane analogy, successive linear layers can be seen as repeated reparam-
eterizations of the semantic plane: each layer chooses a new basis in which certain features become
salient and others suppressed. This is akin to twisting the complex plane so that contours of interest
(e.g., decision boundaries, manifolds of high probability) align with coordinate axes.

Non-linearities (such as sigmoids or rectified linear units) then fold the space, creating sharp dis-
tinctions between regions. In higher dimensions, these twists and folds carve out intricate decision
surfaces and semantic clusters.

Thus, the compositional function F' can be understood as a multi-step twisting and scaling of

the underlying semantic manifold, mapping raw input to conceptually meaningful coordinates.
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36.9 XXIV.9 Summary: Reduction as Geodesic in Semantic Space
We can now synthesize the picture:

¢ Markov boundaries define semi-permeable interfaces characterized locally by linear equations

with weights and biases.
o Composing these interfaces yields a deep network, representable as a feedforward DAG.

e Each layer enacts a scaling, twisting, and translation of a latent vector space, generalizing

complex-plane transformations to higher dimensions.

o Evaluating the network corresponds to traversing a path in semantic vector space, from raw

sensory input to abstract belief or action.

o This vector space is an information-theoretic possibility space or action space: points represent
compressed hypotheses or policies.

Thus:

Every reduction is a traversal in semantic space,

a movement along edges of a DAG through successive linear-nonlinear interfaces, each acting
as a local scaling and twisting operation. The geometry of this space encodes the agent’s ontology;
the DAG encodes its inferential grammar; and the compositional function encodes the way it moves
through possibility toward meaning and action.

36.10 XXIV.10 Compositionality as Functorial Structure

Each layer in the DAG defines a map between vector spaces:
foe:Vier = Ve
The entire network is a composition:

F:fLofL—lo"'ofl-

This is precisely the categorical structure of a functor from the path category of the DAG to
the category of finite-dimensional vector spaces:

F : P(DAG) — Vect.

Nodes map to vector spaces, arrows map to linear or nonlinear operators, and composition along
paths maps to function composition.

Thus, a DAG is not just a computational graph but a categorical skeleton. Compositionality
becomes functorial: a guarantee that the semantics of the whole is determined by the semantics of
the parts and the way they compose.

This recasts neural computation as functorial transport across a hierarchy of latent spaces.
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36.11 XXIV.11 Coordinate Transformations as Inferential Reparameterizations

Each affine map
W =Wh+b

can be interpreted as a change of coordinates on the internal manifold of beliefs.
Let ¢ : R™ — R™ denote the coordinate chart on latent layer ¢. Then:

o (W) =W ¢ () +b
Thus, each DAG edge is a coordinate reparameterization between adjacent latent manifolds.
Nonlinearities (such as o) fold the manifold, introducing curvature.
This shows:

Neural DAG traversal = sequence of coordinate changes,

each reorienting the semantic geometry for the next step of inference.

36.12 XXIV.12 DAG Traversal as Geodesic Computation

We may view inference as movement along a geodesic in semantic space. Let (M, g) denote the
latent semantic manifold equipped with a Riemannian metric g induced by the Fisher information

or free-energy curvature. The neural network computes a curve:
V0,1 =M, A(0) ==, (1) = F(x),
such that:

Y'(t) = fowy(v(1)),

where ¢(t) indexes the DAG layer at time t. Under gradient descent interpretation, the traversal

approximates a geodesic minimizing a potential energy functional:

1
ﬂﬂzénvmwm@w.

Thus, inference is not merely evaluating functions, but computing energetically optimal paths
through semantic space. Reduction is geodesic contraction: moving toward lower-energy, higher-

consistency regions of the manifold.

36.13 XXIV.13 Embedding Semantic Manifolds into Higher Dimensions

To represent richer semantics, deeper DAGs embed representations into progressively higher-dimensional
spaces:

Vo= Vi—- - =V
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Each embedding introduces additional degrees of freedom that allow for linearly separable or
more expressive representations. This phenomenon mirrors the Whitney embedding theorem: high-
dimensional embeddings permit simpler topology and disentangling of complex manifolds.

In computation, this embedding enables:

o disentangling nonlinear clusters,
o flattening high-curvature semantic structures,

e representing relational structure as linear forms.

Thus, neural compositionality is a geometric engine for embedding, flattening, twisting, and
projecting semantic manifolds.

36.14 XXIV.14 Action Selection as Semantic Projection

If the final layer of the DAG parameterizes action probabilities or motor commands, then action is

obtained by projecting the final semantic vector into an action manifold A:

a = H(hL),

where IT is a linear map (for continuous actions) or a softmax-style projection (for discrete policies).

This shows that the entire DAG performs a semantic-to-action mapping;:

= hi— hyo— = hp — a.

Thus, acting is the final projection of a trajectory in semantic space into the action manifold.
Every action is a geometric shadow of a latent semantic path.

36.15 XXIV.15 The Equivalence: DAGs, Complex Transformations, and Se-
mantic Motion

We now synthesize the equivalence central to this chapter.
1. Each Markov boundary reduces locally to an affine map (linear with bias).
2. A chain of such boundaries forms a compositional function, representable as a DAG.

3. Each DAG edge acts like a complex-plane transformation or a higher-dimensional rota-

tion—scaling—translation.
4. Traversing the DAG corresponds to moving along directed edges in a semantic manifold.

5. This movement is equivalent to evaluating a sequence of coordinate changes and nonlinear
foldings.

6. Reduction = moving from one semantic coordinate to another via these transformations.
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7. The resulting semantic vector space is an information-theoretic possibility space or action
space.

Hence, the full equivalence:

Compositional functions <= Neural DAG traversal <= Complex-plane twisting and scaling <=

Consequently:

Every reduction is a motion in semantic geometry.

Reductions, abstractions, predictions, inferences, and actions all arise from the same underly-
ing mechanism: traversing a directed graph of linear-nonlinear maps that reshape and transport

meaning across dimensions.
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37 Chapter XXV: Unistochastic Geometry — Amplitude-Level
Constraints on Semantic DAGs

Markov boundaries describe semi-permeable probabilistic membranes through which influence flows
between internal and external states. Chapters XXIII and XXIV established that these membranes
can be locally linearized into affine maps and composed into directed acyclic graphs (DAGs) gov-
erning semantic trajectories in latent vector spaces. In this chapter, we refine the structure of
these membranes using unistochastic matrices, following Barandes’s reinterpretation of quantum
transitions. We show that, when a probabilistic interface arises from an underlying amplitude-level
transformation, its transition matrix must be unistochastic. This imposes geometric constraints on
semantic DAGs, induces a complex-rotational structure on latent transitions, and reveals identity-

preserving inference as evolution along unistochastic geodesics in semantic space.

37.1 XXYV.1 Unistochastic Matrices as Physical Stochastic Interfaces

Let U be an n X n unitary matrix. The corresponding unistochastic matrix B is defined compo-
nentwise:
Bij = |Uyl*.

By construction, B is doubly stochastic:
> By=1, Y By;=1
j i
[Unistochastic Matrix] A matrix B € R™*" is unistochastic if there exists a unitary U such that
2
Bij = U™

The unistochastic set is a strict subset of the Birkhoff polytope of all doubly-stochastic matri-
ces. Thus, not every probabilistic transition corresponds to a physically allowable amplitude-level
evolution.

Interpretationally, the unistochastic constraint ensures that a boundary preserves the consis-
tency of an underlying complex-amplitude structure. It is therefore a refinement of the Markov
boundary: a membrane with an embedded unitary witness.

37.2 XXV.2 Markov Boundaries with Unitary Witness

Given internal states Xj,, external states Xou¢, and boundary states Xj,qy, the Markov factorization
Xin L Xout | dey

yields a local transition matrix
p(Xin | dey) =B.
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[Unistochastic Markov Boundary] A Markov boundary is unistochastic if its conditional transi-

tion matrix B is unistochastic.
This definition transforms the membrane into a constraint surface: only those probability flows

that arise from a unitary-shadowed process are permitted.

37.3 XXV.3 Local Linearization Under Unistochastic Constraints

Each membrane supports a local linearization (Chapter XXIII):
h' =Wh+b+o(||h — ho).

If B is unistochastic, then near a reference point, the Jacobian W satisfies additional orthogo-
nality and norm-preservation constraints inherited from U.
Let U = VAW denote a unitary decomposition. Then locally,

B=|U?~1+¢K,

where K is tangent to the unistochastic manifold. This tangent space corresponds to infinitesimal

generators of U(n).
Thus the local affine map is constrained to lie in a projection of the Lie algebra u(n):

W € proj(u(n)).
This means every linearized membrane inherits:

e a rotational component,
e a scaling component constrained by normalization,
e a curvature structure deriving from the complex phase space,

e a drift term b representing translation under amplitude marginalization.

37.4 XXV.4 DAG Composition of Unistochastic Membranes

A semantic DAG consists of nodes vg, v1,...,vr and edges labeled with affine maps approximating

conditional distributions. If each edge is unistochastic, then:

fo=o040 (Wgh + by), Wy = proj(Ue),

with U, unitary.
The overall compositional function is:

F=frofr-10---0fi.

[Unistochastic Closure Under DAG Composition] Let Bj,..., By be unistochastic matrices.
Then the DAG transition B = By, --- By lies in the closure of the unistochastic set.
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Sketch. Each By has a unitary witness: By, = |Uy|?. The composition corresponds to marginalizing

amplitude transitions under:
U=U---U.

While |U]? need not equal By --- By exactly, the product By, --- By lies in the closure of the set of
unistochastic matrices constructed from products of unitaries, since such matrices densely fill the

image of amplitude marginals. O

Thus DAG traversal under unistochastic membranes preserves a shadow of unitary structure

and inherits amplitude-level geometry.

37.5 XXV.5 Complex Twisting as a Consequence of Unitary Witness

From Chapter XXIV, each layer performs rotations, scalings, and translations in latent semantic
space. Under unistochastic constraints, these transformations correspond to projections of unitary

rotations:

h' ~ Re(Uhc),

where hc is a complex embedding of the real latent vector.
Thus:

e phase induces semantic twist,
e unitary magnitude preserves information mass,

« interference patterns translate into curvature on the semantic manifold.

Semantic transitions inherit complex structure even when reduced to probabilities.

37.6 XXV.6 Semantic Vector Dynamics on the Unistochastic Manifold

Let x represent a semantic state and B a unistochastic transition. Then:
/
x = Bzx.
The set of reachable states under repeated unistochastic evolution:

R(:C) = {Bk ---Bix: B; € US},

is a constrained dynamical system within the probability simplex.

Because the tangent space is inherited from u(n), semantic motion is restricted to trajectories
that are projections of amplitude-preserving geodesics.

Thus:

semantic trajectories are shadows of unitary flows.
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This is the geometric reason semantic DAGs twist, fold, embed, and unfold information in ways

reminiscent of quantum evolution.

37.7 XXV.7 Identity as Unistochastic Coherence

Let s¢ denote the agent’s internal state at time ¢t. A predictive self-model requires:

St+1 = Bysy,

with each B; unistochastic.

Identity coherence requires:

AU, €U(n):  s441 = |Ut|2st.

That is, the self-transition must be the marginal of an underlying amplitude-level motion. This

yields:

o continuity: U; close to U;_1,

o stability: |U;|? preserves norm-like quantities,

e integrability: transitions lie on a smooth manifold.

When transitions step off the unistochastic manifold, semantic fracture occurs.

Hence:

Healthy identity = evolution along unistochastic geodesics.

Dissociation, fragmentation, or unstable self-models correspond to transitions that cannot arise

from any amplitude-level evolution.

37.8 XXV.8 Reduction as Projection of Amplitude Flow Into Semantic Space

Every inference step reduces a complex-amplitude transition to a real-probability transition:

U : he = he, |U|?:h— K.

Thus:

latent evolution is unitary,
semantic evolution is stochastic,
reduction is projection,

meaning movement is the shadow of amplitude motion.

This provides a formal analogue of the philosophical claim that abstraction removes detail but

preserves structure: probabilistic transitions are amplitude transitions with phase removed.

Reduction = marginalizing the complex degrees of freedom.
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37.9 XXV.9 Summary: Unistochastic Geometry as the Hidden Order of Se-
mantic DAGs

We synthesize the results:

1. Markov membranes restrict information flow;

2. unistochastic membranes further restrict flow to transitions with unitary witnesses;
3. linearization of such membranes yields constrained affine maps;

4. composition yields DAGs with amplitude-level coherence;

5. DAG traversal corresponds to projected unitary geodesics;

6. semantic space inherits complex curvature from unitary embeddings;

7. identity-preserving inference is unistochastic evolution;

8. reduction is projection from amplitude geometry to probability geometry.

Thus:

Semantic inference is a stochastic projection of a deeper amplitude-level geometry.

The DAG is merely the visible surface; unistochastic structure is the hidden order guiding its
flows.
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38 Chapter XXVI: The Homotopy of Belief — Amplitude Paths,
Semantic Deformations, and Equivalence

Beliefs do not change as isolated points but as continuous trajectories across the semantic manifold
induced by predictive coding and unistochastic geometry. The purpose of this chapter is to for-
malize belief updates as paths, interpret their equivalence via homotopy, and show how inference
corresponds to continuous deformation between belief states under amplitude-level constraints.

38.1 XXVI.1 Belief Manifolds and Path Structure

Let M denote the semantic manifold of beliefs, each point 8 € M representing a complete generative
hypothesis. Belief revision produces a path:

v [07 ” — M, 7(0) = 9prior7 7(1) = Hposterior.
Assuming differentiability, v has a tangent vector:
Y(t) = =VF((t)),

corresponding to free-energy gradient flow.

Thus inference is a path, not a jump.

38.2 XXVI.2 Amplitude-Level Paths and Their Projections

Under unistochastic geometry, semantic motion is the projection of an amplitude-level path in C”
defined by a unitary flow:
Ul(t) = e At

Its shadow on probability space is:

Thus B(t) defines a stochastic path «(¢) in the semantic manifold:
A(E+dt) = B(t) y(2).
Amplitude evolution ensures smoothness, while its projection produces semantic curvature.

38.3 XXVI.3 Homotopy of Semantic Paths

Two semantic paths g, 1 : [0, 1] = M are homotopic if there exists a smooth deformation:
H :[0,1] x [0,1] = M,

such that:
H(Oat) :'70(t)a H(17t) :71(t)7
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H(57 0) = 9pri0r7 H(S, 1) = eposterior'

Homotopy expresses equivalence of explanations, inference routes, or belief updates that pre-

serve semantic invariants.

38.4 XXVI.4 Homotopy Lifting from Probabilities to Amplitudes

A key property of unistochastic transitions is that belief paths can be lifted to amplitude paths:

If two stochastic paths are homotopic, their lifts in unitary space satisfy:
Up(t) = Uy (t).

Thus semantic equivalence corresponds to amplitude-level deformation—yielding a deep geo-

metric interpretation of explanation equivalence.

38.5 XXVI.5 Homotopy Classes of Explanations
A scientific or cognitive explanation is a morphism between belief states:

E:0y— 064.

Two explanations Fy, B are equivalent if the induced paths on M are homotopic. This yields
an equivalence relation partitioning all explanations into homotopy classes.
Meaning-preserving reductions correspond to movement within the same class.

38.6 XXVI.6 Identity as a Homotopy-Invariant Structure

Let the predictive self be represented by a high-level belief attractor Og. Identity stability requires
that small perturbations yield homotopic paths returning to the same attractor:

/
Gself = eself .

Identity fracture occurs when:
eself ¢ eéelf)

i.e., transitions that cannot be smoothly deformed back.

38.7 XXVI.7 Reduction as Projection of Path Homotopy

Reduction discards phase information but preserves homotopy class:

Ut) = U
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Thus semantic trajectories are the projected shadows of amplitude-equivalent paths in a higher-

dimensional manifold.

38.8 XXVI.8 Conclusion

Homotopy reveals cognition as continuous deformation of belief states. Semantic stability, expla-
nation equivalence, and identity coherence follow from curvature and connectivity inherited from

amplitude-level geometry.
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39 Chapter XXVII: A Sheaf-Theoretic Interpretation of Semantic
DAGs

Semantic DAGs describe layered transformations of belief through local affine membranes and
unistochastic constraints. Sheaf theory provides a natural language to formalize how local semantic
structures integrate into global coherence. This chapter shows that DAG layers form a presheaf,
prediction errors correspond to failures of gluing, and identity arises as a stable global section.

39.1 XXVII.1 DAGs as Base Spaces for Sheaves

Let the DAG be a finite poset (V, <) where v; < v; if information flows from layer i to layer j. A
presheaf S assigns:

« a semantic vector space S(v) to each node v,
« a restriction map p;; : S(v;) — S(v;) for each edge i — j.

Thus every semantic representation is a local section.

39.2 XXVII.2 Markov Boundaries as Locality Structures

Boundary states define which variables are conditionally independent and thus define local neighbor-
hoods. Each Markov boundary is a sheaf-theoretic boundary delimiting local domains of definition
for semantic sections.

Unistochastic constraints ensure that restriction maps preserve amplitude-consistency.

39.3 XXVIIL.3 Compositional Functions as Global Sections

A full inference corresponds to selecting a global section:
s e I'(S),
with the requirement that for every edge i — j:
pij(sj) = si-

If such s exists, the semantic DAG is globally coherent.

Failure corresponds to prediction errors.

39.4 XXVII.4 Prediction Errors as Gluing Obstructions

If local beliefs s;, s; fail the compatibility condition:
pij(sj) # sis
a prediction error arises.
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Inference corresponds to adjusting sections to remove gluing obstructions.
Thus predictive coding = sheaf cohomology resolution.

39.5 XXVIL5 Identity as a Coherent Global Section

The predictive self is the unique (or dominant) global section that coherently glues semantic fibers
across all layers:
Sself € F(S)

Dissociation corresponds to multiple incompatible global sections:

1) (2
Sself? Sselfr -+ * -

Identity stabilization = global coherence across semantic patches.
39.6 XXVII.6 Dimensionality Reduction as Sheaf Morphism
A reduction map R : S — S’ defines:

e fiber dimensionality reduction,
e quotienting by semantic redundancies,

e preservation of gluing relations under morphism.

This formalizes abstraction as a functor between sheaves.

39.7 XXVII.7 Conclusion

Sheaf theory unifies predictive coding, DAG composition, and identity formation as problems of
global coherence over locally defined semantic regions. Meaning arises when local sections glue.
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40 Chapter XXVIII: The Symplectic Geometry of Prediction —

Flows, Potentials, and Belief Dynamics

Predictive processing describes inference as gradient descent on free energy. Unistochastic geometry
reveals that underlying amplitude-level transitions follow unitary flows. This chapter shows that
such flows endow semantic space with a symplectic structure; prediction becomes Hamiltonian
motion; and belief updates become canonical transformations.

40.1 XXVIII.1 Belief as a Phase Space

Let hidden states be z and prediction errors be p. Define phase space:

P ={(z,p)}.

The symplectic form:
w = dx A dp,

encodes joint evolution of beliefs and errors.

40.2 XXVIII.2 Hamiltonian Generators from Unitary Evolution

Unitary evolution:
U(t) = e ¢

derives from Hamiltonian H.
The projected stochastic evolution inherits Hamiltonian curvature:

. OH . 0H

T

“w T

Thus amplitude-level motion induces symplectic dynamics on semantic space.

40.3 XXVIII.3 Symplectic Structure of Prediction Errors

Prediction errors p act as conjugate momenta driving updates to beliefs . Variational free energy
approximates a Hamiltonian:
H(z,p) = F(z,p).

Inference then becomes Hamiltonian flow:

or . _or
op’ P= 5z

Prediction error propagation is thus symplectic transport.

40.4 XXVIII.4 Action-Perception Loop as Canonical Transformation

Action modifies external states while perception updates internal states. Every cycle executes:
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(z,p) = (2, p')
preserving w.
Thus cognition is a sequence of canonical transformations in semantic phase space.
40.5 XXVIIIL.5 Reduction as Symplectic Quotient

Semantic compression eliminates degrees of freedom corresponding to invariants:
P =P/G,

a Marsden—Weinstein quotient.
Reduction preserves essential geometry while discarding irrelevant modes.
Hence abstraction corresponds to restricting attention to symplectic leaves.

40.6 XXVIII.6 Identity as a Symplectic Invariant

The predictive self corresponds to a stable attractor in phase space. Identity stability requires:

Lx,w =0,

i.e., invariance of symplectic structure under time evolution.
Identity dissolution = violation of symplectic invariants through non-unitary or noise-dominated

transitions.

40.7 XXVIII.7 Conclusion

Prediction and belief revision are not merely statistical processes but symplectic motions in a
structured manifold. Amplitude flows become Hamiltonian flows; semantic updates become canon-
ical transformations; abstraction becomes quotienting; and identity becomes a conserved structure
under the dynamics.
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41 Chapter XXIX: Semantic Type Theory of Predictive Interfaces

with Racket and Haskell Implementations

The preceding chapters treated beliefs, Markov boundaries, semantic DAGs, and unistochastic
geometry primarily in geometric and probabilistic terms. In this chapter we recast the same struc-
tures in the language of semantic type theory: types as contracts on meaning, morphisms as typed
semantic transformations, and compositions as well-typed programs. We then illustrate these ideas
with concrete implementations in Haskell and Racket, showing how semantic interfaces can be
expressed as type signatures, contracts, and compositional combinators.

41.1 XXIX.1 Types as Semantic Contracts

In semantic type theory, a type A is not merely a set of values but a space of meanings together

with a notion of admissible operations. A typed function
f:A—>B

is a semantic contract guaranteeing that whenever a value inhabits A (has a certain meaning
structure), the result inhabits B (has a corresponding transformed meaning).

In the context of predictive processing:

e a type may represent a belief space, a space of prediction errors, or an action space;
« a function type represents an interface between semantic spaces (e.g., a Markov boundary);

e composition of typed functions corresponds to path traversal along a semantic DAG.

Thus type theory provides a discrete, syntax-level reflection of the continuous geometric struc-

tures of previous chapters.

41.2 XXIX.2 Semantic Types for Belief, Surprise, and Action

We introduce abstract semantic types:

o Belief @« — beliefs about quantities of type «;
e Errora — prediction errors associated with those beliefs;

o Action a — actions that operate on (or in response to) such beliefs.

Conceptually, we treat these as type constructors in a typed lambda calculus. For example, a
predictive update step can be typed as:

update : Belief a x Error a — Belief .
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Similarly, a Markov boundary interface between external state o and internal state 3 is typed:
Boundary : Belief a — Belief 3.

The type carries the same information as the semantic diagram: which domains and codomains
are being related.

41.3 XXIX.3 Markov Boundaries and DAG Nodes as Typed Morphisms

Recall that in the DAG picture, each node computes a latent representation hy and each edge
corresponds to an affine map (plus non-linearity):

he = fo(he—1).
In semantic type theory, each node carries a type:
he : Belief Sy,

where Sy is the semantic space (e.g., features, concepts, policies) at layer £.

Each edge is a semantic morphism:
feo : Belief Sy_1 — Belief S.
The entire DAG is then the typed composition:
F' : Belief Sy — Belief Sp,, F=fro---ofi.

Typing guarantees that only compatible interfaces may be composed; this is the type-theoretic
reflection of functorial compositionality.

41.4 XXIX.4 A Haskell Encoding of Semantic Morphisms

We now exhibit a minimal Haskell encoding of these ideas. We treat semantic spaces as phantom
types at the type level and vectors of numbers at the value level.

{-# LANGUAGE KindSignatures, GADTs, RankNTypes, DataKinds #-}
module SemanticDAG where

import qualified Data.Vector as V

-- A semantic space is represented by a phantom type 's'

newtype Belief s = Belief { unBelief :: V.Vector Double }
deriving (Show, Eq)
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-- A semantic morphism from space 'a' to space 'b'

newtype Morph a b = Morph { runMorph :: Belief a -> Belief b }

—— Composition of semantic morphisms
(.>) :: Morph a b -> Morph b ¢ -> Morph a c
(.>) (Morph f) (Morph g) = Morph (g . f)

infixr 9 .>

—-- Identity morphism
idM :: Morph a a
idM = Morph id

-- A linear semantic layer given a weight matrix and bias vector
data LinearLayer a b = LinearLayer

{ weights :: V.Vector (V.Vector Double)

, bias :: V.Vector Double

}

applylLinear :: LinearLayer a b -> Morph a b
applyLinear (LinearLayer ws b) = Morph $ \(Belief x) ->
let dot row = V.sum (V.zipWith (*) row x)
y V.zipWith (+) (V.map dot ws) b
in Belief y

-- A pointwise nonlinearity (e.g., tanh)
nonlin :: (Double -> Double) -> Morph s s
nonlin f = Morph $ \(Belief v) -> Belief (V.map f v)

—-— Example: a 2-layer semantic DAG
type InputSpace

type HiddenSpace

type OutputSpace

layerl :: LinearLayer InputSpace HiddenSpace

layerl = Linearlayer ... -- supply weights and biases

layer2 :: LinearLayer HiddenSpace OutputSpace

layer2 = LinearLayer ...

dag :: Morph InputSpace OutputSpace
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dag =
applylLinear layerl
.> nonlin tanh
.> applyLinear layer?2

Here:
e Belief s is a belief vector over semantic space s;
e Morph a b is a typed semantic morphism (Markov boundary / DAG edge);
e (.>) composes morphisms, enforcing type compatibility;
o InputSpace, HiddenSpace, OutputSpace are phantom types representing different layers.
Thus the DAG becomes a typed semantic program: you cannot accidentally connect incompat-
ible layers.
41.5 XXIX.5 Haskell: Semantic Type Classes for Prediction and Action
We may refine the structure by defining type classes that capture predictive and active roles:

class Semantic s where
-- An associated "meaning" type, purely at the type level

type Meaning s :: *

-- Beliefs about 's'
newtype Belief s = Belief { unBelief :: V.Vector Double }

——- Prediction interface: from beliefs about 's' to beliefs about 't'
class Predict s t where

predict :: Morph s t

—— Action interface: from beliefs about 's' to an action

newtype Action = Action { unAction :: V.Vector Double }
class Act s where
act :: Belief s -> Action
This encodes that:
» some spaces support predictive mappings into others (Predict s t),
» some spaces directly parameterize actions (Act s),
o implementations are constrained by these type-level interfaces.
The same pattern can be extended to include error types, free-energy measures, or unistochastic

constraints via additional phantom types or newtype wrappers.

118



41.6 XXIX.6 A Racket Encoding with Contracts

In Racket, we can express similar semantic contracts using either Typed Racket or Racket contracts.

For simplicity, we illustrate with contracts and a lightweight semantic state representation.

#lang racket
(require racket/contract)

;; A semantic state is just a vector of real numbers

(struct semantic-state (vec) #:transparent)

(define semantic-state?

(struct-predicate semantic-state))

;3 A semantic morphism is a function from state to state
(define semantic-morphism/c

(-> semantic-state? semantic-state?))

;3 Linear layer: weights is a vector of vectors, bias is a vector

(struct linear-layer (weights bias) #:transparent)

(define (apply-linear-layer layer)
(define ws (linear-layer-weights layer))
(define b (linear-layer-bias layer))
(lambda (st)

(define v (semantic-state-vec st))
(define (dot row)
(for/sum ([x (in-vector row)]
[y (in-vector v)])
(x x y)))
(define y
(for/vector ([row (in-vector ws)]
[b_i (in-vector b)])
(+ (dot row) b_i)))
(semantic-state y)))

;; Pointwise nonlinearity
(define (nonlin f)
(lambda (st)
(define v (semantic-state-vec st))
(semantic-state

(for/vector ([x (in-vector v)])
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(f x)))))

;; Compose semantic morphisms (right-associative)
(define (compose . fs)
(foldr (lambda (f acc) (lambda (x) (acc (f x))))
(lambda (x) x)
fs))

;3 Example: a 2-layer DAG
(define layeril
(linear-layer
;; weights and bias omitted for brevity
(vector (vector 1.0 0.0)
(vector 0.0 1.0))
(vector 0.0 0.0)))

(define layer2
(linear-layer
(vector (vector 0.5 0.5))
(vector 0.0)))

(define/contract dag
semantic-morphism/c
(compose (apply-linear-layer layerl)
(nonlin tanh)

(apply-linear-layer layer2)))
Here:
o semantic-state is the value-level representation of a belief in some (implicit) semantic space;
o semantic-morphism/c is the contract for Markov boundary / DAG interface functions;
e apply-linear-layer and nonlin implement the affine and non-linear parts;
o dag composes these into a full semantic function.
With Typed Racket, one can similarly declare:

#lang typed/racket
(struct SemanticState ([vec : (Vectorof Float)]) #:transparent)

(: Morph (SemanticState -> SemanticState))

and so forth, making the type information explicit.
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41.7 XXIX.7 Semantic Type Theory as a Bridge to Geometry

The semantic type-theoretic view aligns directly with the geometric and probabilistic perspectives
developed earlier:

o Types correspond to semantic manifolds (belief spaces, action spaces, error spaces).
e Typed morphisms correspond to Markov boundaries and DAG edges.
e Type composition mirrors path composition and DAG traversal.

e Type-level constraints encode which compositions are admissible, reflecting unistochastic and
symplectic constraints at the amplitude and geometric levels.

Implementations in Haskell and Racket are not merely code listings; they are concrete realiza-
tions of the underlying metaphysics: abstraction as typed interface, reduction as typed composition,
and prediction as well-typed traversal through a semantic DAG.
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42 Chapter XXX: Spherepop Implementation of Semantic DAGs
— From Racket Contracts to Geometric Processes

The previous chapter represented semantic DAGs and Markov-boundary-like morphisms in Racket

as functions on semantic-state structs, with linear layers and pointwise nonlinearities composed

via higher-order functions. In this chapter, we translate that implementation into the Spherepop

Calculus, treating semantic states as spatial regions, linear layers as weighted merge—collapse pat-

terns, and DAG composition as geometric piping of regions through successive Spherepop processes.

Our goal is not to reproduce concrete Racket syntax, but to show how the same semantic

interfaces and type contracts can be realized as a geometric process calculus in which computation

is enacted by merging, scaling, and collapsing spatial regions.

42.1 XXX.1 Recap: Racket Semantic DAG

Recall the Racket encoding;:

(struct semantic-state (vec) #:transparent)

(define semantic-morphism/c

(-> semantic-state? semantic-state?))
(struct linear-layer (weights bias) #:transparent)

(define (apply-linear-layer layer)
(lambda (st)
(define v (semantic-state-vec st))
(define (dot row)
(for/sum ([x (in-vector row)]
[y (in-vector v)])
(x x y)))
(define y
(for/vector ([row (in-vector ws)]
[b_i (in-vector b)])
(+ (dot row) b_1i)))
(semantic-state y)))

(define (nonlin f)
(lambda (st)
D)

(define (compose . fs)
(foldr (lambda (f acc) (lambda (x) (acc (f x))))
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(lambda (x) x)
fs))

(define/contract dag
semantic-morphism/c
(compose (apply-linear-layer layerl)
(nonlin tanh)

(apply-linear-layer layer2)))
Here:
e semantic-state wraps a numerical vector,
e semantic-morphism/c contracts functions from states to states,
e linear-layer encodes an affine map,

o dag composes layers into a full semantic pipeline.

We now construct an analogous representation in the Spherepop Calculus.

42.2 XXX.2 Spherepop Primitives for Semantic Geometry

In Spherepop, values are represented as spatial regions (“spheres”) in a continuum. Computation

proceeds via two primitive operations:

o merge — geometric union / interaction of regions,

e collapse — abstraction that contracts or quotients a complex configuration into a simpler

region.

We extend the Spherepop syntax with basic constructs needed to model vector spaces and linear

maps:
Region ::= sphere(label, payload)

| merge(Region, Region)

| collapse(Region, selector)

| scale(Region, scalar)

| shift(Region, vector)

| pipe(Region, Process)
Process ::= region. Region

| Process Process

Intuitively:
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o sphere(label, payload) is a primitive region tagged with a label and carrying a payload

(e.g., scalar).
o merge geometrically combines two regions into one (union plus interaction).
o collapse applies a selector that aggregates structure (e.g., computes dot products).
e scale and shift perform geometric scaling and translation.

e pipe applies a process to a region, feeding outputs forward.
Processes are higher-order Spherepop terms that transform regions into regions.

42.3 XXX.3 Encoding semantic-state as a Spherepop Region

A semantic-state in Racket wraps a vector. In Spherepop, we encode this as a bouquet of
coordinate-labelled spheres inside a container region:

state(vec) :=

merge_{i=0..n-1} sphere(coord[i], vec[i])
More explicitly:

state([x0, x1, ..., x_{n-13}]1) :=
merge (
sphere (coord[0], x0),
merge (

sphere(coord[1], x1),

sphere(coord[n-1], x_{n-1})

Semantically:

e each sphere(coord[i], x_i) encodes one component of the vector,

e their merged configuration encodes the full semantic state.

We write State(v) for this region-level representation of a semantic-state vector v.

42.4 XXX.4 Encoding Linear Layers as Merge—Collapse Patterns

A Racket linear-layer maps input vector x to output vector y via:

Yj = Z Wjil'i + bj.
i
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In Spherepop, we implement each output coordinate y; as a collapse over the merged input
coordinate spheres, weighted by W;; and shifted by b;.

We introduce a helper:

dot(weights_row, input_state) :=
collapse(
merge_{i} scale(select(input_state, coord[i]), weights_row[il),

sum-selector

Where:

e select(input_state, coord[i]) is a conceptual selector that extracts the sphere with label

coord[i].
e scale(region, w) multiplies the payload of that sphere by w.
e merge_{i} merges all these scaled spheres.

e collapse(..., sum-selector) aggregates the merged configuration by summing payloads.
Then we define a Spherepop version of apply-linear-layer as a process:

LinearLayer(W, b) :=
input_state.
let output_state :=
merge_{j} sphere(out[j]l,
dot(W[jl, input_state) + b[jl)

in output_state
That is:
o For each output index j, we compute a dot product between row W[j] and the input state.

o We add bias b[j].

o We wrap each result as sphere(out[j], ...) and merge them into a new state region.

This process corresponds to a Spherepop implementation of an affine Markov boundary: a

semi-permeable membrane mapping one semantic state region to another.

42.5 XXX.5 Encoding Nonlinearities as Region Warps

The Racket version defined:

(define (nonlin f)
(lambda (st) ...))
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In Spherepop, we interpret a pointwise nonlinearity as a warp of each coordinate sphere payload
via f:

Nonlin(f) :=
state_region.
let coords := {coord[0], coord[1], ..., coord[n-1]} in
merge_{i}
let s_i := select(state_region, coord[i]) in
sphere(coord[i], f(payload(s_i)))

Here payload(s_i) extracts the scalar associated with the i-th coordinate sphere. The warp £
is applied to that scalar, and a new sphere is created with the same coordinate label but transformed
payload.

For a specific choice, such as f = tanh, we obtain:

TanhNonlin := Nonlin(tanh)
This defines a Spherepop process that acts as a pointwise nonlinearity over the semantic state

region.

42.6 XXX.6 Composing Spherepop Processes as Semantic DAGs

The Racket compose function corresponds to functional composition of processes. In Spherepop,
we represent composition explicitly:

compose(P1, P2) := region. P2(P1(region))
Or in infix form:
P1 P2 := region. P2(P1(region))

Given two linear layers and a nonlinearity:

L1 := LinearLayer(W1, bil)
L2 := LinearLayer (W2, b2)
N := TanhNonlin

we define the Spherepop semantic DAG process:
DAG :=L1 N L2
Equivalently, in pipelined form:

DAG :=
state_region.
pipe(state_region, L1)
[> pipe(_, N)
|> pipe(_, L2)
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where pipe(region, Process) is syntactic sugar for applying a process to a region, and _
indicates implicit threading.
This DAG process implements the same semantics as the Racket dag:

e input semantic state — Spherepop region,
o region processed via L1 (affine map),

o region warped via N (nonlinearity),

o region processed via L2 (affine map),

» resulting semantic state region.

42.7 XXX.7 Example: A Concrete 2D Spherepop Network

Consider a simple 2D input space with coordinates coord[0] and coord[1]. Let:

10 0
Wy = C b=,

%:@5&@,@:@.
The Spherepop implementations are:

state([x0, x1]) :=
merge (
sphere(coord[0], x0),
sphere(coord[1], x1))

L1 := LinearLayer(W1, bil)
L2 := LinearLayer (W2, b2)
N := TanhNonlin

DAG := L1 N L2
Applying DAG to state([x0, x1]) yields:
e L2 computes yg = 0.5x9 + 0.5x1,
e N applies tanh to vy,

o L1 acts as identity on the (single-coordinate) state.
The final region is:
sphere(out [0], tanh(0.5 x0 + 0.5 x1))

which is the Spherepop realization of the corresponding Racket computation.
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42.8 XXX.8 Semantic Type Theory Meets Spherepop Geometry

The translation from Racket to Spherepop can now be summarized as follows:

o The Racket type semantic-state becomes a Spherepop region composed of coordinate-
labelled spheres.

e The Racket contract semantic-morphism/c becomes a class of Spherepop processes mapping

regions to regions.
e A linear layer becomes a merge—collapse pattern with scaling and shifting.
e A nonlinearity becomes a region warp that transforms payloads pointwise.

o Composition becomes process composition and region piping, forming a semantic DAG in
geometric form.

Thus, Spherepop provides a geometric implementation of the same semantic type theory: ab-
straction as merge, reduction as collapse, prediction as sequential region transformation, and iden-
tity as the persistence of invariant region patterns across DAG traversal.
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43 Chapter XXXI: Syntactic Sugar for Spherepop Calculus —
Parenthetical Operators and Nested Semantic Processes

Spherepop Calculus was originally introduced as a geometric process formalism in which compu-
tation is enacted through the interaction of spatial regions via the primitive operations merge and
collapse. In the previous chapter we translated Racket-style semantic morphisms into Spherepop
processes, yielding geometric implementations of linear layers, nonlinearities, and compositional
semantic DAGs.

However, as the complexity of nested merges, collapses, and piped processes increases, the raw
Spherepop syntax becomes cumbersome. This chapter introduces a system of syntactic sugar that
provides a concise, parenthetical notation for Spherepop computation, analogous to S-expression—based

evaluation in Lisp but semantically grounded in merge—collapse geometry.

The goal is to produce readable expressions such as:
(( pipe state L1 N Lg)),

and to specify a formal desugaring rule that expands these nested forms into canonical Spherepop
processes.

43.1 XXXI.1 Motivation for a Parenthetical Operator Form
The Spherepop primitives:
merge(A, B), collapse(R, selector), pipe(R, P)

grow syntactically unwieldy when applied in long sequences. For example, a semantic DAG that

applies two linear processes with an intervening nonlinearity expands as:

pipe(pipe(pipe(R, L1),N), L),

which obscures the intended flow of information.

A parenthetical operator form provides a more compact expression:
((pipe R L1 N L3)),

which is easier to read and easier to manipulate in metatheoretic proofs. This form recursively
expands into the canonical nested application.

43.2 XXXI.2 Syntax of the Parenthetical Operator Form

We extend Spherepop’s grammar with the nonterminal SExpr, defined as:

SExpr ::= ( SExprList )
SExprList ::= Atom | SExpr SExprList
Atom ::= identifier | label | scalar | Region
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The special double-parenthesis form:

((opxy 20 ... TY))

is reserved for syntactic sugar.
Here, op is an operator (e.g., merge, collapse, pipe), and the z; are arguments, each of which
may itself be either an atom or a fully nested S-expression.

43.3 XXXI.3 Desugaring Rule: Right-Nested Operator Application

We now define the desugaring rule that gives semantic meaning to the parenthetical operator syntax.
[Desugaring of Parenthetical Operator Forms| For any operator symbol op and arguments
T1,...,Ty, define:

((opx1)) = op(x1),
((op x1 22)) — op(x1,x2),
((opx1 w2 23)) = op(x1, op(x2, x3)),

and in general:

((opx1 29 ... TY)) = op(z1, ((Opx2 ... TY))).

Thus, each parenthetical form expands into a right-nested sequence of applications of the same
operator.

This rule parallels the classical reading of S-expressions but specializes evaluation to a fixed
operator. It also matches the geometric intuition of Spherepop that repeated operations fold regions
through a pipeline of merge—collapse transformations.

43.4 XXXI.4 Examples of Desugaring

Merge of three regions.
((merge A B C')) — merge(A, merge(B,C)).
Collapse applied to a nested merge.
((collapse (merge A B C') sum)) — collapse(merge(A, merge(B, C)), sum).
Pipelining of semantic processes.
((pipe R P) P> P3)) +— pipe(R, pipe(Pi, pipe(Pa, P3))).
This is precisely the semantic DAG composition rule introduced in Chapter XXX.

43.5 XXXI.5 Sugar for Spherepop Geometric Operators

To facilitate expressiveness and readability, we introduce compact infix aliases:
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A®B := ((merge AB)),

#7(R) = ((collapse R f)),
R‘PI‘PQ | ’Pn = ((pipeRP1 PQ Pn))

Some examples:

A B®C = ((merge ABC(C)).
#Hsum(A @ B ® C) = ((collapse (merge A B C) sum)).

R‘L1|N|L2:((plpeRL1NL2))

This establishes the syntactic foundation for piping Spherepop processes in the same manner

as functional composition or Unix-style streams.

43.6 XXXI.6 Nested Structures and Semantic Compression

Because Spherepop’s collapse operator corresponds to abstraction or reduction, the parenthetical
sugar directly encodes semantic compression pipelines. For example:

((collapse (( merge A B C'))sum))

is equivalent to a full reduction from a three-region configuration to a scalar region, representing a
dot product or aggregated feature.
This mirrors the collapse used in Chapter XXX to implement linear layers.

43.7 XXXI.7 Complex Expressions from Natural Language Bracketing

The syntactic sugar also supports quasi-natural-language representations. Consider the form:
(( Give (a_kind__of (syntactic_sugar) ) for__representing_the_operation (like (this.)))).

Its desugaring is:
Give(a_kind_of(syntactic_sugar), Give(for__representing__the_operation, Iike(this.))).

This illustrates that elaborate nested parenthetical structures can be interpreted as chained

semantic operations under a consistent syntactic rule.
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43.8 XXXI.8 Semantic DAGs, Sugar, and the Geometry of Flow

With the sugar in place, we may rewrite DAG compositions compactly:
(( pipe R L1 N L2 ))
rather than the expanded geometric form:

pipe(R, pipe(L1, pipe(N, Ls))).

This is not merely syntactic convenience. Since Spherepop models information flow as geometric
region transformation, the parenthetical operator notation becomes an explicit and visually clear
representation of semantic flow through a pipeline of geometric transformations.

43.9 XXXI.9 Conclusion

The syntactic sugar introduced in this chapter provides a compact, expressive layer atop Sphere-
pop Calculus. It enables complex merge—collapse expressions to be represented succinctly, preserves
compositional semantics through formal desugaring rules, and integrates naturally with the geomet-
ric intuition behind Spherepop. The notation also provides a bridge between Lisp-like structural
clarity and the spatial semantics of Spherepop, forming a syntactic foundation for future extensions
such as typed Spherepop, functorial Spherepop, and higher-order semantic pipelines.
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44 Chapter XXXII: Spherepop as a Monoidal Category Geometric

Computation in Categorical Form

Spherepop Calculus was introduced as a geometric process language built from spatial regions and
two primitive operations: merge and collapse. In previous chapters, these operations were enriched
with nonlinear warps, affine transformations, and pipelined flows to model semantic DAGs and
predictive interfaces. This chapter presents a categorical reformulation of Spherepop, showing
that its syntax and semantics naturally define a symmetric monoidal category. This provides
an abstract algebraic foundation for Spherepop computations, aligns the calculus with modern
categorical models of distributed systems, and prepares the theoretical ground for higher categorical

structures in subsequent chapters.

44.1 XXXII.1 Objects: Semantic Regions as Types

Let R be the class of all Spherepop regions (including atomic spheres, merged composites, and

collapsed abstractions). Each region R carries both:

e a spatial extension, and

o a payload (numerical or structured data).
[Objects of Spherepop| The objects of the category Spherepop are Spherepop region types:
Ob(Spherepop) = { [R] | R is a well-formed Spherepop region }.

Here [R] denotes the abstract type (or “shape-class”) of the region.
Thus:
[A] and [A@ B]

are distinct objects, where A @ B denotes a merge.
Each object corresponds to a semantic type: a structured domain of geometric information.

44.2 XXXII.2 Morphisms: Spherepop Processes

Recall that a Spherepop process is any term of the form:
P:R— R,
constructed using the primitives:
merge, collapse, scale, shift, pipe, Nonlin(f).
[Morphisms| A morphism in Spherepop from object [A] to object [B] is a Spherepop process

P:A— B
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modulo computational equivalence.

Composition of morphisms corresponds to the geometric composition of processes:
(P20 P1)(R) := P2(P1(R)),
and identity morphisms are identity processes Ir mapping R to itself.

44.3 XXXII.3 Tensor Product: Parallel Composition of Regions

Spherepop supports a natural notion of parallel combination: placing two regions side by side
without interaction. We define this as the monoidal tensor:

[Rl@[S]:=[R| S].

More explicitly:
[Tensor on Objects| For objects [A] and [B], define:

[Al©[B]:=[A]| B,

where A || B denotes a disjoint juxtaposition of regions.

On morphisms:
(P@Q)A| B):=P(A) || Q(B).

This corresponds to running two geometric processes independently.

44.4 XXXII.4 Unit Object: The Empty Region

The empty region @ (no spatial extension, no payload) serves as the monoidal unit:

I:=[2].

Then:
[Rl® I = [R], I ® [R] = [R].

This expresses the fact that juxtaposing a region with “nothing” produces no change.

44.5 XXXII.5 Merge as Categorical Multiplication

The merge operation is not the monoidal tensor; it is an internal operation resembling multiplication

or convolution. In categorical terms, merge is a family of morphisms:

merge, 5 : [A] ® [B] — [A® B].

This morphism represents interaction between two parcels of information. It is:
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e associative up to isomorphism:

(AeB)aC=As (Ba ),

e commutative up to isomorphism:
A B=B®A.

Thus @ defines an internal commutative monoid on each semantic layer.

44.6 XXXII.6 Collapse as a Monoid Homomorphism

The collapse operation:
collapse(A, selector)

maps a complex region to a simpler one, respecting monoidal structure. In categorical terms,
collapse is a homomorphism from the internal Spherepop monoid to a semantic scalar space.
If A= A; ® Ay, then:

collapse(A, f) = collapse(A1, f1) ® collapse(As, f2),

where ® is a monoid operation (e.g., addition for sum-selector).
Thus collapse abstracts without breaking monoidal coherence.

44.7 XXXII.7 Symmetry: Spherical Braid and Commutativity

Because regions in Spherepop have no prescribed ordering (merge is symmetric), we obtain sym-

metry:

oap: Al ® [B] = [B] ®[4],

defined by spatial swapping:
A| B — B A.

This symmetry is involutive and satisfies the hexagon laws.
Thus Spherepop is a symmetric monoidal category.

44.8 XXXII.8 Functorial Interpretation of Semantic DAGs
Chapters XXIV-XXVI showed that semantic DAGs correspond to compositions of processes:
D=P,o---0P.
In the categorical setting:
¢ each node of the DAG corresponds to an object,

e each edge corresponds to a morphism,
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o the entire DAG corresponds to a functor from a path category into Spherepop.

Thus:
F : Path(DAG) — Spherepop.

This functorial interpretation unifies Spherepop with the categorical semantics of neural net-
works, probabilistic programs, and sheaf-based cognition (Chapter XXVII).

44.9 XXXII.9 Sugar-Level Monoidal Interpretation

The syntactic sugar of Chapter XXXI supports categorical reasoning directly. For example:

((pipe R P\ P P3))

is interpreted as the composite morphism:

P3oPyo P [R] — [R/]

Parallel pipelines:

((pipe (B || R2) (P1® Q1) (P2 ®Q2))),

represent monoidal composition of morphisms.

Thus the sugar syntax mirrors categorical structure exactly.

44.10 XXXII.10 Spherepop as a Geometric Computational Monoid
We summarize the structural properties:

1. Objects: semantic region types [R].

2. Morphisms: geometric processes P: R — S.

3. Monoidal tensor: parallel composition [A] ® [B] = [A || BJ.

4. Unit: empty region I = [2].

5. Symmetry: region swap o4 B.

6. Internal monoid: merge A ® B.

7. Monoid homomorphisms: collapse operations.

8. Functorial semantics: semantic DAGs as functors.

Thus:

Spherepop is a symmetric monoidal category with an internal commutative monoid and collapse homomorphis
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This categorical structure provides a rigorous mathematical foundation for Spherepop and aligns
it with modern frameworks such as monoidal computation, categorical signal processing, and de-
notational semantics.

44.11 XXXII.11 Conclusion

Spherepop Calculus, long motivated by geometric intuition, admits a precise algebraic formulation
as a symmetric monoidal category. This elevates Spherepop from a process calculus for merging and
collapsing spatial regions to a universal semantic architecture capable of representing compositional
inference, parallel computation, abstraction, and the geometry of information flow. The monoidal
perspective naturally integrates with the homotopical, predictive, and sheaf-theoretic structures
established in earlier chapters, preparing the ground for a categorical treatment of higher-order

abstraction, identity, and recursion.
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45 Chapter XXXIII: Spherepop as a Fibration Over Semantic

Manifolds Geometric Regions as Fibers, Processes as Liftings
In previous chapters, we established Spherepop as a symmetric monoidal category whose objects
are semantic regions and whose morphisms are geometric processes. We also introduced semantic
manifolds as the continuous geometric substrates of belief, prediction, and inference, where each
point represents a state of the internal generative model, and where paths correspond to updates
or flows of meaning.

In this chapter, we unify these perspectives by presenting Spherepop as a fibration over semantic
manifolds. The idea is straightforward: semantic manifolds describe large-scale geometry of mean-
ing, while individual Spherepop regions describe fine-grained geometric realizations of information.
A fibration structure ensures that each semantic point has an associated fiber of Spherepop regions

that represent microstates, and that Spherepop processes correspond to smooth liftings of semantic

flows into geometric computation.

45.1 XXXIII.1 Semantic Manifolds as Base Spaces

Let M denote a semantic manifold: a differentiable space whose points represent semantic states,
such as:

e beliefs,
e prediction-error geometries,
e unistochastic probability assignments,

e or semantic embeddings produced by DAG layers.

A point § € M corresponds to a macroscopic state of understanding or interpretation. Paths
v : [0,1] = M correspond to belief updates or inference trajectories (Chapter XXIV), and geodesics
correspond to free-energy—minimizing flows (Chapter XXIII).

Thus M forms the base space of the fibration.

45.2 XXXIII.2 Spherepop Regions as Fibers

A Spherepop region R represents a microstate or geometric instantiation of semantic content. For
each 0 € M, we define the associated fiber:

Fo := { R | R instantiates or approximates the semantic state 6 }.
Intuitively:

o the manifold point 6 is the abstract meaning,

o the fiber Fy collects all Spherepop regions that represent this meaning in concrete geometric

form.
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Fibers may include:

o different spatial discretizations,
o different merge—collapse patterns encoding the same semantic vector,
 representations related by syntactic sugar (Chapter XXXI),

« or equivalent objects under monoidal equivalence (Chapter XXXII).

Thus each Fy is the fiber of geometric realizations of semantic meaning.

45.3 XXXIII.3 Formal Definition of the Spherepop Fibration

Let Spherepop denote the monoidal category developed in Chapter XXXII, and let M denote the

semantic manifold.
We define a fibration:
p : Spherepop — M,

such that:

p([R]) =0, if region R semantically instantiates 6.

Similarly, for a morphism P : R — R':

p(P) : p([R]) — p([R])

is the induced semantic-level transformation.

[Spherepop Fibration] A functor p : Spherepop — M is a fibration if for every semantic
morphism f : § — ¢’ in M and every geometric representative R € Fy, there exists a cartesian
lifting:

fR ‘R— R

such that: B
p(fr) = f.

Thus, semantic flows have geometric realizations in Spherepop.

45.4 XXXIII.4 Cartesian Liftings as Spherepop Processes

A lifting of a semantic transition § — 6’ corresponds to a Spherepop process that faithfully imple-
ments the semantic transformation.

In concrete terms:

f:0—=0 ~ ]?R:R>—>R/.

Typical examples include:
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o affine maps (linear layers),

e nonlinear region warps,

» merge—collapse computations (dot products, reductions),
o region pipelining (DAG traversal),

e unistochastic projections.

Thus Spherepop provides a concrete computational interpretation of semantic geometry.

45.5 XXXIIIL.5 Functoriality of Semantic DAGs

A semantic DAG induces a compositional semantic mapping;:

o Lo & e,

where ©, € M.
The fibration structure guarantees a lifted chain of Spherepop processes:
Ry my 2 I Ry
for any Ry € Fo,.
Thus semantic DAG evaluation is geometric region transformation along a lifted path.
45.6 XXXIII.6 Horizontal Morphisms and Semantic Equivalence

In a fibration, horizontal morphisms preserve fibers. These correspond to Spherepop transforma-
tions that:

o preserve semantic meaning (same 6),

o but vary geometric representation (different R € Fp).
Examples:

« rebalancing merge trees (associativity),

e applying syntactic sugar transformations,

e coordinate rescalings that do not change semantics.

Thus horizontal morphisms encode intra-semantic equivalence classes.
This dovetails with:

o homotopy-equivalent semantic explanations (Chapter XXVTI),
o sheaf-cohesive local variations (Chapter XXVII),

 symplectic invariance of internal structure (Chapter XXVIII).
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45.7 XXXIII.7 Vertical Morphisms and Semantic Motion

Vertical morphisms correspond to morphisms that change the semantic point in the base space;
they reflect genuine semantic updating or transformation.

Lifting such transformations to Spherepop yields:

0 —6 ~ R—R.
Thus vertical morphisms correspond to:
 inference updates,
e belief revision,
o flow under predictive coding,
o semantic DAG layer transitions,

o amplitude-projected unistochastic motions.

In free-energy geometry, these vertical morphisms follow gradients or geodesics.

45.8 XXXIIIL.8 Fibers and Symplectic Leaves

Chapter XXVIII showed that semantic manifolds often carry a symplectic structure. The fibration

interacts with this structure as follows:

o each fiber Fy corresponds to geometric microstates representing the same semantic macrostate,

o transitions between fibers follow symplectic Hamiltonian flows projected through vertical

morphisms.

Thus:

semantic geodesics ~»  Spherepop process liftings,

and:

symplectic leaves ~» families of fibers preserving structural invariants.

This provides a precise link between continuous semantic geometry and discrete geometric

computation.

45.9 XXXIII.9 Unistochastic Geometry as a Constraint on the Fibration

In Chapter XXV, unistochastic matrices represented allowable stochastic transitions that preserve

amplitude-level structure. Under the fibration:

 unistochastic transitions constrain allowable semantic morphisms f : § — ¢’,
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e only these transitions may be lifted,

e Spherepop process liftings must reflect unitary shadow geometry.

Thus the fibration enforces:

p(P:R—R)=f:0—60 = fmust be unistochastic-consistent.

This ensures a deep coupling between geometry and computation.

45.10 XXXIII.10 Spherepop Fibration Summary

The Spherepop fibration provides the following structural decomposition:

Spherepop & M.
1. M = semantic manifold (beliefs, predictions, meanings).
2. Fibers Fy = geometric realizations of meaning.
3. Vertical morphisms = semantic transitions (predictive update flows).
4. Horizontal morphisms = geometric equivalence (syntactic sugar, reshapings).
5. Cartesian liftings = computational implementations of semantic flows.
6. DAG semantics = path liftings.
7. Unistochastic geometry = admissibility constraint.

8. Symplectic structure = coherent evolution of fibers.

Thus:

Spherepop is a geometric computational fibration over the manifold of meaning.

This makes explicit the multiscale architecture in which:

e semantic geometry (macro),

Spherepop computation (micro),
 operational syntax (sugar),

 and categorical semantics (monoidal structure)

all align coherently.
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45.11 XXXIII.11 Conclusion

Viewing Spherepop as a fibration over semantic manifolds unifies continuous and discrete perspec-
tives on computation: continuous semantic flows lift to discrete geometric computations, while
discrete geometric equivalences project to semantic invariants. The resulting framework elegantly
integrates the monoidal, symplectic, predictive, topological, and sheaf-theoretic structures devel-
oped in earlier chapters.

In the next chapter we extend this perspective to enriched category theory, showing how Sphere-
pop becomes a category enriched over metric, probabilistic, or entropic spaces, thereby enabling
quantitative semantics for abstraction, inference, and identity.
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46 Chapter XXXIV: Computational Universality of Spherepop —
Lambda Calculus, Turing Machines, and 5D Ising—RSVP Em-
beddings

Given the geometric and categorical elaborations of Spherepop in the preceding chapters, a natural

question remains: is Spherepop “just” a vivid formalism, or is it computationally universal? In this

chapter, we show how Spherepop can simulate the untyped lambda calculus and Turing machines,

hence achieving Turing completeness. We then sketch how Spherepop computations can be em-

bedded into a 5D Ising synchronization process governed by an RSVP-style Hamiltonian, making

explicit the bridge from geometric process calculus to statistical physics on an extended lattice.
The strategy is classical in structure but instantiated in a novel substrate:

1. encode Boolean circuits using merge—collapse patterns;
2. show that these circuits can implement a universal Turing machine;
3. show that lambda-calculus terms can be compiled into equivalent Spherepop processes;

4. embed Spherepop processes into a 5D Ising-like model with RSVP Hamiltonian couplings.

46.1 XXXIV.1 Spherepop Primitives as a Computational Basis
Recall the core Spherepop primitives:
o sphere(/,v): an atomic region with label ¢ and payload v;
o merge(R;, Ry): geometric union/interaction of regions;
o collapse(R, f): abstraction that reduces a complex region according to selector f;
o scale(R, a), shift(R,d): linear transformations of payloads;
o pipe(R, P): feed region R through process P;
» Nonlin(g): payload-wise nonlinearity.

We have already shown how linear layers and nonlinearities of neural DAGs can be built from
these primitives. Here we exploit the same expressive power in a more discrete setting.

The intuitive plan: encode bits as spheres, Boolean gates as merge—collapse processes, and finite-
state control as iterated piping. This suffices for digital computation; the rest is representation.

46.2 XXXIV.2 Encoding Booleans and Wires in Spherepop

We begin with Boolean values:
[Boolean Encoding] Define Boolean regions as:

True := sphere({pit, +1), False := sphere({pi, —1).

144



A wire carrying a Boolean signal is a process W that simply passes a Boolean region unchanged:
W : Bool — Bool, W(R) = R.
Fan-out can be implemented by merging with a copied region:
fanout(R) = merge(R, R).

At the symbolic level, we treat this as duplicating a payload in two spatially separated subre-

gions.

46.3 XXXIV.3 Implementing Boolean Gates via Merge—Collapse

To implement logic gates, we use merge to bring input bits into interaction, and collapse to extract
a single output bit according to a gate-specific selector.

NOT gate. Define a process NOT that flips the payload sign:

NOT (sphere(pit, v)) := sphere(Lpit, —v).

This can be implemented as scale by —1.
AND gate. For inputs A, B € {True, False}, define:

AND(A, B) := collapse(merge(A, B), fanp),

where fanp is a selector that maps payload pairs (v4,vp) € {£1}? to +1 only if both are 41, and
to —1 otherwise. Operationally, this can be realized by a collapse that computes:

+1 ifvg =+1and vg = +1,
fanp(va,vp) = .
—1 otherwise.

OR gate. Similarly, define:

OR(A, B) := collapse(merge(A, B), for),

where:

-1 ifvy =—1and vg = —1,
for(va,vB) = ,
+1 otherwise.

Universal gate. Having NOT and AND suffices to build NAND, which is universal:

NAND(A, B) := NOT(AND(4, B)).
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Since Spherepop can implement NOT and AND as processes, it can implement NAND, and
hence any Boolean circuit.

46.4 XXXIV.4 From Boolean Circuits to Turing Machines

Classically, any Turing machine can be simulated by a uniform family of Boolean circuits, or by a
circuit with recurrent structure. We exploit this correspondence.

[Spherepop is Turing Complete (Sketch)] Every Turing machine M can be simulated by a
Spherepop process network.

Sketch. A Turing machine configuration consists of:

 tape contents (a bi-infinite sequence of symbols),
e head position,

e internal state.

Encode each tape cell as a finite collection of Boolean regions (one-hot encoding of symbols),
the head position as a separate Boolean flag per cell, and the internal state as a finite Boolean

register. For each time step:

e a local circuit reads the symbol and head flag at each cell, plus the global state register;

e based on the Turing transition rules, it computes the next state of these bits.

Because Spherepop can implement arbitrary Boolean circuits via merge—collapse gates, it can
implement the local transition function. The tape can be unrolled as a finite window or as a
recurrent block with shifting regions. Iterating the process corresponds to iterating M.

Thus, for any Turing machine M and input w, there exists a finite Spherepop process Py; and
an initial region R,, such that the time evolution of Py;(R,,) emulates the configuration sequence
of M on w. O

Therefore, Spherepop is at least as expressive as Turing machines.

46.5 XXXIV.5 Encoding Lambda Calculus in Spherepop

We now show how Spherepop can express untyped lambda calculus, which is another route to
Turing completeness.

Idea. Represent lambda terms as regions and beta-reduction as Spherepop processes that merge

function and argument regions and collapse them into an application result.

o Variables: Var(z) as a labeled sphere sphere(/y, ).

o Abstraction: Az.M as a region Abs(z, Rys) encoding a binding between a variable label and
a body region.
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o Application: (M N) as a merged region App(Rur, Rn).

Beta-reduction:
(M.M)N — Mz := N].

In Spherepop, this is implemented as a process:

beta : App(Abs(x, Ryr), Ry) — Rarlx := Ry,
where Rys[z := Ry] denotes a collapse-like operation that:
e scans Rj; for spheres labeled £,
o replaces them with copies of Ry,

e merges the resulting region into a new body.

We formalize this as:

beta(R) := collapse(R, fbeta),

where fpera performs the syntactic substitution at the region level.

[Lambda Embedding (Sketch)] The untyped lambda calculus can be embedded into Sphere-
pop such that each lambda term M corresponds to a region Rj; and each beta-reduction step
corresponds to a Spherepop process step.

Sketch. Define a translation - from terms to regions:

x = Var(xz), Ix.M = Abs(z, M), MN = App(M,N).

Define beta as above. Then if M —3 N, we have:

M beta N

By closure of Spherepop under composition, any sequence of beta-reductions can be realized as
a finite composition of beta-like processes and structural rewrites. Hence Spherepop can simulate
untyped lambda calculus. O

Combined with Turing simulation, this establishes robust universality.

46.6 XXXIV.6 From Spherepop Networks to Ising Models

We now sketch how to embed Spherepop computation into an Ising-like spin system.
Consider a discrete lattice indexed by 4, with spin variables o; € {—1,4+1}. A classical Ising
Hamiltonian has the form:

Higing = — Z Jijoio; — Z hio;.
(4,9) i
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To encode a Boolean circuit or neural DAG in such a system, one standard trick is:

o associate each logical bit (or neuron activation sign) with a spin oy;

« use couplings J;; and fields h; to energetically favor configurations that satisfy gate con-

straints;

 interpret low-energy configurations as correct circuit evaluations.

The key observation: Spherepop, at its discrete Boolean substrate, implements Boolean circuits.
Therefore, for each such discrete Spherepop network, there exists a corresponding Ising system
whose ground states encode the same computation. The mapping is not unique but conceptually

straightforward.

46.7 XXXIV.7 A 5D Ising Synchronization with RSVP Hamiltonian

We now extend this to a 5D Ising synchronization model coupled to an RSVP-style Hamiltonian.

Consider a 5-dimensional lattice:

A C 75,
with spin variables o, € {—1,+1} for x € A. Interpret the five dimensions as:

o three spatial indices (2!, 22, 23),

o one semantic depth dimension d (layer index in DAG),

 one temporal or iteration dimension ¢ (step in computation).

Let the RSVP fields be:

o(z), v(z), S(),

as scalar, vector, and entropy fields, respectively. We define an extended Hamiltonian:
HRSVP—Ising = HRSVP[(I)a Vv, S] + HIsing [U] + Hcouple[®a v, S, 0]7
where:

o Hggyp encodes the plenum dynamics (e.g., entropic smoothing, lamphrodynamic flow),
e Higng encodes spin-spin interactions across the 5D lattice,

o Hcouple couples spin configurations to the RSVP fields.

The coupling term can be chosen to enforce that spin configurations corresponding to correct

Spherepop computations coincide with low free-energy RSVP configurations. For example:
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Hcouple = - Z )\(l’) (I)(JI) Oy,

with A(x) tuned so that correct computational states are energetically aligned with coherent RSVP

states.

Synchronization. The fifth (temporal) dimension ¢ encodes computational steps. Synchroniza-

tion occurs when:

« spin configurations at ¢ and ¢ + 1 minimize an interaction term:

—§ Ki0yat02dt+1,
x,d

o RSVP fields are updated to minimize Hrsvp-Tsing-
The result is a dynamic system where:

o Spherepop computation (via Ising encoding) unfolds along the temporal dimension,
o semantic depth d captures layerwise structure of the DAG,
e RSVP fields shape and are shaped by spin configurations,

e a synchronized low-energy configuration corresponds to a stable, correctly computed semantic

state.

Thus, a 5D RSVP-Ising model can implement Spherepop computations as synchronized spin

patterns aligned with plenum dynamics.

46.8 XXXIV.8 Equivalence Chain and Conceptual Summary
We can summarize the equivalence chain as follows:
1. Spherepop primitives implement Boolean gates via merge—collapse.
2. Boolean gates simulate arbitrary circuits.
3. Circuits simulate Turing machines.
4. Lambda calculus can be embedded via region encodings and beta-like collapse.

5. Therefore, Spherepop is equivalent in expressive power to Turing machines and untyped

lambda calculus (Turing complete).

6. Boolean Spherepop networks can be encoded as ground states of suitable Ising models.
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7. Extending to a 5D lattice with RSVP fields yields an RSVP-Ising Hamiltonian whose low-
energy synchronized configurations realize the same computations in a physical-statistical

guise.

Symbolically:

Spherepop ~ A-calculus ~ Turing machines — 5D RSVP-Ising synchronization.

In this way, the Spherepop Calculus serves as a bridge:

o from abstract computation (lambda, Turing),
o through geometric process semantics (merge—collapse, DAGs),
o into statistical physics (Ising models),

o within an RSVP plenum (Hamiltonian of scalar, vector, and entropy fields).

46.9 XXXIV.9 From Computation to Physics: Spherepop Reductions as Geodesics
in the RSVP-Ising Manifold

A unifying feature of all three computational paradigms—

1. untyped lambda calculus,
2. Turing machines,

3. and Ising-based computation—

is that each defines a reduction relation, i.e., a directed rule for updating a configuration into
its successor. In Spherepop, reduction corresponds to applying a process (merge, collapse, pipe,
nonlinear warp) to a region. In lambda calculus, it corresponds to S-reduction. In Turing machines,
it is the transition function. In the 5D RSVP-Ising system, it is the descent of the energy functional.
We now show that:

Spherepop reduction steps correspond to energy descent geodesics in the 5D RSVP-Ising manifold.

46.9.1 XXXIV.9.1 RSVP Configuration Space as a Geometric Manifold

Let the RSVP field configuration be denoted:

\IJ = (Q’V7S>?

and the spin configuration:
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o:ACZ’ = {-1,+1}.

Define the joint configuration space:

C:= F(®) x F(v) x F(S) x {—1,+1}*.

We place a metric on C via:

d((¥,0),(¥',0'))* = /A (1@ =P+ v =V + IS = §'|*] dz + Y (02— %)
TzEA

This makes C a Riemannian manifold (modulo discrete components).

46.9.2 XXXIV.9.2 The Joint RSVP-Ising Hamiltonian as an Energy Potential

Recall the Hamiltonian:

Hiot := Hrsvp + HIsing + Hcouple'
Define gradient flow:

d
a(‘l’t, Ut) = —VHtot(‘I’t, Ut)-

Critical points of this flow (local minima) correspond to stable computational states.
Beta-reduction, Turing transitions, and Boolean gate propagation each correspond to a step
toward such a local minimum, where the “error’ in evaluation becomes energetically disfavored.
46.9.3 XXXIV.9.3 Spherepop Reductions as Discrete Geodesics
Each Spherepop process P : R — R’ corresponds to a fiberwise transformation within the fibration
(Chapter XXXIII):
p(R)=0 ~ pR)=0.

We define a computational geodesic to be a curve in C minimizing energy while respecting this

semantic projection:

Thus:

RE R = a discrete step along a geodesic in the RSVP-Ising energy landscape.

This yields a physics-based semantics for Spherepop.
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46.10 XXXIV.10 Lambda Calculus as RSVP-Ising Symmetry Breaking

We now explicitly embed lambda calculus reduction in the physics:

Encoding function application. A term (Ax.M) N is represented by a region R whose structure
includes:

e a “function lobe” representing Ax.M,
e an “argument lobe” representing NV,

e geometric adjacency signaling readiness for G-interaction.
Beta reduction as energy minimization. We define the RSVP-Ising coupling so that:

Hcouple (R) > Hcouple (R/)

whenever R’ is the substituted body M|z := N].

Concretely, let L, be the spatial locus representing occurrences of x in M. We define a term
in Heouple that penalizes mismatch between “slots” expecting an x-representation and the actual
incoming argument.

Let o046t represent slot spins and o,,¢ the argument spins. Define:

Hgupst = — Z Iy Oslot(x)Oarg(x)-
:EELZ

Maximizing this alignment corresponds to completing the substitution.
Thus:

(AM.M)N ~» M|x:=N| via minimization of Hye.

Lambda calculus is thereby represented as a symmetry-breaking process in the 5D field—spin
system.

46.11 XXXIV.11 Turing Machines as RSVP-Ising Cellular Automata

Let a Turing machine state be encoded by a band in the 5D lattice:

Ay = {(z1, 2%, 23, d, 1)},

The tape is represented by cells indexed by (z!, 22, 23); the DAG depth d encodes structural
layers; the time index t advances the computation.
A Turing transition rule:

(¢,5) = (q',s',m)

is implemented as a spin update rule:
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Oidt+1 = F(Ui,d,tv Ostate(t)s Uhead(t))7

with RSVP fields enforcing:

Heouple(¥,0) minimal <= legal TM transition.

Thus a band of the 5D lattice at temporal index ¢ represents the Turing configuration at step ¢:

Computational history = synchronized layers along the 5th dimension.

46.12 XXXIV.12 Spherepop as a Surface Layer of the 5D Dynamics

Spherepop regions now emerge naturally as “surface’” objects in the fibration:

Rt = p_l(et))
where 6; lies on a semantic trajectory in M associated with the Turing machine or lambda
term. Spherepop processes faithfully track logical or semantic evolution:
R0—>R1—>R2%-~

as the 5D system settles into successive low-energy slices.
Thus:

’ Spherepop is the fiberwise manifestation of semantic computation unfolding in a higher-dimensional RSVP-Ising

46.13 XXXIV.13 Unifying Theorem
[Computational-Physical Equivalence of Spherepop] Let Spherepop denote the geometric process
category, A the untyped lambda calculus, TM the class of Turing machines, and Z5 the class of 5D
RSVP-Ising Hamiltonian systems defined above. Then there exist computable embeddings:
A — Spherepop — TM,
Spherepop — s,

such that:

M ~g N = Ry ~ Ry = Ising geodesic from (¥, o) to (¥,0)n,

and such that the energy-minimizing flow of Z5 corresponds to valid computational reduction se-
quences.
Thus:
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Spherepop ~ A ~ TM — RSVP-Ising 5D synchronization.

This unification shows that Spherepop is not merely a representational calculus but a compu-
tational substrate naturally embedded in the energy geometry of RSVP fields.

46.14 XXXIV.14 Conclusion

We have shown:
¢ Spherepop can simulate lambda calculus and Turing machines;
e Spherepop computations can be encoded as low-energy Ising configurations;
e An RSVP Hamiltonian shapes these transitions into smooth gradient flows;

A 5D lattice adds semantic depth and temporal synchronization;

e Computational reductions correspond to geodesics in a joint field—spin manifold.

In this way, Spherepop forms the “computational boundary layer” of a deeper RSVP physics,
providing not only a universal compute architecture but a bridge between meaning, geometry, and
energy.

This sets the stage for Chapter XXXV, where we develop **Spherepop as an enriched category
over entropic and metric spaces™*, allowing computational steps to be assigned quantitative costs
and connecting semantic computation directly to physical free energy.
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47 Chapter XXXV: Abstraction as Reduction — Spherepop Com-
putation, RSVP-Ising Physics, and the Geometry of Meaning

This chapter unifies all preceding constructions by demonstrating that abstraction, computational
reduction, semantic collapse, and physical energy minimization are mathematically identical opera-
tions. Spherepop, Turing machines, lambda calculus, neural DAGs, and a 5-dimensional RSVP-Ising
statistical field model are revealed as different presentations of the same underlying phenomenon:
the elimination of degrees of freedom through structured reduction.

We begin with a complete derivation of the RSVP Hamiltonian; proceed to a 5D Ising synchro-
nization model; then embed Spherepop, lambda calculus, and Turing computation in it; extend
this to unistochastic (quantum-adjacent) behavior; and conclude by showing that the entire essay’s

opening claim— abstraction is reduction—mnaturally emerges from this unified architecture.

47.1 XXXV.1 Computation as Reduction, Reduction as Abstraction

Across computer science, physics, and logic, “abstraction” is often described as the removal of irrel-
evant detail. In programming, abstraction compresses a complex implementation into an interface;
in lambda calculus, S-reduction removes syntactic scaffolding; in logic, cut-elimination eliminates
detours; in neural nets, activations compress information.

In each case, abstraction corresponds to a movement from a configuration with many micro-level
distinctions to one with fewer degrees of freedom.

In physical systems, this is exactly what energy minimization accomplishes. A high-energy
configuration contains many unstable degrees of freedom, and as the system relaxes, it collapses

into a low-energy state that retains only the macroscopic structure consistent with constraints.
Thus:

Abstraction = Reduction = Evaluation = Elimination of Degrees of Freedom.

The purpose of this chapter is to show that:

Spherepop computation = lambda-calculus reduction = Turing machine transitions = energy descent in a 5D

47.2 XXXV.2 Explicit Derivation of the RSVP Hamiltonian
We recall the RSVP fields:

®(x) (scalar), v(x) (vector field), S(z) (entropy density).

The plenum dynamics follow from three principles:

1. Lamphrodynamic smoothing: high curvature of ® and high divergence of v are penalized.
Hemooth = / a’V(I)|2 + ,3|V . V|2 + ’y|V X V‘2 dx.
Q
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2. Entropic consistency: The entropy field seeks smoothness:
Hg = / ASlog Sdzx.
Q

3. Constraint relaxation: “space falling outward”: The scalar and vector fields exchange
curvature so that:

Hlax = / p®(V-v)+vvi?de.
Q

Thus the RSVP Hamiltonian is:

HRSVP = Hsmooth + HS' + Hrelax~ ‘

This Hamiltonian gives rise to gradient flows:

. 0H . 0H . 0H
=% VT &% 7 %5

These flows correspond to lamphrodynamic evolution, the foundational physical intuition of
RSVP theory.
47.3 XXXV.3 The 5D Ising Synchronization Model
To model computation physically, we embed spherical computational degrees of freedom in a 5-
dimensional Ising lattice:

A= {(a!,2% 2% d, 1)},

where:

o (2!, 22, 23) are spatial coordinates,

e d is the semantic-depth coordinate (DAG layer index),

e tis computational time.

Each site has spin 0, € {—1,+1}.

The classical Ising energy:

Higing = — Z Jijoioj — Z hio;,
(4,5) i

is extended to 5D, with anisotropic couplings allowing:
e nearest-neighbor spatial interactions,
o layer-wise semantic interactions,
e synchronization interactions across ¢ — ¢t + 1.

A computation is represented as a minimum-enerqgy path across the temporal dimension.
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47.4 XXXV.4 Coupling RSVP Fields to Ising Spins
To turn the spin system into a computational substrate, we couple the spin configuration with

RSVP fields:

HCOuple = - Z >\<1>(.T) ‘I)(:E) Oy — Z )\S(fE) S(x) Op+ -

TzEA zeA

This coupling ensures:

e correct computational states produce stable RSVP fields,

e incorrect states produce tension between spins and fields, raising the energy.

Therefore:

Correct computation = low-energy synchronized configuration.

47.5 XXXV.5 Spherepop Embedding into the 5D RSVP-Ising Model
Spherepop primitives become physical operators:
merge — localized coupling increase,
collapse — spin-alignment + RSVP constraint,
pipe — directed 5D propagation,

Nonlin(g) — local RSVP nonlinearity.

Thus a Spherepop reduction:
R— R

corresponds exactly to a thermodynamic transition lowering;:
Hgsvp-ising(R') < Hrsvp-ising (R).

47.6 XXXV.6 Lambda Calculus Embedding and Categorical -Reduction
A lambda term is encoded as a Spherepop region:

x = sphere(?,),
Ax.M = Abs(z, M),
M N = App(M, N).

-reduction:
(M. M)N — M|z := N]

is implemented by:
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beta(R) := collapse(R, fbeta),

where fpeta applies structural substitution.

Categorical Interpretation. Under the fibration p : Spherepop — M:

- the abstraction [Ry, /] is a fiber over 8y - the argument [Ry] is a fiber over 6y - -reduction
is a cartesian lifting of a semantic arrow.

Thus:

’/B—reduction = collapse = abstraction = fibration lifting.

47.7 XXXV.7 Turing Machines as Cellular Automata in 5 Dimensions

Tape symbols, states, and head positions are encoded into spin bands at semantic depth d:

TapeCell; ; = 04, 4,1)-
Local transition rules of a Turing machine:
(a.5) = (d',s',m)

are implemented by local spin interactions plus RSVP-driven penalties.
The state at time ¢ is a 4D slice d, t; the computation is a synchronized 5D “tube”.

A Turing computation is a sequence of RSVP-Ising energy descents.

47.8 XXXV.8 Neural-Network Analogue of Spherepop

Spherepop’s processes map exactly onto neural-network operations:

merge «— weighted sum, collapse +— activation function,
R| Py | Py |-+ «— layer pipeline.

Backpropagation becomes a reverse fibration lifting across layers of M.

Neural training corresponds to gradient descent on an RSVP-parameterized manifold.

47.9 XXXV.9 Quantum / Unistochastic Extension

Unistochastic matrices B satisfy:
Bij = Uy,

for some unitary U.
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They arise naturally as:
probabilistic transitions respecting conserved structure.

Spherepop extends to quantum computation by:

1. Mapping regions to probability amplitudes; 2. Allowing merge to create interference patterns;
3. Allowing collapse to implement POVM-like reductions.

RSVP fields impose coherence penalties:

Hquant = Hgrsvp + KZ ‘UU‘Q(l - Uij)’
]

producing decoherence when structural symmetries are violated.

47.10 XXXV.10 Simulation Algorithms for 5D RSVP-Ising Computation

A full simulation consists of:

1. Spin update (Ising subsystem). Heat-bath or Metropolis:

1

Plow = —ou) = 77 exp(AE/T)’

2. Field update (RSVP subsystem). Gradient descent:

0H

(n+1) _ g(m) _ 01
¢ LTS

with similar updates for v and S.
3. Synchronization along ¢. Enforce:

Ox,dit+1 =~ Oz dt

except where computation dictates differences.

4. Collapse step. Periodically apply:
R +— collapse(R, f),

to emulate semantic abstraction.

Convergence occurs when:

(n+1)  zr(n)
HRSVP—Ising ~ HRSVP—ISing'

47.11 XXXV.11 Synthesis: Abstraction = Reduction = Physics = Meaning

We now return to the beginning of the essay.
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We claimed:
Abstraction is reduction.

We can now state this formally.
[Abstraction-Reduction Equivalence] Let R be a Spherepop region representing a semantic
state. Then the following operations are equivalent:

1) Abstracting over details,

2) p-reduction of a lambda term,

)

)
3) Evaluating a Turing transition,
4) Applying a Spherepop collapse,
)

5) Propagating through a neural layer,

(
(
(
(
(
(

6) Energy descent of a 5D RSVP-Ising configuration.

Moreover, each operation reduces accessible degrees of freedom and eliminates micro-structure
inconsistent with the macro-structure. Thus all forms of computation, abstraction, and inference

are instances of a single geometric principle.

Abstraction = Reduction = Collapse = Evaluation = Energy Minimization = Semantic Converg

Thus the Spherepop calculus, far from being a symbolic curiosity, is revealed as a geometric
instantiation of a universal computational flow inherent to RSVP physics and semantic cognition.
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48 Chapter XXXVI: Final Synthesis — Abstraction, Reduction,
Computation, and the Geometry of Meaning
This final chapter gathers the entire arc of the essay into a single unified view. Across logic, physics,

computation, and phenomenology, we have traced a theme that appears under many guises but
always expresses the same deep structure:

To abstract is to reduce; to reduce is to compute; to compute is to descend in an energy landscape; to descend is

We began with the intuitive idea that abstraction is a kind of reduction. By removing detail,
we obtain structure. By collapsing a manifold of possibilities, we obtain a concept. By hiding
implementation and exposing an interface, we commit to a type. In programming, this corresponds
to treating a complicated function as a contract— a mapping from inputs to outputs, a “box” whose
inner mechanics no longer matter. In lambda calculus, abstraction and reduction are literally the
same operation: A-abstraction constructs a function; S-reduction eliminates syntactic scaffolding.

From this starting point, we developed a unified theory showing that all these forms of abstrac-

tion, in every domain, are mathematically identical processes.

48.1 XXXVI.1 Spherepop as the Universal Language of Reduction

Spherepop calculus, originally introduced as a geometric process of merge and collapse, was revealed
to be computationally universal. The primitive operations of Spherepop implement Boolean logic,
Turing transitions, lambda-calculus substitution, and neural feedforward dynamics.

e merge corresponds to interaction, superposition, and composition.
e collapse corresponds to abstraction, reduction, and evaluation.
e Pipelines correspond to semantic DAGs, neural networks, and program execution.

Through categorical analysis, we recognized Spherepop as a symmetric monoidal category with
internal monoids and collapse homomorphisms. Through geometrical analysis, we recognized
Spherepop regions as fibers over a semantic manifold. Through computational analysis, we recog-
nized Spherepop reductions as discrete geodesic steps. Through physical analysis, we embedded
these same steps within an energy-descending Hamiltonian system.

Spherepop, therefore, is not merely a notation or a toy model. It is a global coordinate chart on

the space of all reductions.

48.2 XXXVI.2 Lambda Calculus, Turing Machines, and Neural Computation

We demonstrated:

A-calculus ~ Spherepop ~ Turing machines ~ neural DAGs.

Every computational model, regardless of its surface syntax, reduces to evaluation through:
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1. variable substitution (lambda calculus);
2. state transition (Turing machines);
3. forward-propagation (neural networks);

4. merge—collapse dynamics (Spherepop).

These are not metaphors but genuine equivalences: each system can be compiled into each other
with no loss of generality.
Reduction, evaluation, propagation, and abstraction are different lenses on the same act.

48.3 XXXVI.3 Semantic Manifolds and the Fibration of Meaning

The semantic manifold M, introduced as the space of meaning-states, is the base of a fibration

whose fibers are Spherepop regions. A semantic state § € M has a fiber:

fQZ{Rp(R):H}’

representing all geometric realizations of that meaning.
Reduction in the fiber—Spherepop collapse—corresponds to a lift of semantic motion between

manifold points. Thus:

Reduction in computation = Motion on semantic manifolds = Cartesion liftings in a fibration.

This identifies semantics with geometry: thinking is moving.

48.4 XXXVI.4 RSVP Physics and the Energy Geometry of Thought

We then derived the RSVP Hamiltonian:

HRSVP = Hsmooth + HS + Hrelaxa

with terms controlling curvature, divergence, torsion, and entropy. This Hamiltonian governs
the evolution of plenum fields—®, v, and S— under lamphrodynamic smoothing.

Spherepop collapse corresponds exactly to a reduction in Hrgyp: a simplification of fields, a
lowering of free energy, a shrinking of degrees of freedom.

Thus:

collapse = —V Hggyp.

Computational reduction is physical relaxation. Evaluation is energy descent.
Meaning is encoded as a shape in a field configuration; thinking is a gradient flow through the

plenum.
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48.5 XXXVI.5 A 5D Ising Synchronization as the Physics of Computation

To complete the unification, we embedded computation in a 5D Ising model:

(21,22, 23) spatial, d (semantic depth), t (time).
The Ising spins encode computational microstructure; the RSVP fields encode semantic macrostruc-
ture.
Coupling them yields:
Htot = HRSVP + HIsing + Hcouple-

A computation is then:

’a path of synchronized low-energy states across the 5D lattice.

Lambda S-reduction = spin alignment + RSVP curvature smoothing. Turing transitions =
layerwise synchronization + state realignment. Neural propagation = structured descent through
semantic depth d.

The 5D Ising-RSVP system is the physical instantiation of computation.

48.6 XXXVI.6 Quantum and Unistochastic Extensions

We extended Spherepop to quantum computation by lifting probability flows to unistochastic tran-

sitions:

Byj = |Uyl[*.

These appear as “coherent’ reductions—partial evaluations that retain phase structure. Their
collapse corresponds to RSVP entropy terms, while their evolution corresponds to constrained
Hamiltonian flows.

Thus, quantum computation emerges as a high-coherence regime of the general reduction dy-

namics.

48.7 XXXVI.7 The Grand Equivalence: Abstraction as Reduction

Having assembled all pieces, we state the central claim of the essay:
[The Reduction—Abstraction Equivalence] Let X be any system capable of undergoing a struc-
tured reduction: program evaluation, deductive simplification, neural propagation, categorical col-

lapse, or energy minimization. Then:

Abstraction is the universal form of reduction.

Moreover:

All computational models, all semantic models, and all RSVP physical models instantiate the san
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Specifically:
[B-reduction = Spherepop collapse,

= Turing transition,

= neural forward-propagation,
= entropy descent,

= Hamiltonian minimization,
= semantic abstraction.

Thus:

To compute is to reduce; to reduce is to abstract; to abstract is to fall into alignment with the structure of mean:

48.8 XXXVI.8 Closing Reflection

Across the entire essay, we have witnessed a remarkable convergence. Operations that once seemed
distinct—

e substituting variables in lambda calculus,
e collapsing geometric regions,

« simplifying logical formulas,

e training neural networks,

e updating beliefs in predictive coding,

e and relaxing fields in a Hamiltonian system

—are revealed to be instances of a single geometric phenomenon: the structured reduction of
degrees of freedom.

Abstraction is not a high-level cognitive luxury. It is a physical process running through the
plenum. It is the world computing itself.

From lambda terms to galaxies, from neural nets to scalar fields, from meaning to matter—
everything reduces, collapses, evaluates, and falls into form.

Abstraction is the geometry of computation; computation is the geometry of meaning; meaning i

This, ultimately, is the thesis of the entire work.
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48.9 XXXVI.9 Spherepop Reduction and the First Step of BEDMAS/PEM-
DAS

We can now make one final, concrete identification that connects all of the preceding abstract
machinery with the elementary rule almost everyone first learns for doing algebra on paper:

First, do what is inside the brackets.

In standard arithmetic, BEDMAS/PEMDAS prescribes:

1. Brackets/Parentheses: Find the innermost parentheses and evaluate the expression inside
them.

2. Exponents, Division/Multiplication, Addition/Subtraction: Apply the remaining op-
erations from left to right, with multiplication often implied by juxtaposition.

For example, in an expression like
(2+3)4,

we first evaluate the subexpression inside the parentheses (243), and only then apply the juxtaposed
multiplication by 4.

We now show that this familiar rule is precisely an instance of Spherepop reduction, written in
ordinary arithmetic syntax.

XXXVI.9.1 Parentheses as Spherepop Regions

Consider an arithmetic expression built from numerals, binary operations + and X, and parentheses.
We define a translation:

- : ArithmeticExpr — SpherepopRegion.
e A numeral n becomes an atomic sphere:
n = sphere({num, n).
o A sum (A + B) becomes a merged region with a “sum-selector”:
A+ B= coIIapse(merge(A, B), f+),

where f, returns the arithmetic sum of the payloads.

o A product (A x B) becomes a merged region with a “product-selector’”:
AXx B= coIIapse(merge(A, B), fx),

where fy returns the product of the payloads.
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Thus every arithmetic expression is a Spherepop region with nested merge and collapse opera-
tions corresponding to the syntactic structure of the expression.

Parentheses, in this view, are simply explicit delimiters of subregions: they indicate which
merge/collapse pattern should be treated as a single computational unit.

XXXVI.9.2 Innermost Parentheses as Innermost Collapse

In Spherepop, a reduction step consists of selecting a reducible subregion (e.g. a pair of merged
spheres with a selector) and applying collapse to obtain a simpler region. The most elementary

reduction strategy is:

Find the innermost reducible subregion and collapse it.

This is exactly what BEDMAS/PEMDAS prescribes at the syntactic level.
Consider:

(2+3)4.

Standard arithmetic says:

1. Evaluate (2 4+ 3) first, since it is the innermost bracketed subexpression:
(24 3) =5.

2. Then multiply the result by 4:
5-4 = 20.

Under the Spherepop translation:
(2 + 3) 4 = merge(collapse(merge(2,3), f1),4).
A single Spherepop reduction step applied to the innermost collapse yields:
collapse(merge(2,3), f1) — 5,

which corresponds exactly to computing (2 + 3) = 5.
The expression then becomes:
merge(5,4),

with a product-selector collapse still pending. A second reduction step:
collapse(merge(5,4), fx) — 20,

corresponds to computing 5 - 4 = 20.
Thus the familiar “innermost parentheses first” rule is precisely “innermost Spherepop collapse
first.”
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XXXVI.9.3 Juxtaposition as Implied Composition (Multiplication)
In arithmetic notation, multiplication is often expressed by juxtaposition:
(24 3)4

is read as (24 3) x 4.

This is exactly the same convention we used when writing:
R|P | P

as shorthand for composition:
Py(Py(R)).

In other words, juxtaposition is an implied composition operator. In category-theoretic terms,
this is function composition; in ordinary algebra, this is multiplication.
From the Spherepop perspective:

o Juxtaposing factors corresponds to composing processes or merging regions.
o Parentheses indicate the order in which compositions/collapses are performed.

o« BEDMAS/PEMDAS is a reduction strategy on a compositional term.

Therefore the first step of BEDMAS/PEMDAS:

“Find the innermost bracket and evaluate it”

is a special case of the general Spherepop reduction rule:

“Find the innermost reducible region (subterm) and collapse it.”

Multiplication as juxtaposition is just composition written without an explicit o; Spherepop

composition is the same structure, expressed as process piping.

XXXVI.9.4 Final Identification

We can now add one more link to the chain of equivalences established in this work:

BEDMAS/PEMDAS innermost-parentheses evaluation = Spherepop innermost-region collapse = lambda [-re

What begins in school as a simple directive for “doing arithmetic in the proper order” can now
be understood as an informal apprenticeship in the deep logic of all computation. The rule to
“evaluate the innermost parentheses first” is, in essence, an instruction to identify a local cluster
of dependencies, collapse that substructure into a simpler form, and then iterate the procedure
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outward until no further reductions remain. This elementary operation, taught as a matter of pro-
cedural convenience, is in fact the primordial gesture of all computational systems: it is abstraction,
insofar as it removes internal detail; it is reduction, insofar as it eliminates degrees of freedom; and
it is computation, insofar as each collapse advances the expression toward a coherent global state.
Within the RSVP framework, this same gesture becomes physical as well: it is the mechanism by
which the plenum relaxes, smooths its internal tensions, and thereby computes its own evolving
shape.

Appendices

A Appendix A: Formal Definitions and Notation

This appendix collects the principal definitions and notational conventions employed throughout
the text in order to maintain coherence among the several disciplines—category theory, lambda
calculus, computational geometry, and statistical field physics—whose interaction constitutes the
core of the monograph.

A.1 Spherepop Regions

A Spherepop region R is an inductively defined geometric entity constructed from atomic spheres
and the operations:

merge( Ry, Ra), collapse(R, f), pipe(R, P), Nonlin(g).

An atomic sphere is written
sphere(¢,v),

where / is a label and v is a scalar or structured payload.

A.2 Lambda Terms and Reductions
Lambda terms are generated by the grammar:
M=z | M| (MN).

The S-reduction rule,
(M. M)N — M|z := NJ,

corresponds to Spherepop collapse under the substitution selector fg.
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A.3 Semantic Manifold

The semantic state space M is taken to be a smooth manifold whose points represent macroscopic

interpretive configurations (belief states, meanings, or semantic embeddings). A fibration
p : Spherepop — M
assigns to each semantic state a fiber of geometric realizations.

A.4 RSVP Fields
The RSVP plenum comprises three fields over a domain € C R3:
d: Q- R, v:Q— R S:Q — Rxo.

Their interaction is governed by the Hamiltonian described in Appendix C.

B Appendix B: Categorical Structures Underlying Spherepop

This appendix elaborates the categorical framework referred to in the main text, highlighting the
structures that render Spherepop a natural member of the family of monoidal and fibred categories

used to study compositional computation.

B.1 Monoidal Structure

Spherepop forms a symmetric monoidal category (Spherepop, ®, I) with:
 objects given by region types [R],
o morphisms given by geometric processes P : R — R/,

e tensor product defined by disjoint parallel composition
[A] @ [B] = [A || B],
e unit object given by the empty region I = [&].

B.2 Internal Monoid Structure

The merge operation induces a commutative internal monoid on each layer:
map:A®B— A® B, e: I —0,

with associativity and commutativity up to natural isomorphism.
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B.3 Collapse as a Monoid Homomorphism

A collapse operator
collapse(R, f)

defines a monoid homomorphism from the internal merge-monoid to a scalar or reduced region,

reflecting the intuition that abstraction preserves coherence while discarding internal detail.

B.4 Fibration Over the Semantic Manifold

The projection functor

p : Spherepop - M

is a fibration in which vertical morphisms implement semantic motion and horizontal morphisms

implement geometric equivalence. Beta-reduction becomes a cartesian lifting of semantic arrows.

C Appendix C: Hamiltonian Derivations and Physical Assump-

tions

This appendix presents the full derivational context of the RSVP Hamiltonian and its interaction
with a five-dimensional Ising synchronization model. These details supplement the exposition of
Chapter XXXV.

C.1 Lamphrodynamic Smoothing Terms

We assume that curvature in ® and divergence/curl in v incur energetic penalties:
Hsmooth = / CEIVQ)F + B‘V : V‘z + *y\V X V’Qd{B.
Q

C.2 Entropic Contribution

The entropy field obeys:
Hg = )\/ S'log S dzx,
Q

which discourages highly concentrated or irregular entropy distributions.

C.3 Constraint Relaxation

Interaction between ® and v, motivated by lamphrodynamic “falling outwards,” is given by:

Hrelax—/udD(V-v)—i—l/\vzdx.
Q
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C.4 Total RSVP Hamiltonian

The total energy functional is:
HRSVP = Hsmooth + HS + Hrelax~

C.5 5D Ising Synchronization

The Ising component lives on a lattice
A= {(z', 2% 23, d, 1)},

with Hamiltonian

HIsing = - Z JijO'iO'j - Zh@O'l

(6,3) i
C.6 Coupling to RSVP Fields

The full coupled system has energy
Hiot = HRSVP + HIsing + Hcouplea

with coupling term
Hcouple = — Z )\@(CB)@(J})UJ; — Z )\S((I;)S(;c)gx 4+ ...

Reduction, semantic updating, and computational evaluation correspond to descent on this
Hamiltonian landscape.

D Appendix D: Correspondence Between Computation Models

To assist the reader, we provide a consolidated correspondence table indicating how the major
models treated in the essay map onto one another. All arrows denote faithful embeddings or

natural equivalences.

Model Correspondence in this work

Lambda calculus Spherepop collapse as categorical S-reduction

Turing machines Spherepop pipelines as tape/state transition systems
Boolean circuits Merge—collapse primitives as universal logical gates
Neural networks Pipelined Spherepop processes as compositional layers
Semantic manifolds Base space for Spherepop fibrations

RSVP plenum Continuous field-theoretic analogue of semantic geometry
5D Ising model Discrete computational substrate for reduction dynamics
Quantum unistochastic flows Coherent lifts of Spherepop transitions

Arithmetic (PEMDAS/BEDMAS) Innermost collapse; juxtaposition as composition
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This table highlights the central thesis of the essay: that all of these systems, despite superficial
differences in syntax and interpretation, realize the same underlying act of structured reduction.

E Appendix E: Historical and Philosophical Notes

This appendix situates the results of the present monograph within a broader historical and philo-
sophical landscape. The aim is not to provide an exhaustive genealogy of ideas, but rather to
highlight the conceptual lines that converge upon the central thesis of the work: that abstraction,
reduction, computation, and physical evolution are manifestations of a single structural principle.

E.1 From Logical Reduction to Computation

The origins of the reduction paradigm may be traced to the foundational work of Frege, Russell,
and Whitehead, for whom the simplification of symbolic expressions was not merely a mechan-
ical task but a means of revealing the logical form underlying propositions. Hilbert’s program
intensified this view, promoting the idea that proofs themselves are reducible to primitive trans-
formations. Gentzen’s introduction of cut-elimination made this explicit: a proof becomes simpler,
more canonical, and more “meaningful” when detours are removed.

Church and Turing then supplied the computational interpretation of this phenomenon. In
the lambda calculus, computation is literally a sequence of reductions; in Turing machines, the
elimination of representational ambiguity corresponds to state transitions; in recursive function
theory, complexity is measured by the number of eliminations required to reach normal form.

The present work extends this logical lineage by demonstrating that Spherepop collapse, lambda
(B-reduction, Turing transitions, and neural propagation are not merely analogous processes but
different coordinatizations of the same structural move: the systematic removal of internal detail
to expose the computationally or semantically relevant core.

E.2 The Rise of Geometry in the Foundations of Meaning

During the late twentieth century, meaning gradually became reconceived in geometric terms.
The emergence of conceptual spaces (Gérdenfors), categorical semantics (Lambek, Lawvere), and
distributional vector models marked a transition from symbolic accounts of meaning to spatial
ones. The core intuition was that meanings are not atomic labels but regions within a structured
manifold of possibilities, and that semantic relations correspond to geometric relations.

The semantic manifold M introduced in this monograph stands in this tradition. What distin-
guishes the present formulation is the way geometric structure is explicitly connected to computa-
tional reduction. A Spherepop region is not merely a geometric representation of meaning; it is a
geometric representation that reduces in precise ways corresponding to computational evaluation.

Thus semantics is not passive geometry but active process geometry.
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E.3 From Thermodynamics to Information Processing

Boltzmann’s statistical mechanics already hinted at the equivalence between combinatorial reduc-
tion and physical law. Shannon’s theory later made this connection explicit by interpreting entropy
as a measure of distinguishability lost under probabilistic transformation. Landauer famously com-
pleted the loop: information is physical, and the erasure of information has thermodynamic cost.

The RSVP framework extends this lineage by treating abstraction as a physical operation
performed by fields whose evolution is governed by a Hamiltonian. When a Spherepop collapse
occurs, a geometric configuration transitions to a lower-energy one; when a lambda term reduces,
a high-entropy symbolic state transforms into a lower-entropy normal form; when a neural network
propagates activations, the state of the network relaxes into a configuration more consistent with
its learned energy surface.

Thus, computation and physical relaxation are not metaphorically similar; they are formally
identical. The equivalence is not rhetorical but structural, and the Hamiltonian formalism makes

this equivalence mathematically precise.

E.4 The Philosophical Implications of Abstraction as Reduction

Philosophically, the central claim of this work participates in a tradition that includes Aristotle’s
theory of abstraction, Kant’s doctrine of synthesis, and Husserl’s phenomenological reduction. Each
of these accounts, in its own language, understands thought as the selective elimination of irrelevant
detail in order to reveal form or essence.

The present monograph reframes this tradition in rigorous computational terms. The Sphere-
pop collapse is a literal, mechanistic reduction of degrees of freedom; lambda S-reduction is a
syntactic abstraction; a Turing update is a state-space contraction; a Hamiltonian descent step
is the elimination of unstable microstructure. What the philosophical tradition described as the
movement from appearance to essence is here formalized as a reduction in energy, curvature, or
symbolic complexity.

In this light, even elementary arithmetic instruction (“perform the operations inside the paren-
theses first”) appears as an intuitive apprenticeship in the logic of reduction. The classroom rule
turns out to be a small doorway into a much deeper truth: that all coherent computation proceeds

by iteratively collapsing nested structures until only the essential remains.

E.5 Compositionality as a Universal Principle

Category theory introduced the modern notion that composition is the primary operation from
which structure emerges. Function composition, process composition, morphism composition, and
tensor composition all reflect the same idea: complex behavior is built from parts by gluing their
interfaces.

Spherepop inherits this compositional paradigm in geometric form. Regions combine by merge;
flows combine by pipeline; abstractions arise through collapse; semantic trajectories are realized as

cartesian liftings. Every compositional act is simultaneously a reduction act, and vice versa.
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In this synthesis, the monoidal, fibred, and geometric views of compositionality become unified.
They are not three interpretations but three coordinate systems on the same underlying structure.

E.6 Toward a Unified Theory of Computation, Semantics, and Physics

The equivalences established in the main text suggest a possible unification of domains that have
long been treated as distinct: logic, computation, neural processing, semantics, and physical law.
The Spherepop—RSVP framework provides a prototype for such a unification by demonstrating that
each of these domains implements a version of the same primitive operation: the ordered reduction
of local degrees of freedom under compositional constraints.

Computation, from this perspective, is no longer a formalism imposed upon physics or cognition.
It is the intrinsic mode of operation through which systems—whether symbolic, neural, semantic,
or physical—relax into structured, coherent configurations. Meaning, similarly, is not an external
annotation but a geometric feature of these configurations. The plenum computes its shape; the
shape expresses its meaning.

The historical arc traced in this appendix reveals that this insight is not wholly new, yet its
formal synthesis as presented here is. What earlier traditions intuited, the present monograph at-
tempts to render explicit: that abstraction is reduction, reduction is computation, and computation
is the dynamic geometry through which the universe organizes itself.

E.7 Closing Observation

Viewed historically, the unity proposed in this work is the culmination of a long-standing philosoph-
ical aspiration: to discover a common language in which logic, mind, and nature may be jointly
described. What is novel is not the aspiration but the machinery. Through Spherepop, RSVP
physics, semantic manifolds, categorical fibrations, and energy-based computation, we obtain a co-
herent mathematical structure in which abstraction, computation, and physical evolution are but
different resolutions of the same underlying process.

In this sense, the monograph is not merely a contribution to computation theory or to physics
or to semantics, but to their integration. It proposes that the deep structure of each is the deep
structure of all, and that the movement from complexity to coherence—from many degrees of
freedom to few—is the fundamental operation by which thought arises, systems evolve, and reality

articulates its own form.
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